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NUMERICAL ALGORITHM FOR NONSMOOTH
STABILIZATION OF TRIANGULAR FORM SYSTEMS1

Sergej Čelikovský2

The aim of this contribution is to present a simple method for finding nonsmooth stabil-
izers in cases when the smooth ones are not available. More precisely, we adress the sta-
bilization of a certain class of single-input nonlinear systems; namely, the class of systems
that are state equivalent to the so-called singular triangular form. It is based on the for-
mal application of the exact linearization scheme to the systems with linear part having
noncontrollable unstable mode. Such a formal approach leads to the stabilizer possesing
singularities and a regularization process is suggested to remove them. This approach is
realized and tested by computer simulations for various nonlinear systems.

1. INTRODUCTION : NONSMOOTH STABILIZATION

We are interested in the static state feedback stabilization of the smooth nonlinear
controlled dynamical system without outputs:

ẋ = f(x) +
m∑

k=1

gk(x)uk, u = (u1, . . . , um)′ ∈ IRm, x ∈ IRn. (1)

Namely, let x0 ∈ IRn be an equilibrium of (1), i. e. f(x0) = 0, then this system is
called globally (locally) asymptotically stabilizable at x0 if there exists feedback law
(asymptotic stabilizer of (1))

α(x) = (α1(x), . . . , αm(x))′, α : IRn → IRm, (2)

such that the corresponding closed loop system (i. e. system (1) with u = α(x), α
given by (2)) has x0 as its globally (locally) asymptotically stable equilibrium point.
System is called stabilizable if there exists feedback that makes the corresponding
closed loop system stable. System is called nonasymptotically stabilizable if it is
stabilizable, but it is not asymptotically stabilizable. Stabilizability will be called

1Extended and revised version of the contribution presented at the 3rd IFIP WG–7.6 Work-
ing Conference on Optimization–Based Computer–Aided Modelling and Design, Prague, Czech
Republic, May 24 – 26, 1994.
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Table 1. Stabilization of the nonlinear system (NLS) and modification

of eigenvalues of its aproximate linearization by linear feedback u = Kx.

No. Best real parts of eig(F + GK) Relation Stabilizability type of NLS (1)
1. negative ⇒ local smooth asymptotic
2. nonpositive ⇐ local smooth
3. nonpositive ? ⇒ ? local smooth or nonsmooth
4. exist(s) positive ?⇒ ? local nonsmooth

linear (smooth, nonsmooth, continuous, etc.) dependingly on the best available
character of the stabilizer α. For the survey of the stabilization topic see e. g. [19].

The usual and most straightforward way to study local asymptotic stabilization
is to consider the approximate linearization of (1) at x0, namely, the linear system:

ẏ = Fy + Gu, (3)

related with the original nonlinear system as follows:

y = x− x0, F =
∂f

∂x
(x0) , G = [g1(x0)|...|gm(x0)] .

Relations between the best available real parts of eigenvalues of F + GK, where K
is arbitrary m × n matrix defining a linear feedback u = Kx, and various types of
the local stabilizability of (1) at x0 are collected in Table 1.

Question marks in Table 1 mean that the problem is open and should be solved
by higher-order, intristically nonlinear, methods. Problem 3 of this table is usually
referred as the so-called critical case of the stabilization and may be tackled e. g. by
means of Lyapunov function method or center manifold approach (see e. g. [2, 17]).

Problem 4 is exactly the area to which we aim contribute here: how to find
stabilizer that is nonsmooth when no smooth is available? Due to the infinetesimal
character of the relation between nonlinear system and its approximate linearization
(i. e. system (3) is completely determined by (1) considered in an arbitrarily small
neighbourhood of x0) the only thing that is sure regarding Problem 4 is that the
stabilizer (if any) should be nonsmooth just at x0. Actually, if a smooth feedback (2)
stabilizes system (1), then obviously F + Gαx(x0) has eigenvalues with nonpositive
real parts. It is therefore reasonable to search a stabilizer that is everywhere except
x0 smooth (and hopefully continuous at x0). Such a stabilizer particularly guarantees
that all solutions of the corresponding closed loop system are well defined with the
only possible nonuniqueness at x0.

