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The work deals with numerical solution of the 2D incompressible laminar flows over the profile DCA
10% for Reynold’s numbers 105 and 106 and stratified flows in atmospheric boundary layer over the
”sinus hill” with Reynolds numbers 108 and 5 · 108. Mathematical model for the 2D laminar flows over
the profile DCA 10% is the system of Navier-Stokes equations for incompressible laminar flow and the
Reynolds averaged Navier-Stokes equations (RANS) for incompressible turbulent flow with addition of
the equation of density change (Boussinesq model) was used as a mathematical model for stratified
flows in ABL. The artificial compressibility method and the finite volume method was used in all cases
and the Lax-Wendroff scheme (Richtmyer form) was used in laminar cases and Lax-Wendroff scheme
(MacCormack form) was used to compute turbulent stratified flows in ABL using Cebeci-Smith algebraic
turbulence model.

1 Mathematical model

Navier-Stokes equations for 2D incompressible laminar flow were used as a mathematical model for
flows over the profile DCA 10%:

ux + vy = 0 (1)

ut + (u2 + p)x + (u · v)y = ν · (uxx + uyy) (2)

vt + (u · v)x + (v2 + p)y = ν · (vxx + vyy), (3)

where (u, v) is a velocity vector, p = P
ρ

(P - static pressure), ρ - density, ν - kinematic viscosity. Using
artificial compressibility method, continuity equation is completed by term pt

β2 , β2
∈ R

+.

Reynolds averaged Navier-Stokes equations for 2D incompressible flows with addition of the equa-
tion of density change (Boussinesq model) were used as a mathematical model for flows over the ”sinus
hill” in ABL:

ux + vy = 0 (4)

ut + (u2 + p)x + (u · v)y = (ν + νT ) · (uxx + uyy) (5)

vt + (u · v)x + (v2 + p)y = (ν + νT ) · (vxx + vyy) −
ρ

ρ0

g (6)

ρt + u · ρx + v · ρy = 0, (7)

where (u, v) is a velocity vector, p = P
ρ0

(P - static pressure, ρ0 - initial maximal density), ρ - density, ν

- kinematic viscosity, νT - turbulent kinematic viscosity computed by Cebeci-Smith algebraic turbulence
model and g - gravity acceleration. Using artificial compressibility method, continuity equation is
completed by term pt

β2 , β2
∈ R

+.
Density and pressure are changing depending on height (y-axis) as follows:

ρ∞(y) = −
ρ0 − ρh

h
· y + ρ0 (8)

∂p∞

∂y
= −

ρ∞(y)

ρ0

· g (9)



The (8) is the linear decreasing function of density and the (9) is the hydrostatic pressure function.
It is possible to separate p = p∞ + p′ and ρ = ρ∞ + ρ′, where the therm p∞ is the initial state of
pressure, the term p′ is the pressure disturbance, the therm ρ∞ is the initial state of density and the
therm ρ′ is the density disturbance. After the substitution to (5) (6) we obtain following system of
RANS:

ux + vy = 0 (10)

ut + (u2 + p′)x + (u · v)y = (ν + νT ) · (uxx + uyy) (11)

vt + (u · v)x + (v2 + p′)y = (ν + νT ) · (vxx + vyy) −
ρ′

ρ0

g (12)

ρt + u · ρx + v · ρy = 0 (13)

1.1 Boundary conditions for laminar flows over the profile DCA 10%

Inlet boundary condition has been set as follows: u = u∞ = 1.0, v = v∞ = 0 and the pressure term
p has been extrapolated.
Outlet boundary conditions: p = p∞ and the velocity vector (u, v) has been extrapolated.
Boundary conditions on the wall: u = 0, v = 0, ∂p

