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COMPARING ALTERNATIVE DEFINITIONS
OF BOOLEAN–VALUED FUZZY SETS

Ivan Kramosil

Two definitions of fuzzy sets with Boolean-valued membership functions, introduced by Drossos
and Markakis and called by them external and internal Boolean fuzzy sets, are compared with a
third, classical definition descending more directly from the original Zadeh’s and Goguen’s ideas.
Under some rather general conditions, internal and classical Boolean fuzzy sets are proved to be
equivalent in the sense that there exists a one-to-one mapping to each other conserving the set
theoretic operations. On the other side, the space of external Boolean fuzzy sets is richer, so that
such a mapping exists only in some rather special cases.

1. THREE DEFINITIONS OF BOOLEAN–VALUED FUZZY SETS

The two basic notions considered and combined together throughout this paper will
be that of fuzzy set and that of Boolean algebra. Let us refer to [4] as far as the
notion of fuzzy sets, their properties and basic results are concerned, let us refer
to [5] for Boolean algebras. Fuzzy sets, in their classical setting with numerical
real-valued membership functions, were conceived by Zadeh in 1965 [6] with the
aim to develop a mathematical tool for uncertainty quantification and processing,
alternative to that one represented by the classical probability theory. Hence, a fuzzy
subset E of a nonempty basic space or universe A was defined by and identified with
a function µE defined on A and taking its values in the unit interval 〈0, 1〉 of real
numbers. For a number of reasons, as soon as in 1967 Goguen presented the idea
of fuzzy sets with non-numerical membership functions, cf. [3] for more details and
motivation. Then, in 1985, [1] Drossos and Markakis argued in favour of taking
profit of Boolean algebras when defining fuzzy sets, however, both the definitions of
fuzzy sets, suggested by the same authors in [2], differ from the definitions resulting
from direct applications of Goguen’s ideas. So, the aim of this paper will be to
compare the two definitions of Boolean-valued fuzzy sets from [2] with the third,
classical or Goguen-like one.

Let B = 〈B,∨,∧,¬,0B,1B〉 be a Boolean algebra over a nonempty support set
B, hence, for each e, f ∈ B, e ∨ f is the supremum and e ∧ f the infimum of e, f ,
¬e is the complement of e, 0B is the zero and 1B the unit (or: the minimal and the
maximal) element of B. The partial ordering ≤ on B will be defined in the usual
way, i. e., for e, f ∈ B, e ≤ f holds iff e ∨ f = f , or, what is the same, iff e ∧ f = e,
here = is the identity (relation) on B. There are numerous settings of the set of
axioms which the operations and the distinguished elements of a Boolean algebra
are to obey and we shall not repeat them here referring, e. g., to axioms A1 – A5 in
[5].

In what follows, we shall always suppose that:

i) The Boolean algebra B is complete, hence, for each ∅ 6= C ⊂ B there exist
f, g ∈ B such that
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(a) e ≤ f for each e ∈ C and, if e ≤ f1 holds for some f1 ∈ B and each
e ∈ C, then f ≤ f1; such an f is denoted by

∨
e∈C e and called supremum

of C.
(b) g ≤ e for each e ∈ C and, if g1 ≤ e holds for some g1 ∈ B and each

e ∈ C, then g1 ≤ g; such a g is denoted by
∧

e∈C e and called infimum of
C.

(ii) The operations of supremum and infnimum are conventionally extended to
the case when C is empty, setting

∧
e∈∅ e = 1B ,

∨
e∈∅ e = 0B .

(iii) The Boolean algebra B is nonempty and nontrivial , i. e. B 6= ∅ and 0B 6= 1B .
As the most simple example of a Boolean algebra satisfying all the demands above

let us mention the system of all subsets of an at least two-element universe with
respect to the common set-theoretical operations of union, joint (intersection) and
complement, with the empty set and the universe playing the role of the distinguished
elements. In what follows, the Boolean algebra B will be taken as fixed, so that it
will not be always explicitly introduced as a free parameter of the notions and
constructions presented below.

Definition 1.1. Let e ∈ B, let C ⊂ B, i. e., C ∈ P(B) = {E : E ⊂ B}. The set C
is called a decomposition of (the element) e if, for each f1, f2 ∈ C, f1∧f2 = 0B and if∨

f∈C f = e. The set of all decompositions of e will be denoted by Dcp (e) (⊂ P(B)).

Let A be a nonempty abstract set, fixed throughout all this paper.

Definition 1.2. B-fuzzy element of (the set) A is a mapping x taking A into B
and such that {x(a)}a∈A is a decomposition of 1B .

The set of all B-fuzzy elements of A will be denoted by A#, or by A[B], if B is to
be expressed explicitly, so that

A# =
{
x : x ∈ BA, {x(a)}a∈A ∈ Dcp (1B)

}
. (1)

Definition 1.3. (cf. [2] for (ii), (iii))
(i) Classical B-fuzzy subset of (the set) A or: classical B-fuzzy set over A is a

mapping X defined on A and taking its values in B. Hence, the set A∗ of classical
B-fuzzy sets over A is defined setting A∗ = BA.

(ii) Internal B-fuzzy subset of (the set) A or: internal B-fuzzy set over A is a
B-fuzzy element of P(A). Hence, the set of all internal B-fuzzy sets over A is the set
[P(A)]# defined, according to (1.1), by

[P(A)]# =
{

X ∈ BP(A) : {X(E)}E∈P(A) (= {X(E)}E⊂A) ∈ Dcp (1B)
}

. (2)

(iii) External B-fuzzy subset of (the set) A or: external B-fuzzy set over A is a
classical (crisp) subset of the set A#. Hence, the set of all external B-fuzzy sets over
A is the power-set P(A#) of the set A# of B-fuzzy elements of A.

Fact 1.1. In general, [P(A)]# is a proper subset of P(A#). Hence, each internal
B-fuzzy subset of A is also an external one, but, in general, not vice versa.

