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THE ROLE OF HÁJEK’S CONVOLUTION THEOREM
IN STATISTICAL THEORY

Rudolf Beran

Hájek’s [17] convolution theorem was a major advance in understanding the classical
information inequality. This re-examination of the convolution theorem discusses historical
background to asymptotic estimation theory; the role of superefficiency in current esti-
mation practice; the link between convergence of bootstrap distributions and convolution
structure; and a dimensional asymptotics view of superefficiency.

1. INTRODUCTION

In 1970, Hájek established sharp, general criteria for asymptotically efficient estima-
tion in locally asymptotically normal parametric models. His Zeitschrift paper that
year characterized, through the convolution theorem, the structure of possible limit-
ing distributions for regular estimators of a parameter. His talk that summer at the
Sixth Berkeley Symposium formulated the local asymptotic minimax bound for all
estimators of a parameter. Both of Hájek’s papers built on a pre-history; and both
stimulated important further work by LeCam, by the Russian school, and by others.
A quarter of a century later, the convolution theorem sheds light on topics such as
bootstrap consistency, model selection, and signal recovery. This paper describes
how.

Fisher’s Program. As a model for the sample Xn = (Xn,1, . . . , Xn,n), suppose
that the {Xn,i} are iid with distribution Pθ. The value of θ is unknown but lies in
Θ, an open subset of Rk. The distribution Pθ has a density pθ with respect to a
dominating σ-finite measure that does not depend on θ. Suppose that the gradient
∇pθ of pθ with respect to θ exists. In this classical setting, the information matrix
is defined to be

I(θ) = Covθ[p−1
θ (Xn)∇pθ(Xn)], (1)

provided the covariances on the right side exist. Savage [47 p. 456] gave historical
background for this information concept.

Consider the problem of estimating a differentiable parametric function τ(θ). For
simplicity of exposition, suppose that τ(θ) = θ. Let Tn be an unbiased estimator of
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θ and let | · | denote Euclidean norm in Rk. The information inequality, formulated
by Fréchet [16], Darmois [12], Rao [44], and Cramér [11], implies that

nEθ|Tn − EθTn|2 ≥ tr [I−1(θ)] ∀ θ ∈ Θ. (2)

This variance inequality assumes that the information matrix is nonsingular and
that the model meets certain other regularity conditions (cf. Lehmann [36, p. 128]).

Two other strong notions existed in estimation theory earlier this century. First
was the idea that a good real-valued estimator has a bias that is much smaller
than its variance when the sample size is large. Second was the belief that the
maximum likelihood estimator Tn,ML of θ is asymptotically normal and that the
limiting distribution of n1/2(Tn,ML−θ) is N(0, I−1(θ)). Combining these ideas with
inequality (1.2) leads to two conjectures:

A. For any estimator Tn,

lim inf
n−→∞

nEθ|Tn − θ|2 ≥ tr [I−1(θ)] ∀ θ ∈ Θ. (3)

B. The maximum likelihood estimator Tn,ML satisfies

lim
n→∞

nEθ|Tn,ML − θ|2 = tr [I−1(θ)] ∀ θ ∈ Θ. (4)

This pair of statements is sometimes called Fisher’s program, in recognition of
Fisher’s [15] influential paper on estimation in parametric models. The program
implies the conjecture that maximum likelihood estimators are asymptotically ef-
ficient, in the sense of attaining the asymptotic lower bound in A at every θ. Pratt
[43] drew attention to related previous work by Edgeworth and others. Pfanzagl
[39, pp. 207–208] summarized the history of early work on maximum likelihood
estimation, from Laplace and Gauss onwards.

Superefficiency and Other Surprises. As stated, both conjectures A and B are
false. Possible difficulties with uniform integrability in B may be resolved by a con-
tinuous, monotone, bounded transformation of the loss function. Deeper, however,
is the possibly bad behavior of maximum likelihood estimators in regular parametric
models.

Example 1. Suppose that the distribution of log(Xi − γ) is N(µ, σ2). This is
a model for the time at which disease symptoms are first observed in a patient
who was exposed to infection at time γ. Here the unknown parameter θ is the
triple (µ, σ2, γ). The distribution of Xi is called the three-parameter lognormal
distribution. The information matrix for this model is finite and is continuous in
θ. However, it was not noticed for many years that the likelihood function climbs a
ridge to infinity as γ tends to the smallest observation (Hill [20]). While maximum
likelihood estimation thus fails, the model has the LAN property to be discussed in
Section 2. Consequently, LeCam’s [29, pp. 138–139] one-step estimator achieves the
asymptotic efficiency that eludes maximum likelihood in this example.
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Deeper still is the possible failure of inequality (1.3) at some values of θ, called
points of superefficiency. LeCam [28] and Bahadur [1] showed that superefficiency
points necessarily constitute a Lebesgue null set in Rk. While “null set” sounds
innocuous, it is not, as we will see in the next two examples.

