ANALYTICKÝ ROZBOR VLIVU TVARU TOKOVÉ VLNY NA SMYKOVÉ NAPĚTÍ Influence of Flow Waveform on Wall Shear Stress Distribution

Hana Neřebská, Jan Matěcha

České vysoké učení technické v Praze, Fakulta strojní, Ústav mechaniky tekutin a energetiky, Odbor mechaniky tekutin a termodynamiky, Praha

Úvod:

Cílem této práce je vyhodnotit vliv tvaru závislosti průtoku na čase na smykové napětí při pulzačním proudění newtonské tekutiny v trubici konstantního kruhového průřezu s tuhou stěnou.

Postup a metoda:

Obecnou periodickou závislost průtoku na čase Q(t) lze popsat Fourierovou řadou

$$Q(t) = a_0 + a_1 \cos(\omega_1 t) + b_1 \sin(\omega_1 t) + \dots + a_n \cos(\omega_n t) + b_n \sin(\omega_n t),$$

kde
$$\omega_i = i\omega$$

Protože platí princip superpozice, lze výslednou závislost smykového napětí na stěně (WSS) získat jako součet řešení pro jednotlivé složky.

Pro každou složku je proudění popsáno rovnicí [1]:

$$\rho \frac{\partial u}{\partial t} + \frac{\partial p}{\partial x} = \mu \left(\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial t} \right),$$

kde rychlost u je proměnná závislá na poloměru r a čase t, tlak p je závislý na axiální souřadnici x a na čase t, ρ je hustota a μ dynamická viskozita. Vyřešením této rovnice získáme vztah pro oscilační složky WSS(t) [1]:

$$\tau_{ai}(t) = \Re\left(-\frac{k_{ai\cdot R}}{\Lambda_{i}} \cdot \left(\frac{J_{1}(\Lambda_{i})}{J_{0}(\Lambda_{i})}\right) \cdot e^{i(\omega_{i}t+\varphi_{i})}\right) \quad \tau_{bi}(t) = \Im\left(-\frac{k_{bi\cdot R}}{\Lambda_{i}} \cdot \left(\frac{J_{1}(\Lambda_{i})}{J_{0}(\Lambda_{i})}\right) \cdot e^{i(\omega_{i}t+\varphi_{i})}\right).$$

Konstanty k_{ai} a k_{bi} jsou vypočteny dle vztahů:

$$k_{ai} = \frac{a_i}{\left|\frac{i\pi R^4}{\mu\Omega_i^2} \cdot \left(1 - \frac{2 \cdot J_1(\Lambda_i)}{\Lambda_i \cdot J_0(\Lambda_i)}\right)\right|} \qquad \text{a} \qquad k_{bi} = \frac{b_i}{\left|\frac{i\pi R^4}{\mu\Omega_i^2} \cdot \left(1 - \frac{2 \cdot J_1(\Lambda_i)}{\Lambda_i \cdot J_0(\Lambda_i)}\right)\right|},$$

kde a_i a b_i jsou amplitudy průtoku příslušných členů Fourierovy řady, R je poloměr trubice a J_0 resp. J_{I} .je Besselova funkce nultého, resp. prvního, řádu. Komplexní frekvenční parametr Λ_i a frekvenční parametr Ω_i jsou vypočteny dle vztahů:

$$\Lambda_{i} = \left(\frac{i-1}{\sqrt{2}}\right) \cdot \Omega_{i} \qquad \qquad \Omega_{i} = \sqrt{\frac{\rho \cdot \omega_{i}}{\mu}} R$$

kde ω_i je úhlová rychlost a φ_i je fázový posun mezi tlakem a průtokem pro jednotlivé členy Fourierovy řady a ρ je hustota kapaliny.

Celkové smykové napětí je vypočteno:

$$\tau_c = \tau_0 + \sum_{1}^{n} \tau_{ai}(t) + \sum_{1}^{n} \tau_{bi}(t),$$

kde τ_0 je smykové napětí od stacionární složky průtoku
$$\tau_0 = \frac{-4\mu a_0}{\pi R^3}.$$

Výsledky:

Pro tento článek byly použity tři odlišné křivky závislosti průtoku na čase [2] [3] (Obr. 1). Každá z průtokových charakteristik má frekvenci *f*. Dle výše uvedeného postupu byly z těchto křivek vypočítány průběhy smykových napětí na stěně (Obr. 1).

Z tohoto průběhu byly dále vyhodnoceny maximální, minimální a střední hodnoty smykového napětí na stěně a jeho časový gradient.

	Q.10 ⁻³ [l/min]			τ [Pa]			$d\tau/dt$ [Pa/s]		
	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean
Pulz I	12,6	0,503	3,95	0,58	0,0054	0,161	5,43	-5,02	-9.10 ⁻⁴
Pulz II	11,9	1,94	4,62	0,558	0,0495	0,188	5,374	-3,185	3,1.10-3
Pulz III	8,93	5,56	6,66	0,392	0,207	0,271	1,84	-1,93	-5.10 ⁻⁶

Poděkování:

Tento výzkum byl podporován výzkumným záměrem MSM 6840770035 Rozvoj ekologicky šetrné decentralizované energetiky.

Literatura:

[1] Zamir, M.: The Physics of Pulsatile Flow. Springer-Verlag, New York, 2000. PP.220, ISBN 0-387-98925-0.

[2] Lei M., Archie J.P., Kleinstreuer C."Computational desingn of a bypass graft that minimizes wall shear stress gradients in the region of the distal anastomosis. Journal of Vascular Surgery, April 1997. PP.637-646.

[3] Cave F.D., Walker A., Naylor G.P., Charlesworth D.: The hydraulic impedance of the lower limb: its relevance to the success of bypass operation for occlusion of the superficial femoral artery. Journal of Surgery, Vol 63(1976), PP. 408-412.

Obr. 1:Vlevo nahoře: Znázornění prvních devíti koeficientů Fourierovy řady pro porovnávané pulzy. Vpravo nahoře: Závislost průtoku na čase. Vlevo dole: Závislost smykového napětí na stěně na čase. Vpravo dole: Průběh gradientu smykového napětí na stěně.

p.2