The above task is a challenging truely nonlinear problem, important both theor-
etically and practically (e. g. to justify robustness of stabilizers in critical cases:
small perturbation of the Problem 3 leads either to the Problem 1 or to the Prob-
lem 4). Nevertheless, it is also very dificult and as the consequence only rare results
on this topic with a rather limited applicability are available (see [16, 11]). For the
discrete time version of this problem see also [18]. For a recent state of the art in
the area of the nonsmooth stabilization see [4] and references in there.
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2. STABILIZATION VIA EXACT LINEARIZATION

Exact linearization is probably the main breakthrough made by the differential-
geometric approach in the nonlinear control theory. Contrary to the approximate
linearization (3) it aims to find reasonable exact transformations, (e. g. nonlinear
change of coordinates in the state space, feedback of various levels of complexity,
etc.) taking the original nonlinear system (1) to a controllable linear system (CLS).

Let us recall that GL(m, IR) stands for the group of all m×m regular matrices.

Definition 1. System (1) is called smoothly locally feedback linearizable at x0 if
there exist a neighbourhood Ux0 of x0 and a neighbourhood V0 of 0 ∈ IRn, feedback3

of the form

u = α(x) + β(x)v, α(x) ∈ C∞(Ux0 , IR
m), β(x) ∈ C∞(Ux0 , GL(m, IR)),

and a diffeomorphism
D : V0 → Ux0 , x = D(y),

transforming the system (1) into a controllable linear system

ẏ = Fy + Gv, y ∈ IRn, v ∈ IRm, (4)

where F, G are (n× n) and (n×m) matrices, respectively.
The system is called smoothly state linearizable if it is feedback linearizable with

β(x) ≡ Im and α(x) ≡ 0. Where no confusion arises, various adjectives may be
ommited to shorten the exposition.

Remark 1. Linearization is a particular case of the system equivalence: two non-
linear systems are called mutually feedback (state) equivalent, if they can be trans-
formed into one another using appropriate transformations. Linearizability then
means equivalence to a linear controllable system and both terminology will be used
in the sequel. Where appropriatte, we often call this linearization as the exact one
to stress the difference with respect to the aproximate linearization (3). The whole
remark applies also to various kinds of global linearization and equivalence that will
be later introduced.

Definition 2. System (1) is called globally feedback (state) linearizable at x0 to
a linear system on IRn if it is at this point locally linearizable and V0 = IRn. It is
called globally linearizable on IRn if Ux0 = M . System that is linearizable globally
on M to a linear system on IRn is called globally linearizable.

For further details see surveys [6, 20, 10] or books [13, 17].

Positive solution of the smooth exact linearization task gives immediately the
solution to the stabilization problem, nevertheless this concerns only Problem No. 1

3 To avoid confusion, let us remind that the term ‘feedback’ is used in the control theory in
different senses: first, as the closing of the open loop system or, secondly, as the transformation
leading to the new open loop system with a new input variable.
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and 2 of Table 1. Actually, the only additional contribution of the smooth exact
linearization in comparision with the approximate one is that the former one en-
ables also to find (or at least to estimate) basin of attraction of the asymptotically
stabilized equilibrium. Particularly, in case of the global smooth exact linearization
this approach leads to the global stabilization. The reason is that the exact smooth
linearization and approximate one are always mutually linearly equivalent (i. e. via
linear change of coordinates and a linear feedback). As a consequence, a feedback
linearizable system has a controllable approximate linearization (3) and therefore
may be stabilized using the linear feedback.

In this paper we aim to adapt the described exact linearization approach to be
applicable to the nonsmooth stabilization. First, let us describe the smooth case in
some detail.

During the rest of the paper we concentrate ourselves on the single-input case,
i. e. m = 1 (the multi-input case is analogous, though more technical).

General, coordinate free conditions for the feedback linearization can be given
using a quite abstract differential geometric language — see previously mentioned
references. To simplify the exposition, let us consider the so-called systems in tri-
angular form (TF). Actually, as we illustrate in the sequel, this is an intermediate
step to linearize the system using transformation of the state and feedback pro-
vided certain regularity condition is satisfied. Abstract geometrical conditions for
transforming the system into TF may be found in [9].

To put it more explicitely, let us consider locally around x0 ∈ IRn the following
single-input system

ẋ = f(x) + g(x) u, x = (x1, . . . , xn)′ ∈ IRn, f(x0) = 0,

g = (g1(x), 0, . . . , 0)′ , f = (f1(x), f2(x), f3(x2, . . . , xn), . . . , fn(xn−1, xn))′ , (5)

such a system is said to be in TF (or TF-system). The TF (5) is called as a regular
one (RTF) if

g(x0) 6= 0,
∂fi

∂xi−1
(x0) 6= 0, i = 2, . . . , n. (6)

otherwise it is called as a singular one (STF). The TF (5) is called as a locally
bijective one (BTF) if the following mapping from IRn+1 to IRn+1

(x1, x2, . . . , xn, u)′ → (f2(x), . . . , fn(x), xn, g1(x)u)′ (7)

is bijective locally around the origin. Obviously, a RTF is always a BTF, the converse
is not true, see e. g. ẋ1 = u, ẋ2 = x3

1.
Let us remind (see e. g. [12]) that a single-input system (1) is smoothly locally

at x0 feedback exact linearizable if and only if it takes in some smooth coordinates
RTF.