Example 2. Suppose that the {Xn,i} are iid random variables, each distributed
according to N(θ, 1). Here the parameter dimension k = 1. Let X̄n to be the sample
mean and let Tn,H be the Hodges estimator of θ, given by

Tn,H =

{
bX̄n if |X̄n| ≤ n−1/4

X̄n otherwise,
(5)

where b2 < 1 (LeCam [28]). Note that, when b is zero, Tn,H is a model selection
estimator that chooses between fitting the N(0, 1) and N(θ, 1) models on the basis
of the data.

The limiting distribution of n1/2(Tn,H − θ) is N(0, 1) when θ 6= 0 but is N(0, b2)
when θ = 0. Moreover,

lim
n→∞

nEθ(Tn,H − θ)2 =

{
b2 if θ = 0

1 if θ 6= 0
(6)

while the Fisher information bound is 1. Thus, the origin is a point of superefficiency.
For fixed n, the risk of Tn,H is less than 1 in a neighborhood of the origin, then rises
steeply above one, and subsequently drops slowly towards 1 as |θ| tends to infinity
(cf. Lehmann [36, Chapter 6]). The neighborhood of improved risk narrows as n
increases, so that the asymptotic picture is (1.6). At finite n, the Hodges estimator
has larger risk than the sample mean for most values of θ. Such poor risk near points
of superefficiency is characteristic of one-dimensional estimators (LeCam [28], Hájek
[18]).

From this example, one might form the impression that model selection estimators
are to be avoided. This impression is wrong. Consider model selection estimators
for θ ∈ Rk that, as in Pötscher [42], select among submodels indexed by proper
subspaces of Rk. Under asymptotics where parameter dimension k is fixed while
n increases, the points of superefficiency are the union of proper subspaces of Θ.
Though uncountable, these superefficiency points form a Lebesgue null set. However,
under asymptotics where k increases while n is fixed, model selection can improve
risk over the entire parameter space (Beran [5]). The next example makes the role
of dimension clearer.

Example 3. Let Ik denote the k×k identity matrix. Suppose that the {Xn,i} are
iid random k-vectors, each distributed according to Nk(θ, Ik), where θ ∈ Rk. This
is a simple model for n repeated observations on a discrete time series measured at
k time points. The goal is to estimate the unknown signal θ. Let X̄n be the sample
mean and suppose that k is at least 3. The James and Stein [23] estimator is

Tn,S =
[
1− (k − 2)/|nX̄n|2

]
X̄n. (7)
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This celebrated estimator is a sharp early example of what are now called regulariz-
ation methods for signal recovery (cf. Titterington [51]). For k ≥ 3, limn→∞ nEθ|Tn,S

−θ|2 equals the information bound k when θ 6= 0 but is strictly smaller when θ = 0.
Thus, the origin is a point of superefficiency under quadratic loss.

Unlike Example 2, the risk nEθ|Tn,S − θ|2 is uniformly smaller than k for all
values of θ and n (James and Stein [23]). Moreover, as k →∞ and k−1n|θ|2 → c, the
normalized quadratic risk k−1nEθ|Tn,S − θ|2 converges to c/(1 + c). For details, see
Casella and Hwang [9]. Consequently, when k is large and n is fixed, the estimator
Tn,S improves substantially upon the sample mean X̄n over compact balls about
θ = 0. The superefficiency at θ = 0 that is detected by asymptotics in n alone is a
ghost of what actually happens for finite k and n.

As an extension of this example, consider the Stein estimator that shrinks each
component of X̄n =(X̄n,1, . . . , X̄n,n) towards the average component m̂n =n−1

∑n
i=1

X̄n,i. Let e denote the vector in Rk whose components each equal 1. Define

Tn,SM = m̂ne+ [1− (k − 3)/(n|X̄n − m̂ne|2)](X̄n − m̂ne). (8)

This estimator is superefficient at every θ ∈ Rk whose components are equal, an un-
countable Lebesgue null set. Moreover, the estimator Tn,SM dominates X̄n over the
entire parameter space, substantially so when k is much larger than n (cf. Lehmann
[36, p. 305]).

As these examples suggest, the possibility of superefficiency is at heart of modern
estimation theory. Current signal estimators or model selection estimators tacitly
create points of superefficiency, though usually without articulating this strategy;
and they do so because superefficiency points can reduce risk over the entire param-
eter space when k and n are finite. That points of superefficiency form a Lebesgue
null set does not make them unimportant.

2. HÁJEK’S CONVOLUTION THEOREM

For what class of parametric models is Fisher’s program pertinent? LeCam [30] made
a fundamental advance on this question by formulating the concept of a locally
asymptotically normal model. For simplicity, we will assume that the parameter
space Θ is an open subset of Rk and that the rate of convergence is n1/2, as in
classical iid models.