P r o o f . Cf. [2] and references introduced there. 2

In the rest of this paper we shall investigate some relations between internal and
classical B-fuzzy sets over A and between external and classical B-fuzzy sets over A.
In the extensional setting, we shall investigate the relations between [P(A)]# and
A∗, and between P(A#) and A∗.
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2. MUTUAL EMBEDDINGS OF INTERNAL AND CLASSICAL B–FUZZY
SETS

Let hic be a mapping defined on [P(A)]#, taking its values in A∗ and such that, for
each internal B-fuzzy set (over A) X ∈ [P(A)]#, hic(X), denoted also by X(∗), is
the classical B-fuzzy set (over A) defined by

hic(X)(a) = X(∗)(a) =
∨

E⊂A, a∈E

X(E) (3)

for all a ∈ A; here ic abbreviates “internal to classical”. It is evident that X(∗) ∈ A∗,
moreover, the mapping hic is one-to-one, as Theorem 2.1 proves.

Theorem 2.1. Let X1, X2 ∈ [P(A)]#, let X1 6= X2, then X
(∗)
1 6= X

(∗)
2 .

P r o o f . First, let us prove a more general auxiliary assertion: let C ⊂ B, C ∈
Dcp (1B), let F be a nonempty set, let ∅ 6= U(A) ⊂ C for each a ∈ F , then

∧

a∈F

∨

e∈U(a)

e =
∨

e∈Ta∈F U(a)

e. (4)

Write
⋂U(a) instead of

⋂
a∈F U(a). As

⋂U(a) ⊂ U(a) for each a ∈ F , we obtain∨
e∈TU(a) e ≤ ∨

e∈U(a) e for each a ∈ F , so that
∨

e∈TU(a) e ≤ ∧
a∈F

∨
e∈U(a) e. Let

f ∈ C − ⋂U(a), then f ∈ C − U(af ) for some af ∈ F , hence, f ∧ ∨
e∈U(af ) e =∨

e∈U(af )(f ∧ e) = 0B , as f 6= e for each e ∈ U(af ), consequently, f ∧ e = 0B . So,
for f ∈ C −⋂U(a)

∧

a∈F


f ∧

∨

e∈U(a)

e


 = f ∧


 ∧

a∈F

∨

e∈U(a)

e


 = 0B , (5)

so that

∨

f∈C−TU(a)


f ∧

∧

a∈F

∨

e∈U(a)

e


 =


 ∨

f∈C−TU(a)

f


 ∧


 ∧

a∈F

∨

e∈U(a)

e


 = 0B . (6)

Hence,

∧

a∈F

∨

e∈U(a)

e =


 ∧

a∈F

∨

e∈U(a)

e


 ∧ 1B = (7)

=


 ∧

a∈F

∨

e∈U(a)

e


 ∧


 ∨

f∈C−TU(a)

f ∨
∨

f∈TU(a)

f


 =

=





 ∧

a∈F

∨

e∈U(a)

e


 ∧


 ∨

f∈C−TU(a)

f





 ∨





 ∧

a∈F

∨

e∈U(a)

e


 ∧


 ∨

f∈TU(a)

f





 =

= 0B ∨
∨

f∈TU(a)

f =
∨

e∈TU(a)

e,

as
∨

e∈TU(a) e ≤ ∧
a∈F

∨
e∈U(a) e is nothing else than


 ∧

a∈F

∨

e∈U(a)

e


 ∧


 ∨

e∈TU(a)

e


 =

∨

e∈TU(a)

e, (8)
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hence, (2.2) is proved.
Now, let us prove that, for each X ∈ [P(A)]# and each F ⊂ A,

X(F ) =
∧

a∈F

X(∗)(a) ∧
∧

a∈A−F

¬X(∗)(a). (9)

Or, supposing that (2.7) holds, and considering X1, X2 ∈ [P(A)]# such that X
(∗)
1 (a) =

X
(∗)
2 (a) for all a ∈ A, we obtain that X1(F ) = X2(F ) for all F ⊂ A. Hence, if

there exists F ⊂ A such that X1(F ) 6= X2(F ), it must also exist a ∈ A such that
X

(∗)
1 (a) 6= X

(∗)
2 (a).

Due to (2.1), (2.7) yields that

X(F ) =
∧

a∈F

∨

E⊂A, a∈E

X(E) ∧
∧

a∈A−F

¬
∨

E⊂A, a∈E

X(E). (10)

As
⋂

a∈F {E : E ⊂ A, a ∈ E} = {E : E ⊂ A, a ∈ E, for all a ∈ F} = {E : F ⊂
E}, (2.2) yields that

∧

a∈F

∨

E⊂A, a∈F

X(E) =
∨

E⊃F

X(E). (11)

Moreover, ⋃

a∈A−F

{E : E ⊂ A, a ∈ E} = {E : E ⊂ A, E ⊂/ F} , (12)

so that
∧

a∈A−F

¬
∨

E⊂A, a∈E

X(E) = ¬
∨

a∈A−F

∨

E⊂A, a∈E

X(E) = ¬
∨

E⊂/F

X(E). (13)

Consequently, (2.7) is equivalent to

X(F ) =
∨

E⊃F

X(E) ∧ ¬
∨

E⊂/F

X(E) (14)

which we are to prove. But,

∨

E⊃F

X(E) ∧ ¬
∨

E⊂/F

X(E) =
∨

G⊃F


X(G) ∧

∧

E⊂/F

¬X(E)


 . (15)

If G ⊃ F, G 6= F , then G ⊂/ F , hence, G ∈ {E : E ⊂/ F}, so that

X(G) ∧
∧

E⊂/F

¬X(E) = X(G) ∧ ¬X(G) ∧
∧

E⊂/F, E 6=G

¬X(E) = 0B , (16)

so that

∨

E⊃F

X(E) ∧ ¬
∨

E⊂/F

X(E) =
∨

G∈{F}


X(G) ∧

∧

E⊂/F

¬X(E)


 = (17)

