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RANK TESTS FOR SCALE: HÁJEK’S INFLUENCE
AND RECENT DEVELOPMENTS

Hermann Witting

In discussion are recent developments on rank tests for two-sample dispersion problems
with continuous one-dimensional distribution functions F1 and F2. It turns out that the
nonparametric theory strongly depends on whether the dispersion centers µ1 and µ2 are
known (and equal) or unknown (and equal, or unequal). The linear rank tests are adjusted
to the case “µ1 = µ2 unknown”. Most of the literature following the book of Hájek–
Šidák [12] tries to extend this theory to the case “µ1 6= µ2 unknown”. As is indicated
in Section 1, these results are explicit or implicit within the framework of semiparametric
models. Therefore, Section 2 of this paper starts with a nonparametric formulation of the
dispersion problem as it is done for the location case in Lehmann [17]. This is followed by a
discussion of the most important dispersion orderings. Section 3 gives a complete solution
of the testing problem for the case “µ1 = µ2 known”. In Sections 4 and 5 these results are
extended to the cases “µ1 = µ2 unknown” and “µ1 6= µ2 unknown”.

Sections 2 – 5 survey a couple of partially still unpublished results that were received
over the last 15 years. They reflect the influence which Hájek’s ideas continue to have on
the development of nonparametric statistics.

1. LINEAR RANK TESTS AND THEIR EXTENSION TO THE CASE OF
TWO UNKNOWN AND UNEQUAL DISPERSION CENTERS

Let Xij , j = 1, . . . , ni, i = 1, 2, be independent random variables (r.v.) with one-
dimensional continuous distribution functions (d.f.) Fi, not depending on j. We
are interested in one-sided distribution-free tests for dispersion, i. e. whether F1 is
more dispersed than F2, or not. In the framework of parametric or semiparametric
statistics, these problems are formulated by means of a location-scale model

Fi(·) = F

( · − µi

σi

)
, µi ∈ R, σi > 0, i = 1, 2, (1)

where F is a known or unknown continuous d.f. In such a model the hypotheses are

H : σ2
1 ≤ σ2

2 , K : σ2
1 > σ2

2 . (2)

In classical statistics F is assumed to be the d.f. φ of the normal distribution
N (0, 1). It is well known that in this case the F -tests are distribution-free on the
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boundary J : σ2
1 = σ2

2 of the hypotheses, and this in the cases that the dispersion
centers µ1 and µ2 are known or unknown.

If F is unknown (or known but different from φ) and µ1 equals µ2, it is standard
to use linear rank tests: Let Rn1, . . . , Rnn, n := n1 + n2, be the ranks of the r.v.
X11, . . . , X2n2 w.r.t. the pooled sample and bn1, . . . , bnn be given scores. Then, the
linear rank statistic

Tn =
√

n1n2

n1 + n2


 1
n1

n1∑

j=1

bnRnj
− 1
n2

n∑

j=n1+1

bnRnj


 =:

n∑

`=1

cn`bnRn`
(3)

is distribution-free and asymptotically normal N (0, σ2
b ) under F1 = F2, if the se-

quence of scores-generating step-functions

bn(·) =
n∑

`=1

bn`1l( `−1
n , `

n ](·) (4)

converges in L2 to a function b ∈ L2 with
∫
bdλ = 0 and σ2

b :=
∫
b2dλ > 0. For

this it is sufficient that the scores bnj are either the exact scores 1 Eb(Un↑j), the
averaged scores n

∫
b1l( j−1

n , j
n ]dλ or – if, in addition, b is of locally bounded variation

– the approximate scores b( j
n+1 ), for a given score-generating function b ∈ L2; cf.

Hájek-Šidák [12], Ch. V.1.b.
In case of a dispersion problem it is reasonable to use U-shaped scores, i. e. scores

bnj fulfilling the condition

bn1 ≥ . . . ≥ bn[ n
2 ] ≤ . . . ≤ bnn. (5)

Well known examples are among others the Capon-scores

bnj = E[φ−1(Un↑j)]2 − 1, (6)

or the Klotz-scores

bnj =
[
φ−1

(
j

n+ 1

)]2

− 1, (7)

i. e. the exact and approximate scores for the score-function b(·) = [φ−1(·)]2 − 1; cf.
Hájek–Šidák [12], Ch. III.2.1. Cf. also Duran [9], which surveys also nonparametric
tests for scale of different kinds.

Though these rank tests with U-shaped scores are very sensible in the case “µ1 =
µ2 unknown”, their application in the cases “µ1 6= µ2 unknown” and “µ1 = µ2

known” is not without problems. In the first case the ranks of the Xij have no
meaning for testing the hypotheses (1.2); cf. Moses [18]. In order that this is the
case – at least approximately –, first one has to estimate the dispersion centers µi

by some statistics µ̂in, i = 1, 2, and to determine the ranks R̂n1, . . . , R̂nn of the
1 Here and in the following U1, . . . , Un denote independent uniform (rectangular) R(0, 1)-

distributed r.v. and Un↑j the jth order statistic, 1 ≤ j ≤ n. λ indicates the one-dimensional
Lebesgue-measure.
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centered r.v. X11− µ̂1n, . . . , X2n2 − µ̂2n. Then the question is whether the modified
rank statistic

T̂n =
n∑

`=1

cn`bnR̂n`

is at least asymptotically distribution-free. Hájek [11] – using the Jurečková-lineariz-
ation of regression rank statistics, cf. [14] – has shown that this is the case for all
d.f F , that permit a differentiable Lebesgue-density f satisfying

∫
bbF dλ = 0, bF := −f

′

f
◦ F−1. (8)

Since U-shaped score-functions b are quite often symmetric w.r.t. 1/2, the condition
(1.8) is met, if bF is skew-symmetric w.r.t. 1/2. This again is the case if the density
f is symmetric w.r.t. 0. Symmetry conditions for handling this problem by means
of Chernoff-Savage-type methods were already used by Raghavachari [22].

In the second case, i. e. in the case “µ1 = µ2 known”, rank tests with U-shaped
scores are biased, at least in a slightly more general nonparametric model.

Example 1.1. (Schäfer [23]) Let n1 = 2, n2 = 1, i. e. n := n1+n2 = 3, µ = 1/10.
Define F1, F2 by their Lebesgue-densities f1 = 1l(0,1/10) + 9

101l(1,2), f2 = 1l(0,1). Then
it holds true that

F1(x) > F2(x) ∀x < µ, F1(x) < F2(x) ∀x > µ, (9)

i. e. F1 is more dispersed than F2. Let ϕ be a linear rank test of level α = 1/3
with U-shaped symmetric scores, i. e. with b31 = b33 > b32. Then one easily verifies
EF1F2ϕ < 1/3, i. e. all these tests (i. e. for instance the Klotz- and the Capon-test)
are biased. Similarly, d.f. F1, F2 with

F1(x) < F2(x) ∀x < µ, F1(x) > F2(x) ∀x > µ (10)

can be given, for which F1 is less dispersed than F2 and for which the level α is not
preserved, i. e. with EF1F2ϕ > 1/3.

The reason for the bias of linear rank tests is the fact that these tests are based
on only one set of U-shaped scores. This implies that the scored ranks are minimal
in a given point (typically in the median of the sample), whereas they should be
minimal for those observations which are next to the known (common) dispersion
center µ.