Definition. For θn = θ0 + n−1/2h, where h ∈ Rk, let P c
θn,n denote the absolutely

continuous part of Pθn,n with respect to Pθ0,n. Let Ln(h, θ0) denote the log-likelihood
ratio of P c

θn,n with respect to Pθ0,n. Suppose there exist random vectors Yn(θ0),
depending on the sample as well as on θ0, and a nonsingular, nonrandom matrix
I(θ0) such that

Ln(h, θ0) = h′Yn(θ0)− 2−1h′I(θ0)h+ op(1), (9)

the remainder term tending to zero in Pθ0,n-probability. Suppose in addition that

L[Yn(θ0)|Pθ0,n] =⇒ N(0, I(θ0)). (10)
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Then the model {Pθ,n : θ ∈ Θ} is said to be locally asymptotically normal (LAN) at
θ0.

The LAN property, which redefines the information matrix, is possessed by clas-
sical models such as smooth exponential families. Hájek and Šidák [19] and Hájek
[18] included convenient sufficient conditions for LAN that developed LeCam’s earlier
work. For an LAN model, the log-likelihood ratio behaves asymptotically like the
log-likelihood ratio of N(h, I−1(θ0)) with respect to N(0, I−1(θ0)). This suggests
that good statistical procedures in the normal limit experiment may have counter-
parts that are approximately good, for large n, in the model Pθ,n. Hájek’s papers
on the convolution theorem [17] and on the local asymptotic minimax bound [18]
gave substance to this idea.

The summary paragraph at the start of Hájek [17] states: “Under certain very
general conditions we prove that the limiting distribution of the estimates, if properly
normed, is a convolution of a certain normal distribution, which depends only of the
underlying distributions, and of a further distribution, which depends on the choice
of the estimate. As corollaries we obtain inequalities for asymptotic variance and for
asymptotic probabilities of certain sets, generalizing to some results of J. Wolfowitz
[54], S. Kaufman [26], L. Schmetterer [48] and G. G. Roussas [45].” This describes
the content and historical setting with admirable succinctness.

Let us consider now what Hájek did in this paper, specializing for convenience to
the case where the rate of convergence is n1/2. For any estimator Tn of θ, let

Hn(θ) = L[n1/2(Tn − θ)|Pθ,n]. (11)

Definition. Let θn = θ0 + n−1/2h, where h ∈ Rk. A sequence of estimators
{Tn : n ≥ 1} is regular at θ0 if

Hn(θn) =⇒ H(θ0) ∀h ∈ Rk (12)

for some limit distribution H(θ0) that does not depend on h.

Suppose that d is a metric for weak convergence of distributions on Rk. A little
stronger than regularity is the property

lim
n→∞

sup
n1/2|θ−θ0|≤c

d[Hn(θ),H(θ0)] = 0 (13)

for every finite positive c. Prior to Hájek [17], papers on asymptotic estimation typ-
ically imposed a requirement such as uniform weak convergence of the distributions
{Hn(θ)} to a weakly continuous limit over some fixed neighborhood of θ0 —an as-
sumption considerably stronger than (2.5) or (2.4). Such was also the case for
Inagaki’s [22] independent discovery of the convolution theorem. We will see, in
the course of this paper, how Hájek’s weaker regularity assumption is important for
statistical theory.
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Theorem 2.1. (Convolution theorem) Suppose that the model Pθ,n is LAN at
θ0. If {Tn : n ≥ 1} is a sequence of estimators regular at θ0, then

H(θ0) = N(0, I−1(θ0)) ∗ ν(θ0) (14)

for some distribution ν(θ0) on Rk. Moreover H(θ0) = N(0, I−1(θ0)) if and only if

n1/2(Tn − θ0) = I−1(θ0)Yn(θ0) + op(1), (15)

the remainder term tending to zero in Pθ0,n-probability.

Not long after Hájek’s announcement of the convolution theorem, P. J. Bickel sent
him a letter that sketched a shorter characteristic function proof for the result. This
writer saw a copy of the letter a few months later. Even though the characteristic
function argument is now well-known, we give a version here because the argument
leads to further insights.