= X(F ) ∧
∧

E⊂/F

¬X(E) =
∧

E⊂/F

(X(F ) ∧ ¬X(E)) = X(F ),

as E ⊂/ F implies E 6= F , so that X(E) ∧X(F ) = 0B , hence

X(F ) ∧ ¬X(E) = (X(F ) ∧ ¬X(E)) ∨ (X(F ) ∧X(E)) = (18)
= X(F ) ∧ (¬X(E) ∨X(E)) = X(F ) ∧ 1B = X(F )
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for each E ⊂/ F . Hence, (2.12), (2.7) and Theorem 1 are proved. 2

When trying to define a mapping from classical B-fuzzy sets into the internal
ones we shall use relation (2.7). So, let hci be the mapping defined on A∗, taking its
values in the set BP(A) of all mappings from P(A) into B, and such that, for each
X ∈ A∗ and each F ⊂ A,

hci(X )(F ) =
∧

a∈F

X (a) ∧
∧

a∈A−F

¬X (a). (19)

We shall write also X (#) nd X (#)(F ) instead of hci(X ) and hci(X )(F ). Here, again,
ci abbreviates “classical to internal”, but in this time it is not evident that X (#) is
in [P(A)]# so that we have to prove it.

The complete Boolean algebra B is called completely set-isomorphic, if there exists
a set S and a mapping H defined on B, taking its values in the power-set P(S) over
S and such that, for each e ∈ B and each C ⊂ B,

H(¬e) = S −H(e), H

( ∨

e∈C

e

)
=

⋃

e∈C

H(e). (20)

Consequently, also

H(0B) = ∅, H(1B) = S, H

( ∧

e∈C

e

)
=

⋂

e∈C

H(e) (21)

hold, as can be easily proved. When considering only finite operations, i. e., finite
sets C in (2.18) and (2.19), each Boolean algebra is finitely set-isomorphic, due to the
well-known Stone representation theorem (cf., e. g., [5], § 8). For infinite operations
the existence of an isomorphism between a complete Boolean algebra and the field
of subsets of a set is a nontrivial property of the Boolean algebra in question, as the
two facts introduced below demonstrate.

An element 0B 6= e ∈ B is called an atom of the Boolean algebra B, if for each
f ∈ B such that f ≤ e, either f = 0B or f = e. Boolean algebra B is called atomic,
if for each 0B 6= f ∈ B there exists an atom e ∈ B such that e ≤ f . Complete
Boolean algebra B is called completely distributive, if for each {ets}t∈T, s∈S ⊂ B,

⋂

t∈T

⋃

s∈S

ets =
⋃

ϕ∈ST

⋂

t∈T

et,ϕ(t), (22)

or, what is the same due to the fact that de Morgan rules are valid also for infinite
operations, if for each {ets}t∈T, s∈S ⊂ B,

⋃

t∈T

⋂

s∈S

ets =
⋂

ϕ∈ST

⋃

t∈T

et,ϕ(t). (23)

Fact 2.1. A complete Boolean algebra is completely set-isomorphic iff it is atomic
(cf. assertion 25.1, [5], § 25).

Fact 2.2. A complete Boolean algebra is completely set-isomorphic, iff it is com-
pletely distributive (cf. assertion 25.2, [5], § 25).

Theorem 2.2. Let B be completely set-isomorphic, then X (#) ∈ [P(A)]# for each
X ∈ A∗.
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P r o o f . We have to prove that
{X (#)(F )

}
F⊂A

∈ Dcp (1B). Let E, F ⊂ A, E 6=
F , then (2.17) yields that

X (#)(E) ∧ X (#)(F ) =
∧

a∈E

X (a) ∧
∧

a∈A−E

¬X (a) ∧
∧

a∈F

X (a) (24)

∧
∧

a∈A−F

¬X (a) =
∧

a∈E∪F

X (a) ∧
∧

a∈A−(E∩F )

¬X (a) ≤

≤ X (a0) ∧ ¬X (a0) = 0B ,

where a0 ∈ (E ∪ F )− (E ∩ F ); E 6= F implies that E ∪ F 6= E ∩ F , hence, such an
a0 exists.

Let S be a set and H a complete isomorphic mapping of B into P(S). So,

H

( ∨

F⊂A

( ∧

a∈F

X (a) ∧
∧

a∈A−F

¬X (a)

))
= (25)

=
⋃

F⊂A

( ⋂

a∈F

H(X (a)) ∩
⋂

a∈A−F

(S −H(X (a)))

)
.

Let s0 ∈ S, let F (s0) = {a ∈ A : s0 ∈ H(X (a))}, then s0 ∈
⋂

a∈F (s0)
H(X (a)), but

also s0 /∈ H(X (a)) for each a ∈ A− F (s0), so that s0 ∈
⋂

a∈A−F (s0)
(S −H(X (a))).

So, for each s0 ∈ S there exists F ⊂ A such that s0 ∈ H
(X (#)(F )

)
. Consequently,

⋃

F⊂A

H
(
X (#)(F )

)
= H

( ∨

F⊂A

X (#)(F )

)
= (26)

=
⋃

F⊂A

( ⋂

a∈F

H (X (a)) ∩
⋂

a∈A−F

(S −H(X (a)))

)
= S.

However, 1B is the only element of B which is mapped onto S by H. Hence, it
follows

∨
F⊂A X (#)(F ) = 1B , so that

{X (#)(F )
}

F⊂A
∈ Dcp (1B). The assertion is

proved.
2

Theorem 2.3. Let B be completely set-isomorphic, let X1, X2 ∈ A∗, let X1 6= X2,
then X (#)

1 6= X (#)
2 .

P r o o f . Let us prove that, for each X ∈ A∗ and each a0 ∈ A,

X (a0) =
∨

F3a0

X (#)(F ) =
∨

F3a0

( ∧

a∈F

X (a) ∧
∧

a∈A−F

¬X (a)

)
. (27)

Supposing that (2.25) holds and that X (#)
1 (F ) = X (#)

2 (F ) for each F ⊂ A, then
X1(a0) = X2(a0) for each a0 ∈ A, hence, X1(a) 6= X2(a) for some a ∈ A implies that
X (#)

1 (F ) 6= X (#)
2 (F ) for some F ⊂ A.