This intuitive argument suggests to use scores depending on the random number
v ∈ {0, . . . , n} of observations, which are less or equal to µ. Using such empirical
scores bnj( v

n ), 1 ≤ j ≤ n, 0 ≤ v ≤ n, we define linear empirical rank statistics

T b
n =

n∑

`=1

cn`bnRn`

(
Vn

n

)
, Vn = #{(i, j) : 1 ≤ j ≤ ni, i = 1, 2 : Xij ≤ µ}. (11)
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As can be seen by means of Theorem 2.1, using the µ-ordering (2.13), the condition
(1.5) has to be replaced by

bn1

( v
n

)
≥ . . . ≥ bnv

( v
n

)
≤ . . . ≤ bnn

( v
n

)
∀ 0 ≤ v ≤ n. (12)

Theorem 1.2. (Schäfer [23]) Let n1, n2 ∈ N be fixed, n := n1 + n2 and bnj( v
n ),

1 ≤ j ≤ n, 0 ≤ v ≤ n, be given empirical scores. Then it holds true:

a) Under F1 = F2 each empirical rank statistic (1.11) is conditionally distribution-
free, given Vn = v.

b) If the condition (1.12) is fulfilled, then the empirical rank test with test statistic
(1.11) is unbiased against all pairs of d.f. (F1, F2) with (1.9) and preserves its level
under all pairs (F1, F2) with (1.10).

Example 1.3. (Burger [5]) Let b : (0, 1) → R be an integrable function and
κ ∈ (0, 1). Then exact empirical scores are defined for v ∈ {0, . . . , n} by

bκnj

( v
n

)
=

{
Eb(κUv↑j) for j ≤ v,

Eb(κ+ (1− κ)Un−v↑j−v) for j > v.
(13)

If b is κ-isotonic, i. e. antitonic in [0, κ] and isotonic in [κ, 1], then the condition
(1.12) is fulfilled. The same holds true for the approximate empirical scores

bκnj

( v
n

)
=

{
b(κ j

v+1 ) for j ≤ v,

b(κ+ (1− κ) j−v
n−v+1 ) for j > v,

(14)

and the averaged empirical scores

bκnj

( v
n

)
=





v
κ

∫
(κ j−1

v ,κ j
v ]
bdλ for j ≤ v,

n−v
1−κ

∫
(κ+(1−κ) j−v−1

n−v ,κ+(1−κ) j−v
n−v ]

bdλ for j > v.

For instance, if κ = 1/2 and b = [φ−1]2 − 1, then (1.13) yields the empirical Capon-
scores

b
1/2
nj

( v
n

)
=





E[φ−1( 1
2Uv↑j)]2 − 1 for j ≤ v,

E[φ−1( 1
2 + 1

2Un−v↑j−v)]2 − 1 for j > v,
(15)

and (1.14) the empirical Klotz-scores

b
1/2
nj

( v
n

)
=





[φ−1( 2v+2−j
2(v+1) )]2 − 1 for j ≤ v,

[φ−1(n−2v+j+1
2(n−v+1) )]2 − 1 for j > v.

(16)

Since b = [φ−1]2−1 is 1/2-isotonic condition (1.12) is fulfilled. According to Theorem
1.2 the empirical Capon-test (1.11), (1.15) and the empirical Klotz-test (1.11), (1.16)
are unbiased and level-preserving (in contrast to the usual Capon- and Klotz-test).
The same holds true, for instance, for the analoguously defined empirical quartile-
scores and the empirical Ansari–Bradley scores.
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General remarks and notations. Whereas Raghavachari [22] and his followers
– with the exception of Jurečková [15], where linear rank tests with estimated µ1, µ2

are discussed under contiguous alternatives – were only interested in achieving tests
which are at least asymptotically distribution-free on the boundary of the hypothe-
ses, Example 1.1 shows that it is necessary to take into account the alternative
and the interior of the null hypothesis. This should be done in a nonparametric
framework as it is indicated by the inequalities (1.9) and (1.10). Therefore, based
on the ideas of Hoeffding [13] and Hájek [10], aspects of local optimality and a
locally asymptotic approach have to be taken into account. For these discussions
the concept of Lr-differentiability, cf. [24], will be of importance. More precisely,
L1-differentiability is the adequate tool for deriving locally optimal (invariant) tests,
whereas L2- differentiability is needed for discussing asymptotic properties based on
the approximating LAN-model.

It turns out that dispersion problems are of a different structure than location
problems. This is because the dispersion centers enter as nuisance parameters,
which cannot be eliminated completely by means of a reduction through invari-
ance. In other words: Whereas the null distribution of a rank test for location is
distribution-free, this is not the case for the null distribution of a rank test for scale.
Instead, as indicated before, invariant tests for dispersion problems are conditionally
distribution-free; cf. [7].

In Sections 2 – 5, Fc denotes the set of all one-dimensional continuous d.f., Lr

resp. Lr(F ) the set of all measurable functions b : (0, 1) → R with
∫ |b|rdλ < ∞

resp. h : R → R with
∫ |h|rdF < ∞; r = 1, 2. L0

r resp. L0
r(F ) denote the subsets

of all those b ∈ Lr resp. h ∈ Lr(F ) with
∫
bdλ = 0 resp.

∫
hdF = 0. Beyond

that, 1lB denotes the indicator-function of a set B, 1ln the vector (1, . . . , 1)> ∈ Rn,
Ĥn(·) = Ĥn(·;x(n)) the empirical d.f. of the pooled sample x(n) and M1(X0,B0)
the class of all probability measures on the measurable space (X0,B0). Finally, we

abbreviate the “interior” of a null hypothesis H, i. e. H \ J , by
◦
H.

2. NONPARAMETRIC FORMULATION OF DISPERSION PROBLEMS

All results discussed in Section 1 were restricted to parametric or semiparametric
model assumptions. From a practical point of view, though, it is only of interest
whether F1 is more dispersed than F2, but not whether both distributions are of the
same type. So the situation is similar to that in the location case. There it is only of
interest, whether the observations X1j are in some way larger than the observations
X2j , but not whether this is effected by shifting. Therefore, the dispersion problem
should be formulated in a nonparametric way. A very general mode of doing this is
to employ an appropriate ordering relation as Lehmann [17] did in the location case;
cf. also Behnen [1]. This means that we need an appropriate dispersion ordering º,
such that the hypotheses can be formuled as

H : F1 ¹ F2, K : F1 º F2 with F1 6= F2. (17)

The advantage of such a set-up is two-fold: On the one hand it is a very general
way of describing the relevant aspects of the practical situation. On the other hand
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it allows a simple sufficient condition for unbiasedness of tests and for more general
isotony statements of power functions; cf. Theorem 2.1.

The technique can also quite often be applied to other testing problems. It is
only necessary that the ordering on the set M1(R,B) of one-dimensional d.f. or,
more general, on the set M1(X0,B0) of probability measures on a Polish spare X0

with Borel sets B0 can be extended by a (closed) order relation º on the set R or
X0. Then, for H being the set of all functions h : X0 → R which are isotonic w.r.t.
º, according to a theorem of Kamae, Krengel, O’Brien [15], cf. also [25], Ch. 7.1.2,
the ordering º on M1(X0,B0) is defined by

F1 º F2 ⇐⇒
∫
hdF1 ≥

∫
hdF2 ∀h ∈ H. (18)

Furthermore, according to that theorem, it holds true that for (X0,B0)-valued r.v.
X1, X2 with L(X1) º L(X2) there exist (X0,B0)-valued r.v. Y1, Y2 (on a different
probability space) with L(Xi) = L(Yi), i = 1, 2, and Y1 º Y2. It should be noticed
that for instance for the stochastic ordering, but also for the dispersion ordering
employed later on, this theorem is not really needed, since Yi can be given in a
constructive manner, namely as Yi = F−1

i (Ui), i = 1, 2.
In all these cases the orderings on X0 can not only extended to M1(X0,B0), but

also to the class of joint distributions,

P =
{
F

(n1)
1 ⊗ F

(n2)
2 : Fi ∈ Fc, i = 1, 2

}
.