Moreover, the following straightforward algorithm for the local (for the global
aspects consult ([6])) smooth exact feedback linearization is applicable:
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Algorithm 1.

1. Consider smooth system (5 – 6) such that for some p ≥ 1 it holds fk(x) =
xk−1, k > p. We denote this type of system as Σp. Notice, that Σn is the
general triangular form (5). Then, applying the smooth local change of the
coordinates (thanks to (6)) of the form x̃ = (x1, . . . , xp−2, fp(xp−1, . . .
. . . , xn), xp, . . . , xn)′ we obtain after straightforward computations system of
type Σp−1.

2. Starting with Σn and repeating the Step 1 n − 1 times we will finally obtain
system of the type Σ1:

˙̃x1 = f̃(x̃) + g̃(x̃)u, ˙̃xk = x̃k−1, k = 2, . . . , n,

where f̃ , g̃ are scalar functions with g̃ 6= 0. Now, introducing a new input
variable v via the following feedback

v = f̃(x̃) + g̃(x̃)u, (8)

we have CLS in the Brunovsky canonical form (see [3]).

So, using the above algorithm one can compute (at least locally at x0 ∈ IRn —
see [6] for global aspects) for any system of type (5 – 6) in a straightforward way
the smooth change of coordinates y = D(x), det(Dx(x0)) 6= 0 and the feedback
v = β1(x) + β2(x) u, β2(x0) 6= 0 taking (5) to the linear system in Brunovsky
canonical form:

ẏ1 = v, ẏ2 = y1, . . . , ẏn−1 = yn−2, ẏn = yn−1, (9)

where y = (y1, . . . , yn)′. System (9) can be easily stabilized using linear feedback

v = linst(y) =
n∑

i=1

yici, c = (c1, . . . , cn)′ ∈ IRn,

(see [15, 22] for details) and therefore the system of type (5,6) is stabilized (at least
locally) by the smooth feedback

u = α(x) = (linst(D(x))− β1(x)) /β2(x). (10)

Previous approach has been adopted by the control community for a long time,
see e. g. [14] for the toolbox trying explore it. Nevertheless, in spite of the generality
of the system form (5), this approach often fails since conditions (6) need not be
valid. Namely, it is easy to observe that β2(x0) 6= 0 if and only if (6) is valid,
i. e. (6) is the crucial regularity condition. Moreover, it is intuitively understable
to the people dealing with numerical computations that practically the approach
should fail even when the derivatives in (6) are nonzero, but too close to zero. In
other words, one cannot get rid of the violation of (6) by claiming it ‘nongeneric’.
Adaptation of the described algorithm to be able to work with cases when (6) is
violated (or ‘nearly’ violated) is therefore of a great interest.
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The cases, when some of equalities (6) are violated, are just the cases when the
approximate linearization of (5) is not controllable. Actually, simple computations
show that the approximate linearization (3) of (5) has the form

F =




∗ ∗ ∗ ∗ · · · ∗ ∗
∂f2
∂x1

∗ ∗ ∗ · · · ∗ ∗
0 ∂f3

∂x2
∗ ∗ · · · ∗ ∗

0 0 ∂f4
∂x3

∗ · · · ∗ ∗
...

...
. . . . . . . . .

...
...

0 0 · · · 0 ∂fn−1
∂xn−2

∗ ∗
0 0 · · · 0 0 ∂fn

∂xn−1
∗




(x0), G =




g1(x0)
0
...
0


 .

If some of the corresponding uncontrollable modes are unstable, then (5) is not
stabilizable using smooth feedback. In other words, successful regularization of
singularities of (10) may give nonsmooth stabilization of smoothly nonstabilizable
system.