Take a0 ∈ A arbitrarily and set A0 = A − {a0}. Define a B-fuzzy subset X0 of
A0 (classical), setting X0(a) = X (a) for each a ∈ A0, so that X0 ∈ A∗0 = BA0 . Set,
for each E ⊂ A0,

X (#)
0 (E) =

∧

a∈E

X0(a) ∧
∧

a∈A0−E

¬X0(a). (28)

Applying Theorem 2.2 to A0 and X0 we obtain that

∨

E⊂A0

X (#)
0 (E) =

∨

E⊂A0

( ∧

a∈E

X0(a) ∧
∧

a∈A0−E

¬X0(a)

)
= 1B . (29)
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But,

∨

F⊂A, F3a0

X (#)(F ) =
∨

F⊂A, F3a0

( ∧

a∈F

X (a) ∧
∧

a∈A−F

¬X (a)

)
= (30)

=
∨

E⊂A0

X (#) (E ∪ {a0}) =
∨

E⊂A0

(( ∧

a∈E

X (a)

)
∧ X (a0)∧

∧
∧

a∈(A−E)−{a0}
¬X (a)


 .

As (A−E)−{a0} = A0−E for each E ⊂ A0 and X (a) = X0(a) for each a ∈ E ⊂ A0

and each a ∈ A0 − E, (2.28) yields that

∨

F⊂A, F3a0

X (#)(F ) = X (a0) ∧
∨

E⊂A0

( ∧

a∈E

X0(a)∧ (31)

∧
∧

a∈A0−E

¬X0(a)

)
= X (a0) ∧ 1B = X (a0)

due to (2.27), so that (2.25) and Theorem 2.3 are proved. 2

3. SET–THEORETIC OPERATIONS OVER CLASSICAL AND INTERNAL
B–FUZZY SETS

Going on in our effort to compare classical and internal B-fuzzy sets, let us introduce
the set-theoretic operations of joint (intersection), union and complement for such
sets. We shall begin with the classical B-valued fuzzy sets, where the situation is
more simple.

Definition 3.1. Let X ∈ A∗ be a classical B-fuzzy set over A, then its complement
is denoted by X c and defined by X c(a) = ¬X (a) for each a ∈ A. Let C ⊂ A∗ be a
nonempty set of classical B-fuzzy sets over A, then the joint or intersection of the B-
fuzzy sets from C is denoted by

⋂
X∈C X and defined by

(⋂
X∈C X

)
(a) =

∧
X∈C X (a)

for each a ∈ A. The union of the B-fuzzy sets from C is denoted by
⋃
X∈C X and

defined by
(⋃

X∈C X
)
(a) =

∨
X∈C X (a) for each a ∈ A.

As the Boolean algebra B is complete, X c,
⋂
X∈C X , and

⋃
X∈C X are obviously

in A∗, also the validity of de Morgan rules for these operations immediately follows
from the validity of these rules in B. If C = {X1, X2}, we shall write X1 ∩ X2 and
X1 ∪ X2 instead of

⋂
X∈{X1,X2} X and

⋃
X∈{X1,X2} X .

In the case of internal B-fuzzy sets the corresponding definitions are more compli-
cated in the sense that the membership of the resulting objects in the space [P(A)]#

of internal B-fuzzy sets is neither necessary nor evident.

Definition 3.2. Let X ∈ [P(A)]# be an internal B-fuzzy set over A, then its
complement will be denoted by Xc and defined by Xc(E) = X(A − E) for each
E ⊂ A. Let T be a nonempty parametric set, let {Xt}t∈T ⊂ [P(A)]#, i. e., each
Xt, t ∈ T , is an internal B-fuzzy set over A, then the joint or intersection of the
B-fuzzy sets Xt is denoted by ∩t∈T Xt and defined, for each E ⊂ A, by

(⋂

t∈T

Xt

)
(E) =

∨

{Ft}t∈T⊂P(A),
T

t∈T Ft=E

∧

t∈T

Xt(Ft). (32)
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The union of the B-fuzzy sets Xt is denoted by
⋃

t∈T Xt and defined, for each E ⊂ A,
by

(⋃

t∈T

Xt

)
(E) =

(⋂

t∈T

Xc
t

)c

(E). (33)

If T = {1, 2}, we shall write X1 ∩ X2 and X1 ∪ X2 instead of
⋂

t∈{1,2}Xt and⋃
t∈{1,2}Xt, as can be easily seen,

(X1 ∩X2)(E) =
∨

F,G⊂A, F∩G=E

(X1(F ) ∧X2(G)) . (34)

Theorem 3.1. For each X, X1, X2 ∈ [P(A)]#, Xc, X1 ∩ X2, and X1 ∪ X2 are
also in [P(A)]#. If the Boolean algebra B is completely distributive, then

⋂
t∈T Xt

and
⋃

t∈T Xt are in [P(A)]# for each nonempty parametric set T .

P r o o f . If E, F ⊂ A, E 6= F , then A − E 6= A − F , so that Xc(E) ∧Xc(F ) =
X(A − E) ∧ X(A − F ) = 0B , moreover,

∨
E⊂A Xc(E) =

∨
E⊂A X(A − E) =∨

E⊂A X(E) = 1B , so that {Xc(E)}E⊂A ∈ Dcp (1B), i. e., Xc ∈ [P(A)]#.
Let X1, X2 ∈ [P(A)]#, let E1, E2 ⊂ A, E1 6= E2, then

(X1 ∩X2) (E1) ∧ (X1 ∩X2) (E2) = (35)

=
∨

F1,G1⊂A, F1∩G1=E1

(X1(F1) ∧X2(G1)) ∧

∧
∨

F2,G2⊂A, F2∩G2=E2

(X1(F2) ∧X2(G2)) =

=
∨

F1,G1⊂A, F1∩G1=E1

∨

F2,G2⊂A, F2∩G2=E2

(X1(F1) ∧X2(G1) ∧X1(F2) ∧X2(G2)) .