For this, first define in a canonical way

xi ¹ x′i :⇐⇒ xij ¹ x′ij ∀ j = 1, . . . , ni, i = 1, 2. (19)

By means of this abbreviation one gets an ordering on (X ,B) =(X (n1+n2)
0 ,B(n1+n2)

0 )
according to

(x1, x2) ¹ (x′1, x
′
2) :⇐⇒ x1 ¹ x′1, x2 º x′2 (20)

and then an ordering on P by means of (2.2). This again can be described by a
corresponding ordering on the parameter set Θ ⊂ Fc ×Fc, defined by

(F1, F2) ¹ (F ′1, F
′
2) :⇐⇒ F1 ¹ F ′1, F2 º F ′2. (21)

Using this terminology and the above mentioned replacement in distribution also
for the tupels of the (n1 + n2) r.v. X11, . . . , X2n2 under (F1, F2) and (F ′1, F

′
2), i. e.

by F−1
1 (U11), . . . , F−1

2 (U2n2) resp. F ′
−1

1 (U11), . . . , F ′
−1

2 (U2n2), one easily proves

Theorem 2.1. Let Xij , j = 1, . . . , ni, i = 1, 2, be independent real-valued r.v.
with distributions Fi, and let ϕ be a test function on X (n1+n2)

0 which is isotonic
w.r.t. (2.4). Then the following is true:

a) The power function (F1, F2) 7→ EF1F2ϕ(X1, X2) is isotonic w.r.t. (2.5), i. e.:

(F ′1, F
′
2) º (F1, F2) =⇒ EF ′1F ′2ϕ(X1, X2) ≥ EF1F2ϕ(X1, X2). (22)
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b) If ϕ is α-similar on J : F1 = F2, then it preserves its level on H : F1 ¹ F2 and is
unbiased against K : F1 º F2 with F1 6= F2.

Now the question is which order relation should be used in the dispersion case.
Whereas in the location case there is only one nonparametric ordering, appropri-
ate for describing the hypotheses, namely the stochastic ordering, there are several
orderings which could be used, at least in the first moment.

2.1. Spread ordering ºsp (cf. Bickel-Lehmann [3])

Here F1 ºsp F2 is defined by the fact that the quantile distances under F1 are always
greater than or equal to the same distances under F2, i. e.

F1 ºsp F2 :⇐⇒ F−1
1 (v)− F−1

1 (u) ≥ F−1
2 (v)− F−1

2 (u) ∀ 0 < u < v < 1. (23)

Though this has the advantage that no dispersion centers are needed, this ordering
is not adequate for handling rank tests for dispersion. The main reason is that the
largest group, which leaves the testing problem invariant, is the group of component-
wise affine transformations, cf. [7], or [25], Ch. 7.1.2, and this does not reduce to
ranks. Furthermore, the technical handling of (2.7) is very difficult.

2.2. µ-ordering ºµ (cf. Schäfer [23] and Burger [5])

This is defined for fixed known µ ∈ R by

F1 ºµ F2 :⇐⇒ F1(x)≥≤F2(x) ∀x≤≥µ. (24)

Since only continuous d.f. are admitted, the following holds true

F1 ºµ F2 =⇒ F1(µ) = F2(µ) =: ν. (25)

Contrary to (2.7), the µ-ordering is very flexible. This is already indicated by the
fact that the following statements are equivalent; cf. Burger [5] or [25].

a) F1 ºµ F2; (2.10)

b) F−1
1 ºν F

−1
2 ;

c) |F−1
1 (u)− µ| ≥ |F−1

2 (u)− µ| ∀u ∈ (0, 1);

d) F−1
1 (v)− F−1

1 (u) ≥ F−1
2 (v)− F−1

2 (u) ∀ 0 ≤ u < ν < v ≤ 1; (2.11)

e) F1(·+ µ) º0 F2(·+ µ).

Here in (2.10) ºν is defined formally as ºµ in (2.8), i. e.

F−1
1 ºν F

−1
2 :⇐⇒ F−1

1 (t)≤≥F
−1
2 (t) ∀ t≤≥ν. (12)

Of course, in a) =⇒ b) one has ν := F1(µ) = F2(µ), whereas in b) =⇒ a) one needs
µ := F−1

1 (ν) = F−1
2 (ν).
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One more advantage of ºµ compared with ºsp is the fact that the µ-ordering of
one-dimensional d.f. can be generated by the µ-ordering on R

x′ ºµ x :⇐⇒ [x < µ ⇒ x′ ≤ x, x > µ ⇒ x′ ≥ x]. (13)

Using (2.2) one verifies that the induced ordering equals the ordering (2.8) and
therefore, according to Theorem 2.1, unbiasedness and level-preservation can be
ascertained. The property (2.11) indicates the connection with the spread ordering.

According to its definition the µ-ordering is adapted to the two-sample disper-
sion problem with known and equal dispersion centers. The case that µ1 and µ2 are
known but unequal can trivially be reduced to the case µ1 = µ2 =: µ or equivalently
be handled by the following extension of the µ-ordering (2.8)

F1 ºµ1µ2 F2 :⇐⇒ F1(·+ µ1) º0 F2(·+ µ2). (14)

2.3. Free µ-orderings (cf. Burger [5])

The µ-ordering can also be modified in such a way that cases can be handled in which
the dispersion centers are unknown (and equal or unequal). For these cases a location
functional γ : Fc → R is needed which is equivariant for affine transformations, i. e.

γ

(
F

( · − u

v

))
= vγ(F ) + u ∀u ∈ R ∀ v > 0. (15)

Well known examples are for instance the quantile functional γ%(F ) = F−1(%)
for fixed 0 < % < 1 and the mean-value functional γ(F ) =

∫
xdF (x), defined for all

distributions F with finite first moments.
Using such a functional γ, the free µ-orderings ºI

γ and ºII
γ , appropriate for the

cases “µ1 = µ2 unknown” and “µ1 6= µ2 unknown”, are defined by

F1 ºI
γ F2 :⇐⇒ F1(·+ µ) º0 F2(·+ µ), µ := γ(F1) = γ(F2), (16)

F1 ºII
γ F2 :⇐⇒ F1(·+ γ(F1)) º0 F2(·+ γ(F2)). (17)

The adequacy of these two orderings for describing the two testing problems with
equal resp. unequal dispersion centers is reflected by the implications

F1 ºI
γ F2, Fi(·) = F

( · − µ

σi

)
, i = 1, 2 =⇒ σ1 ≥ σ2,

F1 ºII
γ F2, Fi(·) = F

( · − µi

σi

)
, i = 1, 2 =⇒ σ1 ≥ σ2.

Finally, according to Burger [5], the following equivalence holds true

F1 ºsp F1 ⇐⇒ F1 ºII
γ%
F2 ∀ % ∈ (0, 1).