∂n
= 0

Boundary conditions on the upper domain boundary: symmetry: ∂p
∂n

= 0, ∂u
∂n

= 0, v = 0

1.2 Boundary conditions for stratified turbulent flows over the ”sinus hill”

Inlet boundary condition has been set as follows: u = u∞ = 1.0, v = v∞ = 0, ρ = ρ∞(y), where
ρ∞(y) is a linear function which is decreasing with increasing y:

ρ∞(y) = −
ρ0 − ρh

h
· y + ρ0,

where ρ0 is a lower (maximal) density and ρh is a upper (minimal) density (both are constants). Pressure
change term p′ has been extrapolated.
Outlet boundary conditions: p′ = 0 and (u, v) and density ρ have been extrapolated.
Boundary conditions on the wall: u = 0, v = 0, ∂p

∂n
= ∂p∞

∂n
+ ∂p′

∂n
= 0 i.e. ∂p′

∂n
= −

∂p∞

∂n
and ∂ρ

∂n
= 0.

Boundary conditions on the upper domain boundary: p′ = 0, ∂u
∂n

= 0, ∂v
∂n

= 0, ρ = ρh

1.3 Turbulence model (Cebeci-Smith)

Domain Ω is divided into two subdomains. In the inner subdomain (near walls) the inner turbulent
viscosity νTi is computed. In the outer subdomain the outer turbulent viscosity νTo is computed. Most
common procedure is to compute both turbulent viscosities and use the minimal one:

νT = min (νTi, νTo) .

For turbulent viscosity computing is necessary to use local systems of coordinates (X, Y ), where X is
parallel with the profile and Y is normal of the profile.
In inner subdomain the turbulent viscosity is defined as follows:

νTi = ρl2
∣∣∣∣
∂U

∂Y

∣∣∣∣ ,

where ρ is the density of fluid, (U, V ) are components of velocity vector in direction of (X, Y ) and l

is given by equation:

l = κ · Y ·

[
1 − exp

(
−

1

A+
ur · Y · Re

)]
, where ur =

(
ν

∣∣∣∣
∂U

∂Y

∣∣∣∣

) 1

2

ω



In outer subdomain the turbulent viscosity is defined by Clauser‘s equation:

νTo =
ραδ∗Ue

1 + 5.5
(

Y
δ

)6 ,

Ue = U(δ) where δ is the thickness of boundary layer and δ∗ =
∫ δ

0

(
1 −

U
Ue

)
dY.

Following values of the constants were used: κ = 0.4, α = 0.0168, A+ = 26.

2 Numerical solution

In all cases the artificial compressibility method and the finite volume method have been used at
structured grid of quadrilateral cells (in x direction uniform, in y direction refined near walls).
Term pt

β2 is added to the continuity equation (1) also (4). Other equations in both Navier-Stokes
system (laminar) and RANS (turbulent with stratification) are without any changes. The new system
of Navier-Stokes equations is:

ux + vy = 0 (14)

ut + (u2 + p)x + (u · v)y = ν · (uxx + uyy) (15)

vt + (u · v)x + (v2 + p)y = ν · (vxx + vyy), (16)

in the vector form:

Wt + Fx + Gy = Rx + Sy (17)

W =

∥∥∥∥∥∥

p
β2

u

v

∥∥∥∥∥∥
, F =

∥∥∥∥∥∥

u

u2 + p

u · v

∥∥∥∥∥∥
, G =

∥∥∥∥∥∥

v

u · v

v2 + p

∥∥∥∥∥∥
, R = ν ·

∥∥∥∥∥∥

0
ux

vx

∥∥∥∥∥∥
, S = ν ·

∥∥∥∥∥∥

0
uy

vy

∥∥∥∥∥∥
, (18)

and the new RANS system is:

p′t
β2

+ ux + vy = 0 (19)

ut + (u2 + p′)x + (u · v)y = (ν + νT ) · (uxx + uyy) (20)

vt + (u · v)x + (v2 + p′)y = (ν + νT ) · (vxx + vyy) −
ρ′

ρ0

g (21)