But, if E1 6= E2, F1∩G1 = E1, and F2∩G2 = E2, then either F1 6= F2, or G1 6= G2,
so that either X1(F1) ∧ X1(F2) = 0B , or X2(G1) ∧ X2(G2) = 0B , consequently,
X1(F1) ∧X2(G1) ∧X1(F2) ∧X2(G2) = 0B in every case. Hence,

(X1 ∩X2) (E1) ∧ (X1 ∩X2) (E2) = 0B . (36)

Moreover,

∨

E⊂A

(X1 ∩X2) (E) =
∨

E⊂A


 ∨

F,G⊂A, F∩G=E

(X1(F ) ∧X2(G))


 = (37)

=
∨

F,G⊂A

(X1(F ) ∧X2(G)) =
∨

F⊂A

∨

G⊂A

(X1(F ) ∧X2(G)) =

=
∨

F⊂A

(
X1(F ) ∧

∨

G⊂A

X2(G)

)
=

∨

F⊂A

(X1(F ) ∧ 1B) =

=
∨

F⊂A

X1(F ) = 1B ,

hence, {(X1 ∩X2)(E)}E⊂A ∈ Dcp (1B), so that X1 ∩X2 ∈ [P(A)]#.
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Let {Xt}t∈T ⊂ [P(A)]#, let E1, E2 ⊂ A, E1 6= E2, then
(⋂

t∈T

Xt

)
(E1) ∧

(⋂

t∈T

Xt

)
(E2) = (38)

=
∨

{Ft}t∈T⊂P(A),
T

t∈T Ft=E1

g ({Ft}t∈T ) ∧

∧
∨

{Gt}t∈T⊂P(A),
T

t∈T Gt=E2

h ({Gt}t∈T )

where

g ({Ft}t∈T ) =
∧

t∈T

Xt(Ft), (39)

h ({Gt}t∈T ) =
∧

t∈T

Xt(Gt).

So,
(⋂

t∈T

Xt

)
(E1) ∧

(⋂

t∈T

Xt

)
(E2) = (40)

=
∨

{Ft}t∈T⊂P(A),
T

t∈T Ft=E1

∨

{Gt}t∈T⊂P(A),
T

t∈T Gt=E2

(g({Ft}t∈T ) ∧ h ({Gt}t∈T )) =

=
∨

{Ft}

∨

{Gt}

(∧

t∈T

(Xt(Ft) ∧Xt(Gt))

)
= 0B ,

as if
⋂

t∈T Ft = E1,
⋂

t∈T Gt = E2, and E1 6= E2, then there exists t0 ∈ T such that
Ft0 6= Gt0 , so Xt0(Ft0)∧Xt0(Gt0) = 0B , consequently,

∧
t∈T Xt(Ft)∧Xt(Gt) = 0B .

Finally,

∨

E⊂A

(⋂

t∈T

Xt

)
(E) = (41)

=
∨

E⊂A

∨

{Ft}t∈T⊂P(A),
T

t∈T Ft=E

(∧

t∈T

Xt(Ft)

)
=

=
∨

{Ft}t∈T⊂P(A)

∧

t∈T

Xt(Ft) =
∨

ϕ∈P(A)T

∧

t∈T

Xt(ϕt).

If B is completely distributive, then for each nonempty parametric sets T, S, and
each {ets}t∈T, s∈S ⊂ B,

∨

ϕ∈ST

∧

t∈T

et,ϕ(t) =
∧

t∈T

∨

s∈S

ets. (42)

Setting S = P(A) and etE = Xt(E) for each t ∈ T, E ⊂ A, i. e., E ∈ S, we obtain
from (3.10), that

∨

E⊂A

(⋂

t∈T

Xt

)
(E) =

∧

t∈T

∨

E⊂A

Xt(E) = 1B , (43)

as
∨

E⊂A Xt(E) = 1B for each t ∈ T . Hence,
{(⋂

t∈T

Xt

)
(E)

}

E⊂A

∈ Dcp (1B), (44)
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so that
⋂

t∈T Xt ∈ [P(A)]#. The same assertion for
⋃

t∈T Xt follows immediately
from (3.2). 2

Let us recall that external B-fuzzy sets over A are defined as classical (crisp)
sets of fuzzy elements of A, i. e., as elements of P(A#), so that the set-theoretic
operations over external sets are defined in the usual way.

4. COMPATIBILITY OF SET–THEORETIC OPERATIONS AND EMBED-
DINGSFOR CLASSICAL AND INTERNAL B–FUZZY SETS

In this chapter we shall prove that, roughly speaking, the set-theoretic operations
commute with the mappings hic and hci defined and investigated above. In other
words, we shall prove that these mappings define homomorphic embeddings between
classical and internal B-fuzzy sets over the same basic set A. A more formal descrip-
tion of what this commutativity means is given in the conditions of the assertions
introduced and proved below.

Theorem 4.1. Let X, Y ∈ [P(A)]#, then

(Xc)(∗) =
(
X(∗)

)c

, (X ∪ Y )(∗) = X(∗) ∪ Y (∗), (X ∩ Y )(∗) = X(∗) ∩ Y (∗).