This makes clear why ºII
γ%

allows a stronger reduction than ºsp, namely to ranks,
which is – as mentioned before – not possible for ºsp .
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3. EMPIRICAL RANK TESTS FOR THE CASE “µ1 = µ2 KNOWN”

As already mentioned, the nonparametric theory of dispersion problems strongly
depends on whether the dispersion centers of the two samples are known (and equal)
or unknown (and equal or unequal). Section 3 discusses the simplest case, namely
that both centers are known and equal. The main goal is to justify the linear
empirical rank test (1.11) as a locally optimal invariant test, and to derive its main
asymptotic properties. Again, Xij , j = 1, . . . , ni, i = 1, 2, are independent r.v., the
distribution of which is independent of j. The hypotheses are

H(µ) : F1 ¹µ F2, K(µ) : F1 ºµ F2 with F1 6= F2, (18)

where µ ∈ R is given and for which the common boundary (for instance w.r.t. the
totalvariation-norm) is J(µ) : F1 = F2, i. e. independent of µ the set J = {(F, F ) :
F ∈ Fc}. The theory of rank tests for scale is based on the fact that this testing
problem is invariant against the group G(µ) of all transformations on the sample
space Rn of the form (x1, . . . , xn) 7→ (τx1, . . . , τxn), where τ : R → R is surjective
and strictly isotonic with τµ = µ. One easily verifies that Mn = (Rn, Vn) is maximal
invariant under G(µ), where Rn is the vector of ranks and Vn is the number of
observations, less than or equal to µ. Obviously, the null distribution of Mn is not
distribution-free. This follows from the well known facts, that under (F, F ) ∈ J
the statistics Rn and Vn are independent, Rn has the discrete uniform distribution
Ln on the group of permutations of {1, . . . , n} and Vn has the binomial-distribution
B(n, ν), ν := F (µ), i. e.

LFF (Mn) = Ln ⊗ B(n, ν) ∀ (F, F ) ∈ J .

This implies the first important property: Each invariant test, i. e. each test of the
form ϕn = ψn(Rn, Vn), is only conditionally distribution-free, given Vn = v,

LFF (ψn(Rn, Vn)|Vn = v) = LFF (ψn(Rn, v)).

Example 3.1. The linear empirical rank test (1.11) only depends on Rn and Vn.
Therefore it is a conditional rank test, the critical values of which can be fixed
independently of (F, F ) ∈ J , conditionally given Vn = v. In particular it is true that
Tn, given Vn = v, behaves like a linear rank statistic with the scores bnj = bnj

(
v
n

)
.

If, in addition, condition (1.12) is fulfilled, the test (1.11) is unbiased against K(µ)
and preserves its level on H(µ).

The second important property of empirical linear rank tests is that of local
optimality among all invariant tests for finite sample size n. For this, as in the
location case, we start from a score-function b ∈ L1, which enters the test statistic
(1.11) only in a discretized form, namely in that of the empirical scores bnj

(
v
n

)
,

1 ≤ j ≤ n, 0 ≤ v ≤ n, or equivalently in form of some generating function bn( v
n , ·).

Correspondingly, for discussing the local asymptotic optimality among all tests we
start from a score-function b ∈ L2. For proving these optimality properties and for
asymptotic investigations of these tests one has to guarantee that the discretized
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versions of b converge to b in a sufficient manner. But contrary to the location
case besides b another constant κ ∈ (0, 1) enters and, implied by this, the value
v ∈ {0, . . . , n} of a corresponding statistic (namely of Vn). Therefore, as in the
location case, it is useful to define a step-function bn for n ∈ N, which here also
depends on κ and v. For technical reasons we first divide the intervals [0, κ] and
[κ, 1] into v resp. n − v equally long subintervals and then define bκn( v

n , ·) as the
step-function which assumes the jth empirical score bκnj

(
v
n

)
on the jth of these

subintervals, i. e.

bκn

( v
n
, ·

)
=

v∑

j=1

bκnj

( v
n

)
1l(κ j−1

v ,κ j
v ](·)+

n∑

j=v+1

bκnj

( v
n

)
1l(κ+(1−κ) j−v−1

n−v ,κ+(1−κ) j−v
n−v ](·).

(19)
Then it can be shown, cf. Burger [6], that the systems of exact, averaged and –

if b is of locally bounded variation – approximate empirical scores bκnj

(
v
n

)
are stable

in Lr, i. e. it holds true that

a) bκn

(vn

n
, ·

)
→ b(·) in Lr for min{vn, n− vn} → ∞; (20)

b) sup
n∈N

sup
0≤v≤n

∥∥∥bκn
( v
n
, ·

)∥∥∥
Lr
<∞. (21)

Now it is possible to define in each point (F0, F0) ∈ J with F0(µ) = κ one-
parameter classes F(F0; b, κ) of alternatives along which the linear empirical rank
test with scores bκnj

(
v
n

)
turns out to be locally optimal invariant (for r = 1 in case

of exact empirical scores) resp. asymptotically optimal (for r = 2 in case of L2

-stable empirical scores). These classes {Pη : η ∈ R} have to be compatible with the
hypotheses (3.1) in the sense that it holds true that

P0 ∈ J , Pη ∈
◦
H (µ) for η < 0 and Pη ∈ K(µ) for η > 0.

For defining these classes one first fixes a distribution F0 ∈ Fc, i. e. a point
(F0, F0) ∈ J . Then, for given b ∈ Lr, κ := F0(µ) ∈ (0, 1), v ∈ {0, . . . , n} and
the corresponding averaged empirical scores bκnj

(
v
n

)
, i. e. for given step-functions

bn( v
n , ·), one-dimensional d.f. F∆ for ∆ ∈ R are defined by

dF∆

dF0
(·) = 1 + ∆bκk

(vk

n
, F0(·)

)
, k = k(∆) :=

[
κ ∧ (1− κ)
2|∆|‖b‖Lr

]
, vk := [κk(∆)].

(22)
Finally, (n1 + n2)-dimensional d.f. Pη, η ∈ R, are defined by

Pη = F
(n1)
η

n1

q
n1n2

n1+n2

⊗ F
(n2)

− η
n2

q
n1n2

n1+n2

. (23)

Using the basic results on Lr-differentiability, cf. [24], and the terminology in-
troduced before, the assertions a) – c) of the next theorem follow immediately. Part
d) guarantees the compatibility of the class P = {Pη : η ∈ R} with the hypotheses
(3.1).
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Theorem 3.2. Let κ ∈ (0, 1), b ∈ L0
2 and F0 ∈ Fc with F0(µ) = κ. Then it holds

that

a) the one-parameter class F(F0; b, κ) := {F∆ : ∆ ∈ R} is Lr(0)-differentiable,
with derivative b ◦ F0;

b) the one-parameter class P(F0; b, κ) := {Pη : η ∈ R} is Lr(0)-differentiable, with
derivative SbκF0

n (x1, . . . , xn) :=
∑n

`=1 cn`b(F0(x`));

c) If Mn = (Rn, Vn) denotes the maximal invariant statistic, then the one-
parameter class of their distributions is Lr(0)-differentiable, with derivative

EF0F0(S
bκF0
n |Mn) =

n∑

`=1

cn`bnRn`

(
Vn

n

)
= T bκ

n . (24)

In particular, the linear empirical rank test (1.11), (1.13), is locally optimal at
the point (F0, F0) ∈ J along the family P(F0; b, κ) among all invariant tests.

d) P(F0; b, κ) is compatible with the hypotheses (3.1) provided
∫
bdλ ≤κ 0, i. e.

when ∫

(0,u)

bdλ ≤ 0 for u ≤ κ,

∫

(u,1)

bdλ ≥ 0 for u > κ. (25)

It is sufficient for (3.8) that the following two conditions are fulfilled:

b κ-isotonic;
∫ κ

0

bdλ =
∫ 1

κ

bdλ = 0. (26)

e) If bκnj

(
v
n

)
, 1 ≤ j ≤ n, 0 ≤ v ≤ n, are the exact or approximate empirical

scores for b and κ, the test (1.11) is unbiased against K(µ) and preserves its
level on H(µ).