3. REGULARIZED ALGORITHM AND NONSMOOTH STABILIZATION

We present and develop here a simple heuristic idea to regularize the stabilization
Algorithm 1. This idea is based on the rather straightforward observation that the
violation of (6) do not prevent from the formal applying of the described Algor-
ithm 1 and the only trouble is that for the resulting stabilizer given by (10) one has
α(x) → ∞ when x approaches some singular subset of IRn. This singular subset
contains at least the stabilized equilibrium x0 and is ‘negligible’ (more exactly, it is a
submanifold of the dimension < n). Moreover, it can be easily seen (using geometric
approach in the spirit of e. g. [13]) that for any nonzero input trajectories starting
near this singular subset cross it transversaly (i. e. with a nonzero angle) in isolated
points. All these observation immediately suggest the following heuristic adaptation
of Algorithm 1:

Algorithm 2.

1. Apply Algorithm 1 and compute feedback α(x) according to (10).

2. Find singular subset S ⊂ IRn on which (10) is not defined.

3. Construct sequence of functions αk : IRn → IR, k = 1, 2, . . . in such a way
that each αk is everywhere continuous, it is everywhere except x0 smooth and
αk → α, k →∞ (we skip mathematical technical details regarding the proper
definition of this convergence4).

4. Select a particular, sufficiently large integer k and consider αk as the every-
where continuous and everywhere except x0 smooth stabilizer.

4 The idea is the following: consider a sequence of open sets S1,S2, . . . with S1∩S2 . . . = S\{x0}.
Then, use the partition unity technique to construct for each k = 1, 2, . . . smooth on IRn \ {x0}
and continuous on IRn function αk that equals to α on Sk.
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Basic heuristic idea of the above algorithm was independently introduced and
tested in [5] and [14], nevertheless, both these papers used a very primitive sequence
{αk} (particularly αk were discontinuous) and they considered only one single-input
two-dimensional system.

We concentrate ourselves here both on the selection of the sequence {αk} fulfilling
all requirements of Algorithm 2 as well as on the three-dimensional simulations in
order to test experimentally viability of this approach.

4. NUMERICAL SIMULATIONS

We describe here shortly the application of Algorithm 2 on the two typical examples.

Example 1. Consider two dimensional system (cf. [2, 5, 7, 11, 14, 16])

ẋ1 = x1 + x3
2, ẋ2 = u.

New coordinates y1 = x1, y2 = x1 + x3
2, and feedback v = y2 + 3x2

2u leads to

ẏ1 = y2, ẏ2 = v.

Observe, that coordinate transformation has the nonsmooth inverse and the feed-
back mapping cannot be inverted for x2 = 0. This is exactly due to the fact that
(6) is violated here. Applying (10) we therefore obtain discontinuous, unbounded,
‘stabilizer’

u = αunb = (−ax1 − (b + 1) (x1 + x3
2))/(3x2

2)

where a, b ∈ IR are such that the matrix
[

0 1
−a −b

]

has eigenvalues in the open left complex halfplane. Now, let us proceed along the
lines suggested by Algorithm 2. We introduce a regularizing parameter bound > 0
and define for each its value a regularized feedback αbound in such a way that α∞ =
αunb (then the sequence of Algorithm 2.3 may be taken as αboundk

, k = 1, 2, . . . ,
where bound1, bound2, . . . is arbitrary positive monotounous unbounded sequence of
reals). The most trivial idea how to regularize the above singular stabilizer αunb
gives discontinuous at the origin, but bounded stabilizer (first introduced in [5])

u = αbound(x) (11)
= min{|αunb(x)|, bound}sign(αunb(x)), bound > 0, αbound(0) =?

We suggest here more sophisticated idea giving continuous and a. e. smooth stabilizer

u = αcont(x) (12)
= min{|αunb(x)|, bound|x1|1/3}sign(αunb(x)), bound > 0, αcont(0) = 0.
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Notice, that infinitesimaly for x → 0 we have that the inequality |x1| ≤ K|x2|1/3,
K = K(bound, a, b) > 0, defines the set where αunb(x) = αcont(x) . For K suffi-
ciently large it contains (near the origin) the curved sectors x1(x1 + x3

2) < 0 (the
maximal set where |x1(t)| strictly decreases along the trajectories). Together with
the topological linearization arguments of [5, 7] this fact gives even an oportunity
to prove theoretically the stability of this closed loop system. We skip the de-
tailed proof, nevertheless, let us underline that for the case of real eigenvalues of
the linearized system this proof is straightforward since any trajectory crosses the
singularity x2 = 0 only one time.