(45)
If the Boolean algebra B is completely distributive and if Xt ∈ [P(A)]# for each
t ∈ T 6= ∅, then

(⋃

t∈T

Xt

)(∗)

=
⋃

t∈T

X
(∗)
t ,

(⋂

t∈T

Xt

)(∗)

=
⋂

t∈T

X
(∗)
t . (46)

P r o o f . Let X ∈ [P(A)]#, let a ∈ A, then

(Xc)(∗)(a) =
∨

E3a

Xc(E) =
∨

E3a

X(A− E) =
∨

E3/a

X(E) = (47)

= ¬
∨

E3a

X(E) = ¬X(∗)(a) =
(
X(∗)

)c

(a),

as

( ∨

E3a

X(E)

)
∨


 ∨

E3/a

X(E)


 = 1B , (48)

( ∨

E3a

X(E)

)
∧


 ∨

E3/a

X(E)


 = 0B , (49)

so that (Xc)(∗) =
(
X(∗))c

.
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Let X, Y ∈ [P(A)]#, let a ∈ A, then

(X ∩ Y )(∗)(a) =
∨

E3a

(X ∩ Y )(E) = (50)

=
∨

E3a


 ∨

F,G⊂A, F∩G=E

(X(F ) ∧ Y (G))


 =

=
∨

F,G⊂A, F∩G3a

(X(F ) ∧ Y (G)) =
∨

F3a, G3a

(X(F ) ∧ Y (G)) =

=
∨

F3a

∨

G3a

(X(F ) ∧ Y (G)) =
∨

F3a

(
X(F ) ∧

∨

G3a

Y (G)

)
=

=

( ∨

F3a

X(F )

)
∧

( ∨

G3a

Y (G)

)
= X(∗)(a) ∧ Y (∗)(a) =

(
X(∗) ∩ Y (∗)

)
(a),

so that (X ∩ Y )(∗) = X(∗) ∩ Y (∗). The assertion for (X ∪ Y )(∗) follows immediately
from de Morgan rules.

In the general case, when Xt ∈ [P(A)]# for each t ∈ T 6= ∅, we obtain, for each
a ∈ A, that

(⋂

t∈T

Xt

)(∗)

(a) =
∨

E3a

(⋂

t∈T

Xt

)
(E) = (51)

=
∨

E3a

∨

{Ft}t∈T⊂P(A),
T

t∈T Ft=E

∧

t∈T

Xt(Ft) =

=
∨

{Ft}t∈T⊂P(A),
T

t∈T Ft3a

∧

t∈T

Xt(Ft) =

=
∨

ϕ∈ST

∧

t∈T

Xt(Ft),

where S = {E : a ∈ E ⊂ A} ⊂ P(A). If B is completely distributive, the last
expression in (4.7) can be written as

∧

t∈T

∨

E∈S

Xt(E) =
∧

t∈T

∨

E3a, E⊂A

Xt(E) = (52)

=
∧

t∈T

X
(∗)
t (a) =

(⋂

t∈T

X
(∗)
t

)
(a),

so that
(⋂

t∈T Xt

)(∗) =
⋂

t∈T X
(∗)
t . The dual assertion for

(⋃
t∈T Xt

)(∗) again follows
immediately from de Morgan rules. The assertion is proved. 2

Theorem 4.2. Let the Boolean algebra B be completely set-isomorphic, let X ∈
A∗, let Xt ∈ A∗ for each t ∈ T 6= ∅, then

(X c)(#) =
(
X (#)

)c

,

(⋃

t∈T

Xt

)(#)

=
⋃

t∈T

X (#)
t , (53)

(⋂

t∈T

Xt

)(#)

=
⋂

t∈T

X (#)
t .
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P r o o f . Let X ∈ A∗, let E ⊂ A, then

(X c)(#) (E) =
∧

a∈E

X c(a) ∧
∧

a∈A−E

¬X c(a) = (54)

=
∧

a∈E

¬X (a) ∧
∧

a∈A−E

X (a) = X (#)(A− E) =
(
X (#)

)c

(E),

so that (X c)(#) =
(X (#)

)c
.

Let Xt ∈ A∗ for each t ∈ T 6= ∅, let E ⊂ A, then we obtain

(⋂

t∈T

Xt

)(#)

(E) =
∧

a∈E

(⋂

t∈T

Xt

)
(a) ∧

∧

a∈A−E

¬
(⋂

t∈T

Xt

)
(a) = (55)

=
∧

a∈E

∧

t∈T

Xt(a) ∧
∧

a∈A−E

¬
(∧

t∈T

Xt(a)

)
.

From the other side we obtain that
(⋂

t∈T

X (#)
t

)
(E) =

∨

{Ft}t∈T⊂P(A),
T

t∈T Ft=E

(∧

t∈T

X (#)
t (Ft)

)
= (56)

=
∨

{Ft}t∈T⊂P(A),
T

t∈T Ft=E

∧

t∈T

[ ∧

a∈Ft

Xt(a) ∧
∧

a∈A−Ft

¬Xt(a)

]
=

=
∨

{F 0
t }t∈T⊂P(A−E),

T
t∈T F 0

t =∅

∧

t∈T


 ∧

a∈E∪F 0
t

Xt(a) ∧
∧

a∈(A−E)−F 0
t

¬Xt(a)


 =

=
∧

a∈E

∧

t∈T

Xt(a) ∧

∧
∨

{F 0
t }t∈T⊂P(A−E),

T
t∈T F 0

t =∅

∧

t∈T


 ∧

a∈F 0
t

Xt(a) ∧
∧

a∈(A−E)−F 0
t

¬Xt(a)


 ,

so that the only we have to prove is that

∧

a∈A−E

¬
(∧

t∈T

Xt(a)

)
=

∧

a∈A−E

(∨

t∈T

¬Xt(a)

)
= (57)

=
∨

{F 0
t }t∈T⊂P(A−E),

T
t∈T F 0

t =∅

∧

t∈T


 ∧

a∈F 0
t

Xt(a) ∧
∧

a∈(A−E)−F 0
t

¬Xt(a)


 .