Example 3.3. Let κ ∈ (0, 1), b ∈ L0
r with (3.9) and F0 ∈ Fc with F0(µ) = κ.

Then, according to Theorem 3.2 d, the class P(F0; b, κ) is compatible with (3.1) and
therefore the linear empirical rank test ϕbκ

n with test statistic (1.11) and exact em-
pirical scores is a locally optimal invariant test. Since because of (3.9) the condition
(1.12) is also fulfilled, according to Theorem 2.1 ϕbκ

n is an unbiased level preserving
test.

Obviously, according to Theorem 3.2c, the optimality property of the test ϕbκ
n is

independent of the special point (F0, F0) with F0(µ) = κ. It is now the question
whether – for given b and κ with (3.8) – also in all other points (F, F ) ∈ J , i. e.
those with F (µ) 6= κ, a one-parameter class exists, along which the test ϕbκ

n is locally
optimal invariant (for r = 1) resp. locally asymptotically optimal (for r = 2). This
is indeed true. But, contrary to the location problem, the score-function b which
defines the alternatives according to (3.5) and (3.6), has to be “adapted” to the
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point (F, F ) ∈ J or, more precisely, to the value ν = F (µ). To be concrete, let
b ∈ Lr and F0, F ∈ Fc with κ = F0(µ), ν = F (µ). Then the adapted score-function
for b and κ is defined by

bν(u) =





b(κ
ν u) for u ≤ ν,

b
(
κ+ 1−κ

1−ν (u− ν)
)

for u > ν.
(27)

One easily verifies the following properties which motivate Theorem 3.5:

a) ν = κ =⇒ bν = b;

b) b (strictly) κ-isotonic =⇒ bν (strictly) ν-isotonic; (3.11)

c)
∫
bdλ ≤κ 0 =⇒

∫
bνdλ ≤ν 0; (3.12)

d) P(F0; b, κ) is compatible with the hypotheses (3.1) in (F0, F0) =⇒
P(F ; bν , ν) is compatible with the hypotheses (3.1) in (F, F );

e) The exact, approximate and averaged empirical scores for b, κ and bν , ν coin-
cide, i. e.

bνnj

( v
n

)
= bκnj

( v
n

)
, 1 ≤ j ≤ n, 0 ≤ v ≤ n, 0 < κ < 1. (13)

Example 3.4. Let b0 : (0, 1) → R. Then the following holds true:

b(u) =

{
b0(κ−u

κ ) for u ≤ κ

b0(u−κ
1−κ ) for u > κ

=⇒ bν(u) =

{
b0(ν−u

ν ) for u ≤ ν

b0(u−ν
1−ν ) for u > ν.

(14)

Beyond this implication we have

b0 isotonic ⇐⇒ b κ-isotonic ⇐⇒ bν ν-isotonic.

The exact, approximate and averaged empirical scores for j ≤ v resp. j > v simplify
in this case to

bnj

(
v
n

)
= Eb0(Uv↑v−j+1) resp. Eb0(Un−v↑j−v),

bnj

(
v
n

)
= b0

(
v−j+1

v+1

)
resp. b0

(
j−v

n−v+1

)
,

bnj

(
v
n

)
= v

∫
( v−j

v , v−j+1
v )

b0dλ resp. (n− v)
∫
( j−v−1

n−v , j−v
n−v )

b0dλ.

Now it is clear, what has to be done. Replace (F0, F0) ∈ J with F0(µ) = κ by an
arbitrary point (F, F ) ∈ J with F (µ) = ν and b by bν . Define classes F(F ; bν , ν) and
P(F ; bν , ν) according to (3.5) resp. (3.6). Because of (3.12) P(F ; bν , ν) is compatible
with the hypotheses (3.1) in the neighborhood of (F, F ). Then, in generalization of
Theorem 3.2c, the following holds true:
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Theorem 3.5. If Mn = (Rn, Vn) denotes the maximal invariant statistic and if the
one-parameter class P(F ; bν , ν) is Lr(0)-differentiable with derivative SbνκF

n , then
the class PMn(F ; bν , ν) of distributions of Mn is Lr(0)-differentiable, with derivative

EFF (SbνκF
n |Mn) =

n∑

`=1

cn`bnRn`

(
Vn

n

)
= T bκ

n . (15)

In particular, the linear empirical rank test (1.11) is locally optimal in each point
(F, F ) ∈ J along P(F ; bν , ν) among all invariant tests.

The special set-up (3.5) leaves open the question whether there are further one-
parameter Lr(0)-differentiable classes, which are also compatible with the hypotheses
(3.1) and which would lead to a different type of locally optimal tests. It is therefore
important, to determine the totality of all those one-parameter classes or at least of
their Lr(0)-derivatives. One easily verifies that this tangent-set, cf. Pfanzagl [21] or
[26], consists of all functions

n1∑

`=1

b1 ◦ F0(x`) +
n∑

`=n1+1

b2 ◦ F0(x`) : b1, b2 ∈ L0
r,

∫
(b1 − b2)dλ ≤κ 0, (16)

where
∫

(b1 − b2)dλ ≤κ 0 means
∫
(0,u)

(b1 − b2)dλ≥
≤0 for u≤≥κ.

For practical purposes it is sufficient to determine the subset of all those Lr(0)-
derivatives, which are “orthogonal” w.r.t. the boundary. This so-called co-set con-
sists of all functions

1
n1

n1∑

`=1

b ◦ F0(x`)− 1
n2

n∑

`=n1+1

b ◦ F0(x`) : b ∈ L0
r,

∫
bdλ ≤κ 0. (17)

The third important property of linear empirical rank statistics is that of asymp-
totic normality. This can be proved by means of Theorem 3.2 for r = 2, using a
Pythagoras-kind of argument; cf. [26]. On the one hand SbκF0

n is a sum of indepen-
dent r.v., standardized in a form appropriate for applying the central limit theorem.
On the other hand – because of (3.15) and properties of conditional expectations –
T bκ

n is orthogonal to SbκF0
n − T bκ

n w.r.t. L2(F0), i. e. it holds

VarF0F0(S
bκF0
n − T bκ

n ) = VarF0F0S
bκF0
n −VarF0F0T

bκ
n . (18)

Now VarF0F0S
bκF0
n =

∑n
`=1 c

2
n`

∫
b2dλ → ∫

b2dλ according to the Markov-inequality
and Slutsky’s theorem it is sufficient to verify

VarF0F0T
bκ
n −→

∫
b2dλ. (19)

But this is achieved as in the location case; cf. [7].
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By means of Theorem 3.2 asymptotic normality can be established under any
other distribution (F, F ) ∈ J . For instance one verifies

VarFFT
bκ
n −→ σ2

bνκ :=
ν

κ

∫

(0,κ)

b2dλ +
1− ν

1− κ

∫

(κ,1)

b2dλ, (20)

if F (µ) = ν. In particular, if b is of the form (3.14), then it holds

σ2
bνκ =

∫
b20dλ.