P r o o f . Fix h ∈ Rk. The LAN assumption implies that the sequences {Pθn,n}
and {Pθ0,n} are contiguous (LeCam [30]). In particular, the total variation norm of
the singular component of Pθn,n relative to Pθ0,n tends to zero as n increases. Let
φn(u, θ) and φ(u, θ) denote, respectively, the characteristic functions of Hn(θ) and
H(θ). Then

φn(u, θn) = Eθ0 [iu
′n1/2(Tn − θ0)− iu′h+ Ln(h, θ0)] + o(1). (16)

Because of (2.4) and (2.2), by going to a subsequence we can assume, without
loss of generality, that

(n1/2(Tn − θ0), Yn(θ0)) =⇒ (S, I1/2(θ0)Z) (17)

under Pθ0,n. Here S has marginal distribution H(θ0) while Z has a standard normal
distribution on Rk. Let n → ∞ in (2.8). Then (2.9) and a uniform integrability
argument establish

φ(u, θ0) = E exp[iu′S − iu′h] exp[h′I1/2(θ0)Z − 2−1h′I(θ0)h]. (18)

Equation (2.10) holds for every h ∈ Rk. Since the right side of (2.10) is analytic
in h while the left side does not depend on h, equation (2.10) continues to hold for
all h ∈ Ck. Setting h = −iI−1(θ0)u in (2.10) yields

φ(u, θ0) = E exp[iu′(S − I−1/2(θ0)Z)] exp[−2−1u′I−1(θ0)u], (19)

which is equivalent to assertion (2.6).
The if and only if part: Suppose that (2.7) holds. By the LAN property and

contiguity reasoning,

L[Yn(θ0)|Pθn,n] =⇒ N(I(θ0)h, I(θ0)). (20)

This and (2.7) imply that Hn(θn) =⇒ N(0, I−1(θ0)), as asserted by the theorem.
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Conversely, suppose that H(θ0) = N(0, I−1(θ0)) but the approximation (2.7)
does not hold. By going to a subsequence, assume without loss of generality that

Pθ0,n[|n1/2(Tn − θ0)− I−1(θ0)Yn(θ0)| ≥ ε] > δ (21)

for every n and some positive ε and δ. By going to a further subsequence, as in the
first part of the proof, assume without loss of generality that (2.9) holds. From this
and (2.13),

P [|S − I−1/2(θ0)Z| ≥ ε] > δ. (22)

At the same time, (2.11) also holds and implies that

S = I−1/2(θ0)Z w.p.1. (23)

The contradiction between (2.14) and (2.15) establishes (2.7). 2

The convolution theorem supports a portion of Fisher’s program. Suppose that
w is a symmetric, subconvex, and continuous loss function on Rk. If {Tn} is any
sequence of estimators whose limiting distribution at θ0 has the convolution structure
(2.6), then

lim inf
n→∞

Eθ0w[n1/2(Tn − θ0)] ≥ Ew[I−1/2(θ0)Z] (24)

by Fatou’s lemma and Anderson’s lemma (cf. Ibragimov and Has’minskii [21], p. 157).
The particular choice w(x) = |x|2 establishes (1.3) for values of θ at which {Tn} is
regular. If the loss function w is also bounded, then any estimator sequence {Tn}
that satisfies (2.7) attains the bound (2.16) in the sense that

lim
n→∞

Eθ0w[n1/2(Tn − θ0)] = Ew[I−1/2(θ0)Z]. (25)

The assumption of regularity in Theorem 2.1 can be weakened technically with-
out changing the conclusions. This observation, recorded in Corollary 2.2 below,
was made by Droste and Wefelmeyer [13]. Deeper is the result that an almost every-
where variant of the convolution theorem holds without the regularity assumption
(Theorem 2.3 below). We will see that both extensions of Theorem 2.1 have impli-
cations for Fisher’s program and for the convergence of bootstrap distributions.

A subset D ⊂ Rk is called a uniqueness set if any analytic function defined on an
open, connected set that contains D is uniquely determined by its values in D. For
example, D could be Rk, as in the proof of Theorem 2.1, or a k-dimensional box in
Rk with edges parallel to the coordinate axes, or a dense subset of these.

Definition. A sequence of estimators {Tn : n ≥ 1} is essentially regular at θ0 if
the following holds: There exists a uniqueness set D ⊂ Rk and, for every h ∈ D, a
sequence {hn ∈ Rk} converging to h such that

Hn(θ0 + n1/2hn) =⇒ H(θ0) (26)

for some limit distribution H(θ0) that does not depend on h.
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Corollary 2.2. The assumption of regularity in Theorem 2.1 may be replaced by
essential regularity without changing the conclusions.

P r o o f . By reasoning like that in the previous proof, equation (2.10) holds for
every h ∈ D. Since the right side of (2.10) is analytic in h and D is a uniqueness
set, (2.10) again holds for every h ∈ Ck. The rest of the proof is unchanged. 2

Theorem 2.3. Suppose that Pθ,n is LAN at every θ ∈ Θ. Let {Tn : n ≥ 1} be a
sequence of estimators such that

Hn(θ) =⇒ H(θ) ∀ θ ∈ Θ. (27)

Then there exists a distribution ν(θ) and a Lebesgue null set N ⊂ Θ such that

H(θ) = N(0, I−1(θ)) ∗ ν(θ) ∀ θ ∈ Θ−N. (28)

Suppose in addition that both H(θ) and I(θ) are continuous at θ0, the former in a
metric for weak convergence. Then the convolution structure (2.20) holds at θ0.

