Enhancement of single crystal scintillators for scintillation detectors in S(T)EM

Schauer P.

Institute of Scientific Instruments of the ASCR, v.v.i., Kralovopolska 147, CZ-61264 Brno, Czech Republic. E-mail: petr@isibrno.cz

Scintillator is a problematic part of any scintillation detector for S(T)EM. The reason lies in its decay time and especially in its afterglow, which deteriorate the ability to transfer image contrast. In other words, a slow scintillator causes a bad modulation transfer function (MTF) of the whole detector. If a series of alternating white and black points is transferred using such a scintillator, the image is somewhat degraded at the typical S(T)EM spatial frequency. To enhance the MTF of the detector, the kinetics of the cathodoluminescence (CL) of many single crystal scintillators has been studied at our laboratory. Some results concerning single crystals of cerium-activated yttrium aluminum garnet (YAG:Ce) and cerium-activated yttrium aluminum perovskite (YAP:Ce) are presented in this paper.

The pulse mode utilizing a blanking system and 10 keV electrons for the excitation, and a sampling oscilloscope for the CL detection, was used for the measurement of decay characteristics [1]. The measurement was controlled using the IEEE-488 interface and processed by software developed in our laboratory. The decay time and the afterglow as well as the intensity of characteristic and defect emissions of the YAG:Ce and YAP:Ce single crystals, measured under various conditions, are shown in Tab. 1. For comparison, the properties of single crystals of cerium-activated Yttrium Silicate (YS:Ce, i.e. $Y_2SiO_5:Ce^{3+}$) and europium-activated calcium fluoride (CF:Ce, i.e. $CaF_2:Eu^{2+}$) are also shown in Tab. 1.

Deduced from photoluminescence, the ideal decay times of YAG:Ce and YAP:Ce are about 60 ns and 20 ns, respectively [2,3]. The ideal afterglow (measured 1 : s after the excitation stop) is no more than 1 % for the both crystals. It is evident from Tab. 1, that defect centres are responsible for a deterioration of CL decay characteristics of YAG:Ce and YAP:Ce. The possibilities of kinetics enhancement of these scintillators consist in reduction of the influence of the scintillator defect centres. As is seen from Tab. 1, both the thermalization of and the nonradiative recombination from defect centres improve the kinetics of YAG:Ce. Of course, the best way of enhancing the YAG:Ce kinetics would be to increase the Ce concentration because concentration guenching starts at about 1-2 mol% of Ce. Unfortunately, it is

)))))))) conditions)))))))))))))))) cathodoluminescence)))))			
single	activator			meas.	intensity ¹ (AU)		decay	ofteralow
crystal	conc. (mol%)	boiled	fired	temp.	charact.	defect	time (ns)	(% at 1: s)
	(110170)				emis.	emis.	(113)	
		jia-	H_2		137	0.068	100	8
(adi	02)	(91	0.044	175	17
(((~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		\bigcirc	293	64	0.02	75	5
	×10		H_2	(139	0.085	131	10
Ce	3.2	<u> </u>		(100	0.061	125	9
YAG		lcoh		380	111	0.015	139	14
\sim	(((lyla	JMO.	460	125	0.012	120	6
(((((ett	as gr	500	129	0.011	91	3
	2.9x10 ⁻²			3)	43	0.146	405	24
\bigcirc	1.3x10 ⁻³	(() 26	7.3	0.15	2000	51
	(((293	194	0.084	38	6.4
((()		(310	187	0.083	30	3
e		lohc	LN N	320	185	0.082	23	2.3
P:O	x10	lalc	gro	340	178	0.079	14	1.9
<i>4</i> ×	4	ethy	as	360	174	0.072	12	1.1
(((((((((380	171	0.063	11	< 0.5
(\sim	(((((400	174	0.052	10	< 0.5
))))))))))))))))))))))))))))))))))))))								
YS:Ce)))))))	293	173	n/a	34	< 0.5
CF:Eu))))))))) n/a))			179		1200	42

Table I. Cathodoluminescence (CL) decay of single crystal scintillators for S(T)EM.¹ Intensity of the CL emission (in arbitrary units) has been corrected for the S20 photocathode used.

not possible to grow a YAG:Ce crystal with the Ce concentration higher than 0.32 mol% because of a sharp decrease of the distribution coefficient.

References:

- [1] Autrata R. and Schauer P., 1996, Scanning Microsc., Suppl. 9, 1-12
- [2] Weber M.J., 1973, Sol. State Commun., 12, 741-744.
 [3] Weber M.J., 1973, J. Appl. Phys., 44, 3205-3208.

Acknowledgements: This work was supported by the grant No. 102/04/2144 of the Grant Agency of the Czech Republic.