Also, using Le Cam’s third lemma, cf. Hájek-Šidák [11], Lemma VI.1.4, or [25], corol-
lary 6.139, the limit of the power function under contiguous alternatives (F a

n , F
a
n )

of the form (3.5), (3.6) with some function a ∈ L0
2 instead of the score-function

b ∈ L0
2 can be determined. Using these tools and the terminology introduced above

we come to

Theorem 3.6. Let κ ∈ (0, 1), b ∈ L0
2 κ-isotonic and F ∈ Fc with F (µ) = ν. Then

it holds true that
a) the one-parameter class P(F ; bν , κ) is Lr(0) -differentiable,

with derivative SbνκF
n ;

b) LFF (SbννF
n ) −→L N (0, σ2

bνκ);

c) LFF (T bκ
n ) −→L N (0, σ2

bνκ); (3.21)

d) LF a
n F a

n
(T bκ

n ) −→L N
(
η

∫
abνdλ, σ2

bνκ

)
;

e)

∫
bνdλ ≤ν 0

a ν-isotonic



 =⇒

∫
abνdλ ≥ 0.

In particular the linear empirical rank tests ϕbκ
n are asymptotically unbiased and

level-preserving in the vicinity of each point (F, F ) ∈ J along all classes P(F ; a, ν)
with ν-isotonic a,

∫
(0,ν)

adλ =
∫
(ν,1)

adλ = 0.

Besides (3.21) the limit of the conditional distribution of T bκ
n , given Vn = v, can

be determined and the asymptotic equivalence of the corresponding asymptotic test
ϕ̂bκ

n = 1l(T bκ
n > uασbνκ) and the conditional level α-test can be verified.

Theorem 3.7. Under the assumptions of Theorem 3.6 it holds true that
a) LFF (T bκ

n |Vn = vn) −→L N (0, σ2
bνκ) for almost all sequences(wn);

b) ϕbκ
n and ϕ̂bκ

n are asymptotically equivalent under all pairs (F, F ) ∈ J .
If b is strictly κ-isotonic, then the asymptotic equivalence holds under each pair
(F1, F2) ∈ H(µ) ∪K(µ).

We omit efficiency results since these are immediate consequences of the supple-
ment in Theorem 3.6. But we wish to mention that also consistency can be proved
under very general assumptions. Similar to the location case this is based on a law
of large numbers for standardized linear empirical rank statistics.
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Theorem 3.8. Let κ ∈ (0, 1), b ∈ L0
1 κ-isotonic and T bκ

n a linear empirical rank
statistic (3.7) with L1-stable scores. Let ϕbκ

n be a test with test statistic T bκ
n , λ ∈

(0, 1), Hλ = λF1 + (1 − λ)F2 and γbκ
λ (F1, F2;µ) =

∫
bν(Hλ)(dF1 − dF2). Then for

n→∞ with n1/n→ λ it holds for all (F1, F2) ∈ H(µ) ∪K(µ):

a) T bκ
n → γbκ

λ (F1, F2;µ) (F1, F2)-a. e.;

b) EF1F2ϕ
bκ
n →





1, if γbκ
λ (F1, F2;µ) > 0,

0, if γbκ
λ (F1, F2;µ) < 0.

In particular, if b is λ-a. e. strictly κ-isotonic, then ϕbκ
n is consistent for the hypothe-

ses (3.1).

The supplement follows from the fact that for strictly κ-isotonic b the functional
γbκ

λ (F1, F2;µ) characterizes the hypotheses according to

(F1, F2) ∈
◦
H (µ) ⇐⇒ γbκ

λ (F1, F2;µ) < 0, (22)

(F1, F2) ∈ J ⇐⇒ γbκ
λ (F1, F2;µ) = 0, (23)

(F1, F2) ∈ K(µ) ⇐⇒ γbκ
λ (F1, F2;µ) > 0. (24)

4. EMPIRICAL RANK TESTS FOR THE CASE “µ1 = µ2 UNKNOWN”

For making the testing problem “µ1 = µ2 unknown” precise it is necessary to have
a location functional γ : Fc → R for fixing the unknown common dispersion center
µ. Then, by means of the free µ-ordering ¹I

γ defined in Section 2.3, the hypotheses
can be formulated as

H : F1 ¹I
γ F2, K : F1 ºI

γ F2 with F1 6= F2. (25)

In this situtation it suggests itself to use the test statistic Tn =: Tn(µ) from Section 3
with µ replaced by an estimator µ̂n. If this depends only on the order statistic of
the pooled sample – which for instance is the case for the canonical estimator γ(Ĥn)
– the same is true for Ĥn(µ̂n). Therefore, since in this case Rn and Ĥn(µ̂n) are
independent under J : F1 = F2, the resulting test statistic

T bκ
n (µ̂n) =

n∑

`=1

cn`bnRn`
(Ĥn(µ̂n)) (26)

is conditionally distribution-free, given Vn = v.
This again implies that the critical value can conditionally be determined in-

dependently of the special point (F, F ) ∈ J . More precisely, if Vn = v implies
Ĥn(µ̂n) = w/n, then T bκ

n (µ̂n) behaves conditionally, given Ĥn(µ̂n) = w/n, as a
linear rank statistic with the scores bnj = bnj(w

n ), 1 ≤ j ≤ n.
If µ̂n is an equivariant estimator for µ the substitution of µ by µ̂n can be justified

by invariance against the translation group Gt of all transformations (x1, . . . , xn) 7→
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(x1 + u, . . . , xn + u), u ∈ R, which in the case “µ1 = µ2 unknown” leaves the test-
ing problem invariant. Since (x1 − µ̂n(x), . . . , xn − µ̂n(x)) is a maximal invariant
statistic, the justification follows from

Rn(x− µ̂n(x)1ln) = Rn(x), Ĥn(0;x− µ̂n(x)1ln) = Ĥn(µ̂n(x);x). (27)

Using this method it is near at hand to ask whether the results about local opti-
mality, asymptotic normality and asymptotic unbiasedness, formulated in Section 3
for the case “µ1 = µ2 known”, can be extended to this more general case. This is in-
deed possible, if µ̂n is

√
n-consistent and depends only on Ĥn, i. e. only on the order

statistic. All these results are based on the asymptotic equivalence of T bκ
n (µ̂n) and

T bκ
n (µ) under fixed distributions (F, F ) ∈ J , which, of course, extends to contiguous

alternatives.

Theorem 4.1. Let κ ∈ (0, 1), b ∈ L2 be κ-isotonic and T bκ
n (µ) for fixed µ ∈ R a

linear empirical rank statistic (3.7) with L2-stable scores. If µ̂n is a
√
n-consistent

estimator for µ depending only on Ĥn, ϕ
bκ
n a test with test statistic T bκ

n (µ̂n) and
F a

n a d.f. defined by (3.5) with some function a ∈ L0
2 instead of b ∈ L0

2, then for all
F ∈ Fc the following holds true:

a) T bκ
n (µ̂n)− T bκ

n (µ) → 0 in (F, F )-probability;

b) LFF (T bκ
n (µ̂n)) −→L N (0, σ2

bνκ);

c) LF a
n F a

n
(T bκ

n (µ̂n)) −→L N (η
∫
abνdλ, σ2

bνκ);

d) ϕbκ
n is asymptotically unbiased and level-preserving;

e) ϕbκ
n is a locally asymptotically optimal test.

Besides the limit of the (unconditional) distribution of the test statistic T bκ
n (µ̂n)

we can also find the limit of the conditional distribution, given Ĥn(µ̂n) = wn/n, for
almost all sequences (wn/n). More precisely, these limit distributions are the same
and the tests turn out to be asymptotically equivalent.