After numerous simulations made for both types of regularizations, the continu-
ous one appears as more suitable also from the numerical point of view. The reason
is that for nonreal eigenvalues of the linearized system the origin approaching tra-
jectory intersects the singularity in its arbitrarily small neighbourhood. For the
stabilizer (11) this means that ẋ2(t) = ±bound very close to the origin and causes
failure of the numerical integration procedure. As expected, continuous regulariza-
tion (12) completely avoids these problems.

Example 2. This example tests the previous approach for the increased dimen-
sionality. Namely, we consider the previous example with added integrator:

ẋ1 = x1 + x3
2, ẋ2 = x3, ẋ3 = u.

Transformations y1 = x1, y2 = x3
2 + x1, y3 = 3x2

2x3 + x3
2 + x1, v = 3x2

2u + 6x2x
2
3 +

3x2
2x3 + x3

2 + x1, takes it into the linear form

ẏ1 = y2, ẏ2 = y3, ẏ3 = v.

Stabilizing linear feedback is v = −ay1 − by2 − cy3, where matrix



0 1 0
0 0 1
−a −b −c


 ,

has eigenvalues λ1, λ2, λ3 belonging to the open left complex halplane (particularly,
a = −λ1λ2λ3, b = λ1λ2 +λ1λ3 +λ2λ3, c = −(λ1 +λ2 +λ3)) and after appropriatte
computations we obtain unbounded stabilizer

u = αunb(x) = −(1 + c)x3 − (1 + b + c)x2/3− (6x2x
2
3 + (a + b + c + 1)x1)/(3x2

2).

The analogous idea as in Example 1 will be exploited here, the difference is that we
use two regularizing parameters bound1,2 > 0. Having in mind observations made
during simulations of Example 1, we consider here only the continuous regularization
αcont, defined for each pair bound1,2 > 0 as follows (observe, that contrary to
Example 1 we have αcont = αunb for bound1,2 = 0 — this is a matter of notation
only)

u = αcont

= −(1 + c)x3 − (1 + b + c)x2/3− (6x2x
2
3 + (a + b + c + 1)x1)

max{3x2
2, 3bound1x

2/3
1 + 3bound2x2

3}
→ 0

for x → 0.
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A similar justification of the above regularization as in the case n = 2 is possible:
the set of x ∈ IR3 where αunb(x) = αcont(x) is given by bound1x

2/3
1 + bound2x

2
3 ≤

x2
2, x 6= 0, its closure contains the origin, projection of its boundary to x1,2-plane is

given by bound
1/2
1 x

1/3
1 = ±x2 and for bound1,2 → 0 this set tends to IR3 \ {x2 = 0}.

The following observations are based on numerous computer simulations of the
above regularized stabilizer:

• after selecting λ1,2,3 in the open left complex halfplane one can easily adjust
parameters bound1,2 > 0 within a wide intervals of values such that trajec-
tories starting from numerous initial conditions converge to the origin with
the selected precision — see Figs. 1 – 4 for the illustration

• for bound1,2 > 0 too large αunb and αcont mutually differs too much and as
the result closed loop system may be unstable,

• for bound1,2 > 0 too small interuption of the numerical integration procedure
occurs (remind that if bound1,2 = 0 then αunb = αcont everywhere) since
numerical values of αcont may be too large.

• effect of bound1,2 is illustrated in Figs. 1 – 3

• algorithm is robust with respect to all parameters and initial states

• good numerical properties of the above continuous regularization are illustrated
on Fig. 4: even fast oscillations in the linearized system did not prevent from
approaching the origin with extremely high precision

• x1(t) is converging to zero faster than x2,3(t) — this fact complies with the
discrete-time case (see [18]).

5. CONNECTION WITH TOPOLOGICAL LINEARIZATION

Finally, we shortly discuss the possibility of a more rigorous justification of the
Algorithm 2. The good basis for this seems to be recently developed notion of the
topological (nonsmooth) linearization (see [5, 7] and compare them with a recent [18]
dealing with the discrete-time case). Without going into the details, that are out of
scope for this contribution (being focused on numerical simulations), the relation of
Algorithm 2 with the topological linearization may be characterized as follows.

Topological linearization concept introduces generalizations of state transform-
ation and feedback that are only continuous and moreover they are understood in
the functional spaces sense. Particularly, let Ω be a suitable normed functional
space of all admissible input signals, then the ‘generalized’ feedback is understood
as a continuous map from Ω× IRn into Ω satisfying certain compatibility conditions
(see [7] for details). It was also showed there that Example 1 is topologically lin-
earizable. This particularly means that for the sequence αk constructed according
to Algorithm 2 we have that along each trajectory αk(x(t)) → α(x(t)) in the sense of
Ω-norm and this fact justifies the expectation that for a sufficiently great k feedback
αk(x) stabilizes the system.