Remarks on pages 169 and 176 of LeCam [32] imply Theorem 2.3. Jeganathan [24]
and Droste and Wefelmeyer [13] gave characteristic function proofs of the theorem.
The proof below combines Theorem 2.1 with the following lemma, which is due to
Droste and Wefelmeyer [13, pp. 140–141] and extends Lemma 4 in Bahadur [1]. See
also Pfanzagl [39, pp. 285–286].

Lemma 2.4. Let {fn : n ≥ 1} and f be Lebesgue measurable real-valued functions
on Rk such that

lim
n→∞

fn(x) = f(x) a. e. Lebesgue. (29)

Then, for every sequence {yn ∈ Rk} converging to zero, there exists a subsequence
M such that

lim
n∈M

fn(x+ yn) = f(x) a. e. Lebesgue. (30)

P r o o f of Theorem 2.3. Let φn(u, θ) and φ(u, θ) again denote the characteristic
functions of Hn(θ) and H(θ) respectively. Let D be a countable dense subset of Rk.
Fix (h, u) ∈ D2. By the hypothesis (2.19) and Lemma 2.4 with yn = n−1/2h, there
is a subsequence M(h, u) and a Lebesgue null set N(h, u) such that

lim
n∈M(u,h)

φn(u, θ + n1/2h) = φ(u, θ) ∀ θ ∈ Θ−N(h, u). (31)

Let
N =

⋃

(h,u)∈D2

N(h, u). (32)

By reasoning like that for Theorem 2.1, equation (2.10) holds for every (h, u) ∈ D2

and for every θ ∈ Θ−N . Because D is a uniqueness class, this implies that equation
(2.11) holds for every u ∈ D and for every θ ∈ Θ − N . Conclusion (2.20) follows
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because a characteristic function is determined by its values on the dense subset
D ⊂ Rk.

The last assertion of the theorem already holds if θ0 ∈ Θ − N . Suppose that
θ0 ∈ N and that {θn ∈ Θ−N} converges to θ0. Let ψ(u, θ) denote the characteristic
function of ν(θ), defined for θ ∈ Θ−N . Then, from (2.20),

ψ(u, θn) = φ(u, θn) exp[2−1u′I(θn)u]. (33)

Continuity of I(θ) and weak continuity of H(θ) now imply that

lim
n→∞

ψ(u, θn) = φ(u, θ0) exp[2−1u′I(θ0)u]. (34)

Since the right side of (2.26) is continuous in u, it must be a characteristic function.
Consequently, (2.20) holds at θ0. 2

What does the theory of this section entail for Fisher’s program? Let w be a
symmetric, subconvex, and continuous loss function of Rk. We say that {Tn} is
superefficient at θ0 for loss function w if

lim sup
n→∞

Eθ0w[n1/2(Tn − θ0)] < Ew[I−1/2(θ0)Z], (35)

where Z has a standard normal distribution on Rk.
Inequality (2.16) shows that superefficiency cannot occur when the limit distri-

bution H(θ0) has the convolution structure (2.6). Consequently, lack of regularity
at θ0 is a necessary condition for superefficiency there (Theorem 2.1). Discontinuity
of H(θ) or I(θ) at θ0 is also a necessary condition for superefficiency there (Theorem
2.3). The Hodges and the Stein estimators illustrate both necessary conditions.

Example 2 (continued). By (1.6), the Hodges estimator Tn,H is superefficient
at θ0 = 0 for w(x) = x2. Let θn = θ0 + n−1/2h. Then

Hn(θn) =⇒
{

N((b− 1)h, b2) if θ0 = 0

N(0, 1) if θ0 6= 0.
(36)

This shows directly that {Tn,H} is not regular at θ0 = 0. Moreover, the pointwise
limit distribution is

H0(θ0) =

{
N(0, b2) if θ0 = 0

N(0, 1) if θ0 6= 0,
(37)

which has the expected discontinuity at θ0 = 0 in the topology of weak convergence.

Example 3 (continued). As discussed in the Introduction, the Stein estimator
Tn,S is superefficient at θ0 = 0 for w(x) = |x|2. In this instance,

Hn(θn) =⇒
{ L[Z − (k − 2)(Z + h)/|Z + h|2] if θ0 = 0

N(0, Ik) if θ0 6= 0
(38)
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so that {Tn,S} is not regular at the origin. Let Z be a random vector with standard
normal distribution on Rk. The pointwise limit distribution in this example is

H0(θ0) =

{ L[Z − (k − 2)Z/|Z|2] if θ0 = 0

N(0, Ik) if θ0 6= 0.
(39)

It has the foreseen discontinuity at θ0 = 0.