Theorem 4.2. Under the assumptions of Theorem 4.1 it holds for all F ∈ Fc and
(F, F )-almost all sequences (wn/n) that

a) LFF

(
T bκ

n (µ̂n)|Ĥn(µ̂n) = wn

n

)
−→L N (0, σ2

bνκ).

b) The tests with the test statistic T bκ
n (µ̂n) and the conditional tests of the same

level with the same test statistic, given Ĥn(µ̂n) = wn/n, are asymptotically
equivalent under all (F, F ) ∈ J . If b is strictly κ-isotonic, then both tests are
asymptotically equivalent under all (F1, F2) ∈ H ∪K.

Consistency can also be proved. In analogy to Theorem 3.8 this is based on the
validity of a law of large numbers for standardized linear rank statistics.
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Theorem 4.3. Let κ ∈ (0, 1), b ∈ L0
1 be κ-isotonic and T bκ

n (µ) for fixed µ ∈
R a linear empirical rank statistic (3.7) with L1-stable scores. Let µ̂n be a

√
n-

consistent estimator for µ depending only on Ĥn, ϕbκ
n a test with test statistic

T bκ
n (µ̂n), Hλ := λF1 + (1 − λ)F2 and γbκ

λ (F1, F2;µ) =
∫
bν(Hλ)(dF1 − dF2). Then

for n→∞, n1/n→ λ ∈ (0, 1), it holds for all (F1, F2) ∈ H ∪K that

a) T bκ
n (µ̂n) → γbκ

λ (F1, F2;µ) (F1, F2)− a. e.;

b) EF1F2ϕ
bκ
n →

{
1, if γbκ

λ (F1, F2;µ) > 0,

0, if γbκ
λ (F1, F2;µ) < 0.

In particular, if b is λ-a. e. strictly κ -isotonic, then ϕbκ
n is consistent for the hy-

potheses (4.1).

We now concentrate on the special case that in (4.1) γ = γ% is the %-quantile
functional 2. Then it is near at hand to use the estimator µ̂n = γ%(Ĥn) = Ĥ−1

n (%),
such that Ĥn(µ̂n) = Ĥn(Ĥ−1

n (%)) is at least asymptotically equal to %. This implies

Theorem 4.4. Let % ∈ (0, 1) be fixed and γ = γ% the %-quantile functional for
fixing the hypotheses (4.1) and estimating the unknown dispersion center. Then for
sufficiently large n it holds true that

a) Ĥn(µ̂n) = Ĥn(Ĥ−1
n (%)) ≈ % (which is not random);

b) The empirical scores bnj(Ĥn(µ̂n)) can be approximated by the usual scores bnj ,
defined by the %-isotonic function b;

c) The linear empirical rank statistic (4.2) with estimator µ̂n = Ĥ−1
n (%) can be ap-

proximated by the usual linear rank statistic for the %-isotonic score-function b.

Theorem 4.4c gives an asymptotic justification of applying linear rank tests in the
case “µ1 = µ2 unknown”, as it was mentioned in Section 1 as a standard technique. It
can be extended to a justification for finite sample sizes by invariance considerations.
This is based on the fact that the functional γ% is equivariant for the group G of
all transformations on the sample space of the form (x1, . . . , xn) 7→ (τx1, . . . , τxn),
where τ : R → R is surjective and strictly isotonic. This implies that the testing
problem (4.1) is invariant against G. For this group the rank vector Rn(x) is maximal
invariant, cf. Lehmann [17], Ch. 6.7, and linear rank tests with exact scores are
locally optimal invariant tests.

Theorem 4.5. Let % ∈ (0, 1) be fixed and the hypotheses (4.1) be defined by
the quantile functional γ%. Then linear rank tests with exact scores for %-isotonic
score-functions b are locally optimal invariant tests.

We mention that for the hypotheses (4.1) unbiasedness (and level preservation)
cannot be proved by means of Theorem 2.1, since the ordering ºI

γ cannot be trans-
fered to the sample space. We also point out that invariance properties strongly

2 In contrast to Section 3 now % (rather than µ) is fixed.
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depend on the special choice of the functional γ. Furthermore note that the use of
linear rank tests for dispersion problems in the case “µ1 = µ2 unknown” is moti-
vated in a slightly different way in Behnen-Neuhaus [2]. Our approach goes back to
Schäfer [23] and was extended and supplemented by Burger [4].

5. EMPIRICAL RANK TESTS FOR THE CASE “µ1 6= µ2 UNKNOWN”

According to (4.1) the hypotheses are formulated as

H : F1 ¹II
γ F2, K : F1 ºII

γ F2 with F1 6= F2. (28)

Here again γ is a location functional which fixes the testing problem and the dis-
persion centers µ1 and µ2. In analogy to the question whether linear rank tests can
be extended to the case “µ1 6= µ2 unknown” discussed in Section 1 it suggests itself
first to estimate the dispersion centers µi by some estimators µ̂in and then to use
the ranks R̂n1, . . . , R̂nn of the r.v. Y11 = X11 − µ̂1n, . . . , Y2n2 = X2n2 − µ̂2n resp.
the corresponding empirical rank statistic (1.11), i. e.

T̃n =
n∑

`=1

cn`bnR̂n`
(Ĥn(0;Y(n))). (29)

Here Ĥn(·;Y(n)) denotes the empirical d.f. of the r.v. Y11, . . . , Y2n2 . But contrary
to the test statistic (4.2) this statistic is not conditionally distribution-free, given
Ĥn(0;Y(n)). Therefore, we have to ask whether T̃n under appropriate conditions is
at least asymptotically distribution-free. Following Hájek [11] this shall be done by
linearization. For this the Jurečková-linearization has to be generalized to the case
of linear empirical rank statistics.

Lemma 5.1. (Burger [4]) Let T bκ
n be a linear empirical rank statistic and T∆bκ

n

the same statistic, evaluated for the r.v. Xij −∆i, j = 1, . . . , ni, i = 1, 2. Let bν be
the adapted score-function (3.10) and bF be defined as in (1.8). Then, for n → ∞,
it holds true that

T∆bκ
n − T bκ

n −∆
∫
bνbF dλ → 0 in (F, F )-probability. (30)

According to this lemma, the statistics T̃n and

T̂n =
n∑

`=1

cn`bnRn`
(Ĥn(0)) (31)

have the same limit distribution in a point (F, F ) ∈ J , if
∫
bνbF dλ = 0. (32)
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According to the discussion of (1.8) this condition is fulfilled, if bν is symmetric
and bF skew-symmetric w.r.t. 1/2. This again is typically the case if ν = 1/2 and
F has a Lebesgue-density f which is symmetric w.r.t. 0 and for which we have∫ |bνbF |dλ <∞.