Supposing that B is completely set-isomorphic we may also suppose, without any
loss of generality and in order to simplify our notation, that Xt(a) is a subset of a
basic space S for each t ∈ T, a ∈ A, and that (4.13) converts into

H1 =
⋂

a∈A−E

⋃

t∈T

(S −Xt(a)) = (58)

=
⋃

{F 0
t }t∈T⊂P(A−E),

T
t∈T Ft=∅

⋂

t∈T


 ⋂

a∈F 0
t

Xt(a) ∩
⋂

a∈(A−E)−F 0
t

(S −Xt(a))




= H2,

where H1 and H2 denote abbreviately the corresponding sets.
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Let s ∈ S, s ∈ H1, set, for each t ∈ T ,

αt(s) = {a ∈ A, s ∈ Xt(a)} , F 0
t (s) = αt(s)− E. (59)

Obviously,

⋂

t∈T

αt(s) =

{
a ∈ A : s ∈

⋂

t∈T

Xt(a)

}
= (60)

=

{
a ∈ A : s ∈ S −

⋃

t∈T

(S −Xt(a))

}
⊂ E,

as for each a ∈ A− E, s ∈ H1 yields that s ∈ ⋃
t∈T (S − Xt(a)). Hence,

⋂
t∈T F 0

t =⋂
t∈T (αt(s)− E) = ∅, so that {F 0

t (s)}t∈T is one of the sequences over which the
union operation in H2 is taken. Moreover, F 0

t (s) ⊂ αt(s), so that s ∈ Xt(a) for
each a ∈ F 0

t (s) and each t ∈ T , hence, s ∈ ⋂
a∈F 0

t
Xt(a) for each t ∈ T . Due to the

definition of F 0
t (s), (A − E) − αt(s) = (A − E) − F 0

t (s), so that s ∈ S − Xt(a) for
each a ∈ (A − E) − F 0

t (s) and each t ∈ T , hence, s ∈ ⋂
a∈(A−E)−F 0

t
(S − Xt(a)) for

each t ∈ T . Consequently, s ∈ H2, so that H1 ⊂ H2.
In order to prove the inverse inclusion, suppose that s ∈ S − H1. Then there

exists a0 ∈ A−E such that s ∈ S −⋃
t∈T (S −Xt(a0)). To arrive at a contradiction

suppose, moreover, that s ∈ H2. As a0 ∈ A − E and
⋂

t∈T F 0
t = ∅, it follows that

for each {F 0
t }t∈T ⊂ P(A − E),

⋂
t∈T F 0

t = ∅ such t0 ∈ T must exist that a0 is in
(A−E)−F 0

t0 . Consequently, s ∈ S−Xt0(a0), hence, s ∈ ⋃
t∈T (S−Xt(a)). But this

conclusion contradicts our assumption that s ∈ S −H1, so that s ∈ S −H1 implies
s ∈ S −H2. Consequently, H1 = H2, so that (4.14) and (4.13) are proved and we
may conclude that

(⋂
t∈T Xt

)(#) =
⋂

t∈T X (#)
t . The dual result for

(⋃
t∈T Xt

)(#)

immediately follows from relation (3.2) which defines this internal B-fuzzy set over
A through the joint and complement operations in the way preserving de Morgan
rules. The assertion is proved. 2

Theorem 4.3. For each X ∈ [P(A)]#,
(
X(∗))(#)

= X. If B is completely set-

isomorphic, then for each X ∈ A∗,
(X (#)

)(∗)
= X .

P r o o f . Let X ∈ [P(A)]#, let F ⊂ A, then

(
X(∗)

)(#)

(F ) =
∧

a∈F

X(∗)(a) ∧
∧

a∈A−F

¬X(∗)(a) = (61)

=
∧

a∈F

∨

E⊂A, a∈E

X(E) ∧
∧

a∈A−F

¬
∨

E⊂A, a∈E

X(E) = X(F )

due to (2.7), so that
(
X(∗))(#)

= X. If B is completely set-isomorphic, then for each
a ∈ A, (

X (#)
)(∗)

(a) =
∨

F⊂A, a∈F

X (#)(F ) = X (a) (62)

due to (2.25), so that
(X (#)

)(∗)
= X . The assertion is proved. 2

5. EXTERNAL B–FUZZY SETS

Let us recall that external B-fuzzy sets are defined as classical crisp sets of B-fuzzy
elements of the set A, so that the set of all external B-fuzzy sets is identical with
the power-set P(A#) over A#. Set-theoretic operations over external B-fuzzy sets
are, hence, defined in the usual way.
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As already mentioned above (Fact 1.1), the space of external B-fuzzy sets is richer
than that of internal B-fuzzy sets or, due to the results obtained above, than that of
classical B-fuzzy sets. So, it is not too reasonable to expect that a simple mapping
from P(A#) into A∗ or into [P(A)]# would conserve all the properties of external
B-fuzzy sets and would enable to identify unambiguously the inverse image from
P(A#), given its image in A∗ or in [P(A)]#. To illustrate the situation, let us
consider the following straighforward generalizations of the mappings hic and hci to
external B-fuzzy sets. Let X ∈ P(A#), i. e., let X ⊂ A#, set

X(∗)(a) =
∨

x∈X
x(a), (63)

X(#)(E) =
∧

a∈E

X(∗)(a) ∧
∧

a∈A−E

¬X(∗)(a) =

=
∧

a∈E

∨

x∈X
x(a) ∧

∧

a∈A−E

¬
∨

x∈X
x(a)

for each a ∈ A and E ⊂ A. It is obvious that X(∗) ∈ A∗ = BA, and it follows from
what we have proved above, that X(#) ∈ [P(A)]#. A simple example proves that,
contrary to the case of internal B-fuzzy sets, the mapping defined by (5.1) is not
one-to-one, so that there exist X, Y ∈ P(A#) such that X 6= Y, but X(∗) = Y(∗) and,
consequently, also X(#) = Y (#). Take A = {a, b}, a 6= b, B = {0B , e, ¬e, 1B} such
that 0B 6= e, ¬e 6= 1B , take X = {x1, x2}, Y = {y1, y2}, where

x1(a) = e, x1(b) = ¬e, x2(a) = ¬e, x2(b) = e, (64)
y1(a) = 0B , y1(b) = 1B , y2(a) = 1B , y2(b) = 0B ,

so that, evidently, X 6= Y. However,

X(∗)(a) = x1(a) ∨ x2(a) = e ∨ (¬e) = 1B = (65)
= 0B ∨ 1B = y1(a) ∨ y2(a) = Y(∗)(a),

X(∗)(b) = x1(b) ∨ x2(b) = (¬e) ∨ e = 1B =
= 1B ∨ 0B = y1(b) ∨ y2(b) = Y(∗)(b), ,

so that X(∗) = Y(∗).
To compare the extents of the set P(A∗) of external B-fuzzy sets and of the set

A∗ of classical B-fuzzy sets (A∗ = BA), the following simple computation concerning
their cardinalities may be worth introducing explicitly. Let B = 〈P(B0), ∩, ∪, c, ∅, B0〉
be the Boolean algebra of all subsets of a fixed nonempty set B0 with respect to the
common set-theoretic operations, let A be a nonempty set, then

card (A∗) = card (P(B0)A) = ( cardP(B0))
card (A) = (66)

=
(
2 card (B0)

) card (A)

= 2 card (B0) card (A).