270 S. ČELIKOVSKÝ

Fig. 1. λ1,2,3 = −10, bound1,2 = 0.1.

Fig. 2. λ1,2,3 = −10, bound1,2 = 0.01.
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Fig. 3. λ1,2,3 = −10, bound1,2 = 0.001.

Fig. 4. λ1 = −2, λ2,3 = −2± 5i, bound1,2 = 0.05.
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In other words, singular unbounded stabilizing feedback is well defined in a certain
generalized sense and may be arbitrarily approximated by more regular feedbacks
in the sense of a reasonable functional space norm. In this respect, topological
linearization serves as the theoretical explanation of the practically observed ‘negli-
gibility’ of the previously investigated singularities.

The shortcommings of the topological linearization consist in their complicated
definition, difficulties in proof techniques, especially for higher dimensions. As a
consequence, the only proved result is planar, namely, it was proved in [7] that
a planar single-input system is topologically linearizable if and only if it is state
equivalent to BTF (7 – 5). The necessary and sufficient conditions for arbitrary
single-input system (1) to be state equivalent to BTF were obtained in [9]). In the
same paper, the following characterization of BTF-systems was obtained.

Proposition 1. Consider the smooth nonlinear system (1) that is state equivalent
to the BTF in a neighbourhood of the origin N0. Then, there exist

1. an open set N , N = N0,

2. an open set P, P = P0, P0 being a neighbourhood of the origin in IRn,

3. an open set R, R = R0 with R0, S0 — neighbourhoods of the origin in IR,

4. D ∈ C∞(N0,P0) ∩DIFF (N ,P)5, α ∈ C∞(R0 ×N0,S0), ∀x ∈ N
α(x, ·) ∈ DIFF (R0,S0),

such that for any piecewise continuous input u(t) ∈ R0 ∀ t ∈ [t0, t1] ⊂ IR and the
corresponding trajectory of x(t) ∈ N0 ∀ t ∈ [t0, t1] ⊂ IR it holds

ẏ1 = v, ẏ2 = y1, ẏn−1 = yn−2, . . . ẏn = yn−1, (13)

where y = (y1, . . . , yn)T ∈ IRn, v ∈ IR and

y = D(x), v = α(x, u), x ∈ N0, u ∈ R0.

Moreover, let x be the corresponding triangular the coordinates, then the set
N0 \ N = ∪n

j=2Nj and the sets Nj = {x ∈ N0 | ∂fj

∂xj−1
(x) = 0}, j = 2, . . . n, are not

invariant with respect to the original nonlinear system.

This proposition immediatelly supports the idea of applicability of Algorithm 2
for general single-input BTF-systems: apart from singularities stabilizers are-well
defined and singularities are not invariant with respect to system trajectories. The
last property ensures that the trajectory of the closed-loop system corresponding
to the regularized stabilizer always leaves the proximity of a singularity and stays
within the set where regularized stabilizer equals to the singular one (10). If linst(y)
is chosen in such a way that (9) with v = linst(y) has real negative eigenvalues,
one may easily prove using Proposition 1 that regularized stabilizer (10) stabilizes
nonlinear system in question.

5the set of all diffeomorphisms between N and R.
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6. CONCLUDING REMARKS

Simple idea for the adaptation of the stabilization method via exact linearization
to the nonsmooth stabilization was developed and studied. It was justified both by
numerical simulations and partially theoreticaly using rather abstract and recently
introduced concept of the topological linearization of nonlinear systems.

It is appropriate to note that nonsmooth stabilization and feedback linearization
approach was also studied (much more succesfully) for the discrete time systems
— see [18]. Relation between nonsmooth stabilization of discrete time systems and
topological linearization of continuous time systems is studied in [8].

Presented algorithm is realizable in a rather straightforward way. Moreover, other
quoted results on nonsmooth stabilization are not constructive, they usually have
the character of pure existence results. Exception is [11], nevertheless its approach
is questionable for higher-dimensional cases.

(Received February 8, 1995.)
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[3] P. Brunovský: A classification of linear controllable systems. Kybernetika 6 (1970),
173–180.

[4] J.M. Coron, L. Praly and A. Teel: Feedback stabilization of nonlinear systems: suf-
ficient conditions and Lyapunov and input–output techniques. In: Trends in Control:
A European Perspective (A. Isidori ed.), Springer–Verlag, London 1995, pp. 293–348.
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