3. BOOTSTRAP CONVERGENCE AND CONVOLUTION

Matters such as estimating the risk of Tn or constructing confidence sets for θ around
Tn lead to the question of estimatingHn(θ), the distribution of n1/2(Tn−θ). Suppose
that θ̂n is an estimator of θ, possibly Tn itself. The implied plug-in estimator of
Hn(θ) is then Hn(θ̂n).

The random probability measure Hn(θ̂n) can also be interpreted as a conditional
distribution. Let X∗

n be an artificial sample of size n whose conditional distribution,
given the observed sample Xn, is the fitted model Pn,θ̂n

. Let T ∗n = Tn(X∗
n) denote

the recalculation of Tn from X∗
n. Then

Hn(θ̂n) = L[n1/2(T ∗n − θ̂n)|Xn]. (40)

Efron [14] called Hn(θ̂n) the parametric bootstrap estimator of Hn(θ), gave the
interpretation as conditional distribution, and drew attention to Monte Carlo ap-
proximations for this conditional distribution.

Suppose that Hn(θ) converges weakly to a limit distribution H(θ) as n increases.
When does the bootstrap distribution Hn(θ̂n) converge in probability to the correct
limit H(θ)? A substantial literature has grown around this question; two early
papers are Bickel and Freedman [6] and Beran [4]. The next theorems link bootstrap
convergence with convolution structure. As in the previous section, d is any metric
for weak convergence on Rk.

Theorem 3.1. Suppose that {Tn : n ≥ 1} is a sequence of estimators for which
(2.5) holds. Suppose that {θ̂n : n ≥ 1} is a sequence of estimators such that

L[n1/2(θ̂n − θ0)|Pθ0,n] =⇒ J(θ0) (41)

for some limit distribution J(θ0). Then

d[Hn(θ̂n),H(θ0)] →∞ (42)

in Pθ0,n-probability.

P r o o f . Let Vn = n1/2(θ̂n−θ0). By a Skorokhod construction, there exist random
vectors {V ∗n (ω)} and V ∗(ω), defined on a common probability space, such that
L(V ∗n ) = L(Vn), L(V ∗) = J(θ0) and limn→∞ V ∗n (ω) = V ∗(ω) for every elementary
event ω. Assumption (2.5) implies that

lim
n→∞

Hn(θ0 + n−1/2V ∗n ) = H(θ0) w.p.1. (43)
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Conclusion (3.3) now follows. 2

If the conditions for Theorem 3.1 hold and the model Pθ,n is LAN at θ0, then
the limit distribution H(θ0) must have the convolution structure (2.6), because of
Theorem 2.1. The next theorem shows that bootstrap convergence itself can imply
convolution structure in the limit distribution.

Theorem 3.2. Suppose that the model Pθ,n is LAN at θ0, that (3.2) and (3.3)
hold, and that the support of J(θ0) contains a uniqueness set. Then

H(θ0) = N(0, I−1(θ0)) ∗ ν(θ0) (44)

for some distribution ν(θ0) on Rk.

P r o o f . In the notation of the preceding proof, (3.3) implies that

d[Hn(θ0 + n−1/2V ∗n ),H(θ0)] → 0 (45)

in probability. Hence, there exists a subsequence M such that

lim
n∈M

d[Hn(θ0 + n−1/2V ∗n ),H(θ0)] = 0 lim
n∈M

V ∗n = V ∗ w.p.1. (46)

Since the possible values of V ∗ are dense in the support of J(θ0), they also form a
uniqueness set. Corollary 2.2 thus implies (3.5). 2

Corollary 3.3. Suppose that Pθ,n is LAN at every θ ∈ Θ. Let {θ̂n : n ≥ 1} be a
sequence of estimators such that

L[n1/2(θ̂n − θ)|Pθ,n] =⇒ J(θ) ∀ θ ∈ Θ, (47)

for some limit distribution J(θ). Let {Tn : n ≥ 1} be a sequence of estimators such
that

d[Hn(θ̂n),H(θ0)] → 0 (48)

in Pθ0,n-probability. If both J(θ) and I(θ) are continuous at θ0 or if {θ̂n : n ≥ 1} is
regular at θ0, then (3.5) holds.

P r o o f . Applying, respectively, Theorem 2.3 or Theorem 2.1 to the estimators
{θ̂n} shows that the support of J(θ0) is Rk. Theorem 3.2 then completes the proof.