At the same time,
card (P(A#)) = 2 card (A#). (67)

In order to obtain a lower estimate for card (A#), consider the following special
B-fuzzy elements of A. Let C ⊂ B0, ∅ 6= C 6= B0, let a1, a2 ∈ A, let x(C, a1, a2) :
A → P(B0) be defined as follows:

x(C, a1, a2) (a1) = C, (68)
x(C, a1, a2) (a2) = Cc = B0 − C,

x(C, a1, a2) (a) = ∅
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for each a ∈ A, a 6= a1, a 6= a2, supposing that a1 6= a2. If a1 = a2, then

x(C, a1, a2) (a1) = B0, (69)
x(C, a1, a2) (a) = ∅

for each a ∈ A, a 6= a1. Obviously, for each triple 〈C, a1, a2〉 ∈ (P(B0)− {∅, B0})×
A × A, {x(C, a1, a2) (a)}a∈A ∈ Dcp (1B), hence, x(C, a1, a2) ∈ A#. Moreover, if
〈C ′, a′1, a′2〉 6= 〈C, a1, a2〉, then x(C ′, a′1, a

′
2) 6= x(C, a1, a2), consequently,

card (A#) ≥ card ((P(B0)− {∅, B0})×A×A) = (70)
= card (P(B0)− {∅, B0}) ( card (A))2 =

=
(
2 card (B0)

)
( card (A))2.

Hence, if card (A) ≥ 2, card (B0) ≥ 2, then

card (A#) ≥ ( card B0) ( card A). (71)

If, moreover, both the sets B0 and A are finite, then the inequality in (5.9) is strict
(>), so that

card (P(A#)) = 2 card (A#) ≥ 2(2 card (B0)−2)( card (A))2 (72)
> 2 card (B0) card (A) = card (A∗).

Hence, in this case no one-to-one mapping between P(A#) and A∗ exists. The same
situation occurs when both A, B0 are infinite, and card (B0) ≥ card (A), as in this
case

(
2 card (B0) − 2

)
( card (A))2 = 2 card (B0) > card (B0) = (73)

= card (B0) card (A0).

On the other side, if A is infinite, if card (A) ≥ 2 card (B0) = card (P(B0)) and if
card (B0) ≥ 2, then

(
2 card (B0) − 2

)
( card A))2 = card (A) = card (A) card (B) (74)

and our example fails. Namely, if B0 is finite and A is infinite, card (P(A#)) =
card (A∗), as the following reasoning demonstrates.

Let B0 be a finite set, let card (B0) = b, let A be an infinite set. Let Kn, n =
1, 2, . . ., be the set of all decompositions of B0 into n different and nonempty sub-
sets, Let Kn = card (Kn). Each decomposition of B0 can contain at most b dif-
ferent nonempty subsets (the decomposition into singletons), so that Kn = 0 for
each n > b. Obviously, Kn ≤ 2b − 1 = card (P(B0) − {∅}) for each n. Let
〈D1, D2, . . . , Dn〉 be a decomposition from Kn, hence, ∅ 6= Di, Di ∩ Dj = ∅
for each 1 ≤ i 6= j ≤ n,

⋃n
i=1 Di = B0, let 〈a1, a2, . . . , an〉 be an n-tuple of

mutually different elements from A. Then, each permutation π of 〈1, 2, . . . , n〉,
ascribing to ai the subset Dπ(i) ⊂ B0, defines a fuzzy element of A with re-
spect to the Boolean algebra over P(B0), hence, each such π defines an element
from A#. Obviously, different permutations yield different elements from A#, so
that the pair (〈a1, . . . , an〉, 〈D1, . . . , Dn〉) of n-tuples defines n! such elements. If
〈a1, . . . , an〉 6= 〈a′1, . . . , a′n〉 or 〈D1, . . . , Dn〉 6= 〈D′

1, . . . , d
′
n〉, then the sets of elements

of A#, generated by (〈a1, . . . , an〉, 〈D1, . . . , Dn〉) and by (〈a′1, . . . , a′n〉, 〈D′
1, . . . , D

′
n〉)
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are disjoint, so that

card (A#) =
∞∑

n=1

({〈a1, . . . , an〉 ∈ An, ai different}) · (75)

· ( card (Kn)) n! ≤

≤
b∑

n=1

card ({〈a1, . . . , an〉 ∈ An}) 2b n! ≤

≤ b( card (A))b b! 2b = card (A) = card (A) card (B0),

as card (A) ≥ ℵ0, card (B0) < ℵ0. The inverse inequality card (A#) ≥ card (A)
follows immediately from (5.9), as A is infinite and B0 finite. Consequently, we
obtain that

card (P(A#)) = 2 card (A#) = 2 card (A) card (B0) = (76)
= card (A∗),

so that there exists a one-to-one mapping between external and classical B-fuzzy
sets.

The immediately emerging questions are as follows:
(1) to find an explicit way how to encode external fuzzy sets by the classical

ones in the cases when it is possible, as our proof of such a possibility is of purely
non-constructive way;

(2) To investigate, in which sense, degree, and for which purposes, classical or
internal B-fuzzy sets can approximate the external ones under the condition that
a one-to-one encoding is either impossible, or if it is not effectively achievable, or
if it is hard to proceed for some computational or other reasons. However, let us
postpone a more detailed investigation of both these problems till another occasion.

(Received February 3, 1992.)
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