But also for ν 6= 1/2 there are situations of practical interest in which (5.5) is
met. For this we have to generalize the concepts of symmetry for score-functions
and d.f. 3 Let κ ∈ (0, 1) be fixed. Then a score-function b : (0, 1) → R is called
quasi-symmetric w.r.t. κ iff

b(κ− κu) = b(κ+ (1− κ)u) ∀u ∈ (0, 1). (33)

This is equivalent to the existence of a function b0 : (0, 1) → R with

b(u) = b0

(
κ− u

κ

)
for u ≤ κ, b(u) = b0

(
u− κ

1− κ

)
for u > κ; (34)

cf. Example 3.4. A d.f. F : R→ R is called κ-symmetric w.r.t. µ ∈ R iff

F (µ)− F (µ− x)
κ

=
F (µ+ x)− F (µ)

1− κ
∀x > 0. (35)

If F has a Lebesgue-density f , this is equivalent to

1
κ
f(µ− x) =

1
1− κ

f(µ+ x) λ-a. e., (36)

which again implies that bF ◦ F is skew-symmetric w.r.t. µ. If in addition b is
quasi-symmetric w.r.t. κ, then it holds

∫
b̃bF dλ = 0. (37)

Here b̃ is a slight modification of b, namely

b̃ =

√
1− ν

ν
b1l(0,κ] +

√
ν

1− ν
b1l(κ,1). (38)

Obviously among others we get b̃ ∈ L2, (b̃ν) = (b̃)ν and b̃ = b for ν = 1/2.
Under condition (5.5) resp. (5.10) the statistics (5.4) and (5.2) can be compared.

This is also possible with regard to the validity of other asymptotic properties as
local optimality or unbiasedness. For the formulation of these assertions it is useful
to extend – according to (2.7) – the results of Section 3 to the case “µ1 6= µ2

known”. Denoting the statistic thus maintained by T bκ
n (µ1, µ2), (5.2) is of the form

T b̃κ
n (µ̂1n, µ̂2n). Before using this as a test statistic, ν has to be known (as in the case

that γ is a quantile functional) or has to be estimated by some consistent estimator
ν̂n.

3 Examples of dispersion problems in practice, in which the dispersion center of a one-
dimensional distribution is not its median, are given in Deshpandé-Kusum [8].



288 H. WITTING

Theorem 5.2. (Burger [4]) Let κ ∈ (0, 1), b : (0, 1) → R be κ-isotonic and F1, F2

is such that (5.5) is fulfilled, b̃ defined by (5.1) and T b̃κ
n (µ1, µ2) for fixed (µ1, µ2) ∈ R2

a linear empirical rank statistic with L2-stable scores for testing the hypotheses

H : F1 ¹µ1µ2 F2, K : F1 ºµ1,µ2 F2 with F1 6= F2,

where ¹µ1µ2 is defined by (2.14). If (µ̂1n, µ̂2n) = (γ(F̂1n), γ(F̂2n)) is a
√
n-consistent

estimator for (µ1, µ2) and ϕn a test with T b̃κ
n (µ̂1n, µ̂2n) as test statistic, the following

holds true

a) T b̃κ
n (µ̂1n, µ̂2n)− T b̃κ

n (µ1, µ2) → 0 in (F1, F2)-probability;

b) LFF (T b̃κ
n (µ̂1n, µ̂2n)) −→L N (0, σ2

bνκ);

c) ϕn is asymptotically unbiased and level-preserving;

d) ϕn is a locally optimal test.

In the special case that γ is the %-quantile-functional and b̃ fulfils (5.11), then a) – d)
are true for all κ-symmetric F1 (w.r.t. µ1) and F2 (w.r.t. µ2). Beyond that ϕn is a
linear rank test with a %-isotonic score-function.

Finally, we discuss a completely different method for handling hypotheses (5.1).
Whereas the asymptotic justification of tests considered up to now was based on
the Lr-convergence of the step-functions bn against some function b, now an LAN-
approximation is used; cf. [25], Ch. 6.3.2. More precisely, by means of an appro-
priate localization one comes to a limit problem governed by a multidimensional
normal distribution, which makes possible an exact solution.

The starting point is the fact that after fixing the one-parameter class of dis-
tributions F(F ; b, κ) we have a three-parametric testing problem with the one-
dimensional main parameter ∆ and the two-dimensional nuisance parameter (µ1, µ2).
Assuming some regularity conditions it is possible to simplify the testing problem
by localization according to

∆ = η/
√
n, µ1 = ξ1/

√
n, µ2 = ξ2/

√
n.

Assuming that F is λ-continuous with an absolute continuous density f and finite
Fisher-information I(f) =

∫
b2F dλ, bF = − f ′

f ◦ F−1, and using the abbreviations

J11 = I(f) ∈ (0,∞), J12 = J21 =
∫
bbF dλ

(√
1− λ,−

√
λ
)
∈ R1×2,

J22 = I(f)
(

1 0
0 1

)
∈ R2×2,

the limit problem of the LAN-approximation is

Lηξ

(
U

V

)
= N

((
J11η + J12ξ

J21η + J22ξ

)
,

(
J11 J12

J21 J22

))
, (39)
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Ĥ : η ≤ 0, ξ ∈ R2, K̂ : η > 0, ξ ∈ R2. (40)

Here the nuisance parameter ξ can be eliminated by conditioning, given V = v; cf.
Lehmann [17] and [24], Ch. 3.3. Since S = U−J12J

−1
22 V is stochastically independent

of V , it is possible to transform the conditional test into an unconditional one. This
corresponds to transforming the given score-functions b into

b1 = b−
∫
bbF dλ

I(f)
bF , (41)

for which the orthogonality conditions (5.10) is fulfilled. Of course, b1 can be stand-
ardized according to b0 = b1/‖b1‖L2 . This technique for handling parametric testing
problems with nuisance parameters goes back to Neyman [20]. The corresponding
tests are known in asymptotic statistic as C(α)-tests; cf. [25], Ch. 6.4.3.

As is seen from (5.14) the resulting test depends on the unknown F ∈ Fc. Besides
the factors

∫
bbF dλ and I(f), the score-function bF has to be estimated consistently,

as it was done for the first time in Hájek–Šidák [12], Ch. VII.1.5.
Using b0 as the score-function we end up with a linear rank statistic or a linear

empirical rank statistic, depending on whether the location functional γ, which was
used for making the hypotheses (5.1) precise, is a quantile functional or not. For
details we refer the reader to Burger [4].

6. TWO–SIDED TESTS AND CONCLUDING REMARKS

Most of the results can be extended to the two-sided case just as in the location
problem; cf. [19]. Since in the nonparametric approach the alternative comprises
those pairs (F1, F2) for which F1 is either less or more dispersed than F2, the bound-
ary of the hypotheses is typically the same as in the one-sided case, i. e. J : F1 = F2.
If the one-parameter subclass P1 = {P∆ : ∆ ∈ R} is sufficiently smooth at ∆ = 0,
i. e. if the power function of any test is twice differentiable at ∆ = 0 and if the
differentiation can be done under the expectation sign, the locally optimal test for
H : ∆ = 0, K : ∆ 6= 0 can be defined as a test maximizing the curvature of the
power function among all locally unbiased level α-tests. If, in addition, P1 is twice
L1(0) -differentiable with derivatives L̇0 and L̈0, the test can be made explicit by
the generalized fundamental lemma as a solution of

∇∇E∆ϕ|∆=0 = E0(ϕL̈0) = supϕ,

∇E∆ϕ|∆=0 = E0(ϕL̇0) = 0,

E0ϕ = α.

In the same way this can be done for two-sided locally optimal rank tests. In all
these cases it turns out that the optimal test statistic is asymptotically quadratic,
i. e. it is the square of the optimal one-sided test statistic plus a term which is
typically asymptotically negligible. Among others this implies that the two-sided
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test asymptotically depends only on the first derivative L̇0 resp. EF0F0(L̇0|Mn),
which is typical for asymptotic statistics.

As is shown in Burger [4], an analoguous theory can be developed for permutation
tests. Finally, it should be mentioned that several results of Sections 3 – 5 hold also
for other orderings, for norms distinct from the total variation norm and for other
nonparametric testing problems, e. g. for location problems with censored data or
correlation problems.
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