2

Implications. In the setting of Theorem 3.2, superefficiency of {Tn} at θ0 ensures
that, under Pθ0,n, the bootstrap distribution Hn(θ̂n) cannot converge in probability
to the correct limit distribution H(θ0). Whether the superefficiency is beneficial to
the risk of Tn at θ 6= θ0, as in Example 3, or detrimental, as in Example 2, has
no effect on the question of bootstrap convergence. The necessary conditions for
superefficiency mentioned at the end of Section 2— lack of regularity at θ0 or a
discontinuity in H(θ) or I(θ) at θ0 —both signal possible bootstrap failure at θ0.
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Example 2 (continued). Let θ̂n be the sample mean X̄n. Condition (3.2) is
satisfied and J(θ0) has full support for every θ0. By simple extension of (2.28), the
Hodges estimator Tn,H satisfies (2.5) for every θ0 6= 0. Thus, by Theorem 3.1, the
bootstrap distribution Hn(X̄n) for Tn,H converges correctly, in probability, whenever
θ0 6= 0.

By Theorem 3.2,Hn(X̄n) cannot converge properly at θ0 = 0, because the origin is
a superefficiency point for the Hodges estimator. In this exceptional case, reasoning
related to (2.28) shows that Hn(X̄n) converges in distribution, as a random element
of the space of all probability measures on Rk metrized by weak convergence, to
the random probability measure N((b − 1)Z, b2). Here Z has a standard N(0, 1)
distribution.

Example 3 (continued). By extension of (2.30), the Stein estimator Tn,S satisfies
(2.5) for every θ0 6= 0. By Theorem 3.1, the bootstrap distribution Hn(X̄n) for Tn,S

converges correctly whenever θ0 6= 0. At the superefficiency point θ0 = 0, the failure
of the bootstrap distribution to converge correctly (Theorem 3.2) can be clarified as
follows. Let Z be a random vector with standard normal distribution on Rk and let

π(h) = L[Z − (k − 2)(Z + h)/|Z + h|2]. (49)

An argument akin to (2.30) shows that Hn(X̄n) converges in distribution, as a
random probability measure, to the random probability measure π(Z).

The behavior at the origin of the Hodges and Stein estimators, as well as other
examples, motivates the following abstraction.

Definition. A sequence of estimators {Tn} is locally uniformly weakly convergent
at θ0 if there exists a family of distributions {π(θ0, h) : h ∈ Rk} such that

Hn(θ0 + n−1/2hn) =⇒ π(θ0, h) (50)

for every h ∈ Rk and every sequence {hn ∈ Rk} converging to h.

Theorem 3.4. Suppose that the estimators {Tn} are locally uniformly weakly
convergent at θ0. Let {θ̂n} be a sequence of estimators that satisfies (3.2). Let V
be a random vector whose distribution is J(θ0). Under Pθ0,n, Hn(θ̂n) converges in
distribution, as a random probability measure, to the random probability measure
π(θ0, V ). In general, this limit differs from H(θ0) = π(θ0, 0).

P r o o f . Let Vn, V ∗n and V ∗ be as in the proof of Theorem 3.1. Condition (3.11)
implies that

Hn(θ0 + n−1/2V ∗n ) =⇒ π(θ0, V ∗) w.p.1. (51)
The result follows. 2

This theorem on possible bootstrap failure also suggests a remedy: use a boot-
strap sample size mn much smaller than n. The idea of the cure is due to Bretagnolle
[8].
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Corollary 3.5. Suppose that the conditions for Theorem 3.4 hold. Let {mn : n ≥
1} be a sequence of integers such that

lim
n→∞

mn/n = 0 lim
n→∞

mn = 0. (52)

Then
d[Hmn(θ̂n),H(θ0)] → 0 (53)

in Pθ0,n probability.

P r o o f . Observe, in the notation of the previous proof, that Hmn
(θ̂n) has

the same distribution as Hmn
(θ0 + m

−1/2
n W ∗

n), where W ∗
n = (mn/n)1/2V ∗n . Since

limn→∞W ∗
n = 0 and limn→∞mn = ∞,

Hmn(θ0 +m−1/2
n W ∗

n) → π(θ0, 0) = H(θ0) w.p.1. (54)

as in (3.12). The corollary follows. 2

The best choice of mn in this subsample bootstrap is the subject of current
research. One difficulty is that Hmn(θ̂n) can be highly inefficient as an estimator of
Hn(θ0) when (3.13) holds and θ0 is a regularity point (cf. Beran [3]).

4. LAM VIEWS OF SUPEREFFICIENCY

For estimation in the normal model of Example 2, Chernoff [10] stated a local asymp-
totic minimax (LAM) bound that he attributed to unpublished work by C. Stein
and by H. Rubin. This bound, like Theorem 14 in LeCam [28], brings out what
is wrong with the Hodges estimator in small neighborhoods of its superefficiency
point. Only years later, in Hájek [18], was the LAM approach formulated for gen-
eral LAN parametric models. A convenient version of Hájek’s result is the following
(c.f. Ibragimov and Has’minskii [21, p. 162]:

Theorem 4.1. Suppose that the model Pθ,n is LAN at θ0. Let w be a symmetric,
subconvex, and continuous loss function. Let Z be a random vector with standard
normal distribution on Rk. Then

lim
c→∞

lim inf
n→∞

inf
Tn

sup
n1/2|θ−θ0|≤c

Eθw[n1/2(Tn − θ)] ≥ Ew[I−1/2(θ0)Z], (55)

the infimum being taken over all estimators of θ.