ρt + u · ρx + v · ρy = 0, (22)

in vector form:

Wt + Fx + Gy = (Rx + Sy) + K (23)

where:

W =

∥∥∥∥∥∥∥∥

p′

β2

u

v

ρ

∥∥∥∥∥∥∥∥
, F =

∥∥∥∥∥∥∥∥

u

u2 + p′

u · v

u · ρ

∥∥∥∥∥∥∥∥
, G =

∥∥∥∥∥∥∥∥

v

u · v

v2 + p′

v · ρ

∥∥∥∥∥∥∥∥
,

R = (ν + νT )

∥∥∥∥∥∥∥∥

0
ux

vx

0

∥∥∥∥∥∥∥∥
, S = (ν + νT ) ·

∥∥∥∥∥∥∥∥

0
uy

vy

0

∥∥∥∥∥∥∥∥
, K =

∥∥∥∥∥∥∥∥

0
0

−
ρ′

ρ0

g

0

∥∥∥∥∥∥∥∥

(24)



The new Navier-Stokes and the new RANS system is parabolic for every W =
∥∥∥ p

β2 , u, v
∥∥∥

T

and

W =
∥∥∥ p′

β2 , u, v, ρ
∥∥∥

T

. It is necessary to use stable boundary conditions to govern when t → +∞ then
∥∥∥ p

β2 , u, v
∥∥∥

T

t
→ 0 and

∥∥∥ p′

β2 , u, v, ρ
∥∥∥

T

t
→ 0.

Lax-Wendroff scheme (Richtmyer form) was used to compute laminar flows over the profile DCA 10%
for Reynolds numbers 105 and 106 in following form:

W
n+ 1

2

ij = Wn
ij −

∆t

2µij

4∑

k=1

[(
F̃n

k − R̃n
k

)
∆yk −

(
G̃n

k − S̃n
k

)
∆xk

]
+

ǫ

4

4∑

k=1

(
Wn

k − Wn
ij

)

Wn+1

ij = Wn
ij −

∆t

µij

4∑

k=1

[(
F̃

n+ 1

2

k − R̃
n+ 1

2

k

)
∆yk −

(
G̃

n+ 1

2

k − S̃
n+ 1

2

k

)
∆xk

]
+ ADn

ij ,

where ADn
ij is the Jameson‘s artificial disipation which has been used to stabilize numerical solution

and:

F̃n
1 =

1

2
(Fi,j + Fi,j−1) , F̃n

2 =
1

2
(Fi,j + Fi+1,j) , F̃n

3 =
1

2
(Fi,j + Fi,j+1) , F̃n

4 =
1

2
(Fi,j + Fi−1,j) .

G̃n
k were computed in the same way as F̃n

k . R̃n
k , S̃n

k were computed on dual grid using finite volume
method.
Lax-Wendroff scheme (MacCormack form) was used to compute stratified flows over the ”sinus hill” for
Reynolds numbers 108 and 5 · 108 in the following form (published in (5)):

W
n+ 1

2

ij = Wn
ij −

∆t

µij

({
4∑

k=1

[(
F̂n

k − R̂n
k

)
∆yk −

(
Ĝn

k − Ŝn
k

)
∆xk

]}
−K̂n

ij · µij

)

Wn+1

ij =
1

2
(Wn

ij + W
n+ 1

2

ij ) − (25)

−
∆t

2µij

({
4∑

k=1

[(
F̂

n+ 1

2

k − R̂
n+ 1

2

k

)
∆yk −

(
Ĝ

n+ 1

2

k − Ŝ
n+ 1

2

k

)
∆xk

]}
− K̂

n+ 1

2

ij · µij

)
+ ADn

ij ,

where ADn
ij is the Jameson‘s artificial disipation which has been used to stabilize numerical solution

and:

F̂n
1 = Fn

i−1,j , Ĝn
1 = Gn

i−1,,j , F̂
n+ 1

2

1 = F
n+ 1

2

i,j , Ĝ
n+ 1

2

1 = G
n+ 1

2

i,,j

F̂n
2 = Fn

i,j−1, Ĝn
2 = Gn

i,,j−1, F̂
n+ 1

2

2 = F
n+ 1

2

i,j , Ĝ
n+ 1

2

2 = G
n+ 1

2

i,,j

F̂n
3 = Fn

i,j , Ĝn
3 = Gn

i,,j , F̂
n+ 1

2

3 = F
n+ 1

2

i+1,j , Ĝ
n+ 1

2

3 = G
n+ 1

2

i,+1,j

F̂n
4 = Fn

i,j , Ĝn
4 = Gn

i,,j , F̂
n+ 1

2

4 = F
n+ 1

2

i,j+1
, Ĝ

n+ 1

2

4 = G
n+ 1

2

i,,j+1

R, S are computed in the same way in both n and n + 1 time layer:

R̂1 =
1

2
(Ri,j + Ri−1,j) , R̂2 =

1

2
(Ri,j + Ri,j−1) R̂3 =

1

2
(Ri+1,j + Ri,j) , R̂4 =

1

2
(Ri,j+1 + Ri,j)

K̂n
ij =

∥∥∥∥0, f · vn
ij ,

ρn
ij

ρ0

g, 0

∥∥∥∥
T

, K̂
n+ 1

2

ij =

∥∥∥∥∥∥
0, f · v

n+ 1

2

ij ,
ρ

n+ 1

2

ij

ρ0

g, 0

∥∥∥∥∥∥

T



3 Numerical results

The following cases of laminar neutrally stratified flows and stratified turbulent flows were computed.
Authors consider flows over the profile DCA 10% (laminar neutrally stratified flows) with Re = 105

and Re = 106 and the ”sinus hill” (10% of domain height - stratified turbulent flows) and the figures
show results with Re = 108 and Re = 5 · 108 with density change ρ∞ ∈ [1.2; 1.1]. For the future also
higher ”sinus hill” and greater range of density will be considered.

Figure 1: DCA 10% - incompressible viscous laminar flow, Re = 105, u∞ = 1.0, white lines - contours
of pressure, black lines - contours of velocity magnitude

Figure 2: DCA 10% - incompressible viscous laminar flow, Re = 106, u∞ = 1.0, white lines - contours
of pressure, black lines - contours of velocity magnitude



Figure 3: ”Sinus hill 10%” - incompressible viscous turbulent stratified flow, Re = 108, u∞ = 1.5 m·s−1,
contours of velocity magnitude [m · s−1]

Figure 4: ”Sinus hill 10%” - incompressible viscous turbulent stratified flow, Re = 108, u∞ = 1.5 m·s−1,
contours of pressure disturbances [pa]

Figure 5: ”Sinus hill 10%” - incompressible viscous turbulent stratified flow, Re = 108, u∞ = 1.5 m·s−1,
Residuals



Figure 6: ”Sinus hill 10%” - incompressible viscous turbulent stratified flow, Re = 5 · 108, u∞ =
7.5 m · s−1, contours of velocity magnitude [m · s−1]

Figure 7: ”Sinus hill 10%” - incompressible viscous turbulent stratified flow, Re = 5 · 108, u∞ =
7.5 m · s−1, contours of pressure disturbances [pa]

Figure 8: ”Sinus hill 10%” - incompressible viscous turbulent stratified flow, Re = 5 · 108, u∞ =
7.5 m · s−1, Residuals



4 Closure

Numerical method solving incompressible laminar viscous flow and turbulent stratified viscous flow near
ground has been developed and applied to the flow over the profile DCA 10% (laminar flows) and over
the ”sinus hill” with good results. Continuation of our work expects using two-equation turbulence
model, for test case with a higher hill as well as an implicit scheme.
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