Unlike the convolution theorem, the statement of Theorem 4.1 applies to all
estimators at every θ ∈ Θ. Suppose that a sequence of estimators {Tn} satisfies
(2.7) and that the loss function w is also bounded. Then, the lower bound (4.1) is
attained asymptotically in the sense that

lim
c→∞

lim
n→∞

sup
n1/2|θ−θ0|≤c

Eθw[n1/2(Tn − θ)] = Ew[I−1/2(θ0)Z]. (56)
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Hájek [18] proved a partial converse to this last statement. When k = 1 and w is
nonconstant, then (4.2) implies that {Tn} must satisfy (2.7). This local asymptotic
admissibility result is restricted to estimation of low-dimensional parameters. It
typically breaks down for k ≥ 3, as noted by van der Vaart [53, pp. 1491–1492].

Example 2 (continued). Suppose that k = 1 and w(x) = x2. At every θ0 6= 0,
the Hodges estimator is LAM in the sense that (4.2) holds. However, at θ0 = 0,

lim
c→∞

lim
n→∞

sup
n1/2|θ|≤c

nEθ(Tn,H − θ)2 = ∞. (57)

The infinite limit in (4.3) indicates dramatically the poor performance of the Hodges
estimator near its point of superefficiency. By contrast, the limiting maximum risk
of the sample mean X̄n is 1.

Example 3 (continued). Suppose that k ≥ 3 and w(x) = |x|2. At every θ0 ∈ Rk,
including the superefficiency point θ0 = 0, the Stein estimator Tn,S is LAM in the
sense that (4.2) holds. The same is true of the sample mean vector X̄n. Thus,
the LAM criterion of Theorem 4.1 fails to detect the improved performance of Tn,S

around the point of superefficiency θ0 = 0.
This insensitivity in the LAM criterion can be overcome by suitably linking the

value of c to the dimension k and then letting the latter increase. In place of Tn or
θ, we will write Tn,k or θk to emphasize that the dimension of these quantities is
varying. For every finite positive b,

lim inf
k→∞

lim inf
n→∞

inf
Tn,k

sup
n1/2|θk|≤k1/2b

k−1nEθk
|Tn,k − θk|2 ≥ b2/(1 + b2), (58)

the infimum being taken over all estimators Tn,k. To prove this, apply Pinsker’s
[41] minimax bound for estimation in a Gaussian process to the limit experiment
here, which is a multivariate normal location model with identity covariance matrix.
Stein [50] pioneered dimensional asymptotics for this normal model.

The Stein estimator Tn,k,S in k dimensions achieves the asymptotic lower bound
(4.4) because

lim
k→∞

lim
n→∞

sup
n1/2|θk|≤k1/2b

k−1nEθk
|Tn,k,S − θk|2 = b2/(1 + b2). (59)

For the sample mean vector, the right side of (4.5) must be replaced by 1. Unlike
the LAM bound of Theorem 4.1, version (4.4) detects the improvement achieved by
the Stein estimator around the point of superefficiency when dimension k is large.

5. EPILOG

Hájek’s [17] and [18] papers inspired work by an international array of authors.
LeCam [31] gave a deep generalization of the convolution theorem and of the LAM
bound to models whose limit experiment need not be normal. LeCam [33] presented
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an abstract version of Hájek’s asymptotic admissibility result for one-dimensional
estimators that extends beyond estimation and the LAN setup. Nonparametric
forms of the convolution theorem were found by Beran [2], Millar [38], and others.
Nonparametric versions of the LAM bound were obtained by Levit [37], Koshevnik
and Levit [27], and others. The ideas of Stein [49] played an important role in these
extensions. Jeganathan [25] initiated detailed study of the case where the limit
experiment is mixed normal. More recently, van der Vaart [53] treated quadratic
mean differentiable models whose tangent sets are not necessarily linear spaces.
Much of what we have learned since Hájek’s two papers is covered in monographs
by Roussas [46], Ibragimov and Has’minskii [21], Pfanzagl and Wefelmeyer [40],
LeCam [34], van der Vaart [52], LeCam and Yang [35], Bickel, Klaassen, Ritov, and
Wellner [7], Pfanzagl [39], and in other books cited by these authors.
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[17] J. Hájek: A characterization of limiting distributions of regular estimates. Z. Wahrsch.
verw. Gebiete 14 (1970), 323–330.
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