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REACHABILITY AND OBSERVABILITY
OF LINEAR SYSTEMS OVER MAX–PLUS1

Michael J. Gazarik and Edward W. Kamen

This paper discusses the properties of reachability and observability for linear systems
over the max-plus algebra. Working in the event-domain, the concept of asticity is used
to develop conditions for weak reachability and weak observability. In the reachability
problem, residuation is used to determine if a state is reachable and to generate the required
control sequence to reach it. In the observability problem, residuation is used to estimate
the state. Finally, as in the continuous-variable case, a duality is shown to exist between
the two properties.

1. INTRODUCTION

The max-plus algebra can be used to describe, in a linear fashion, the timing dy-
namics of systems that are nonlinear in the conventional algebra. Examples of such
systems include discrete part manufacturing lines such as automotive assembly lines
and electronic circuit board assembly lines, as well as transportation and commu-
nication systems. The dynamics of these types of systems are governed by events
rather than time as in the more familiar continuous-variable systems. Because of
their dependency on events, these systems have become to be known as discrete
event dynamic systems (DEDS). For a special class of DEDS that do not contain
routing decisions, it is well known that the dynamics of the timing of events can be
written over the max-plus algebra [1, 3, 4].

This paper discusses the system properties of reachability and observability of
event-index-invariant, linear systems over max-plus without the need of graph-based
arguments. Analogous to the time-invariant case for continuous-variable systems, an
event-index-invariant system is one in which the system parameters do not change
with respect to the event index. Because the properties discussed here are not as
strong as those in the continuous-variable case, definitions of weak reachability and
weak observability are introduced. Also, necessary and sufficient conditions for a
system to be weakly reachable and weakly observable are presented. Definitions and
conditions for stronger properties are under development.

1This work was supported in part by the Julian T. Hightower Chair at the Georgia Institute of
Technology.
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Results presented here are based on [7] which, in turn, is based on an original
concept of reachability and observability over max-plus defined in [8] in 1993.

A complementary treatment of reachability and observability in max-plus can be
found in [10]. There, working with a different mapping, the authors consider the
equivalency of determining reachability of a state in the max-plus algebra to the
finding of eigenvectors in the min-plus algebra, and pose an open question regarding
when such an equivalency holds.

The paper is organized as follows. Section 2 briefly reviews linear systems over
max-plus, Section 3 presents the system properties of weak reachability and weak
observability, and Section 4 concludes the paper and discusses further research.

2. MAX–PLUS LINEAR SYSTEMS

The max-plus algebra is both a semi-field and a semi-ring. Also, it is a dioid [3], i. e.,
addition is idempotent which implies that there are no nontrivial inverses. Because a
multiplicative inverse does exist, however, the algebra is a semi-field. The max-plus
structure used here is denoted as IRmax and is defined next.

Definition 1. (IRmax) With IR representing the set of real numbers, the set IR ∪
{−∞} with ⊕ defined as maximization and ⊗ defined as conventional addition is a
dioid and is denoted as IRmax. The identity elements for addition and multiplication
are ε = −∞ and e = 0, respectively.

In a similar fashion, let IRmax represent the dioid consisting of the set IR∪{−∞}∪
∪{∞}, and IR+

max denote IR+ ∪ {−∞} where IR+ represents the set of nonnegative
real numbers. A natural order is imposed on two vectors x, y ∈ IR

n

max by defining
x ≤ y if x ⊕ y = y. The Cayley–Hamilton theorem holds over max-plus as well,
although in a slightly different form than in the continuous-variable case. As shown
in [9], the characteristic equation, written in the indeterminate variable z, of a n×n
matrix A in IRn×n

max is given as p+
A(z) = p−A(z), where the coefficients of p+

A(z) and
p−A(z) involve finding the dominant of a matrix which for space consideration will
not be detailed here (see [1]). Olsder and Roos show in [9] that the Cayley–Hamilton
theorem holds in max-plus, that is p+

A(A) = p−A(A).
The general form of a linear, event-index-invariant system is given by

X(k + 1) = AX(k)⊕BU(k + 1) (1)
Y (k) = CX(k), (2)

where k ∈ N+ = {1, 2, . . .} is the event index, X(k) is a n× 1 vector of completion
times for the kth event, Y (k) is a m× 1 vector of system output times, and U(k) is
a p×1 vector of part arrival times. The matrices A,B, and C are of the appropriate
sizes, are functions of the system service and transportation times, and have entries
ranging over IRmax. The completion times evolve over the event index k according
to (1), and the output times of the system evolve as specified in (2). Cohen et al.
term this approach the “dater” representation since the dates or times of events
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are selected as the quantities of interest [3]. A method to generate the algebraic
model given by (1) – (2) directly from a manufacturing system without the need of a
graphical construction (such as a Petri net) has been developed by Doustmohammadi
and Kamen and is given in [5].

3. SYSTEM PROPERTIES

Working with the system described by (1) – (2), definitions of weak reachability and
weak observability are presented along with necessary and sufficient conditions to
determine if a system is weakly reachable and if a system is weakly observable.

3.1. Reachability

Reachability refers to the issue of steering a system from the origin to a specified
state using the input. For linear time-invariant systems in the continuous-variable
case, reachability of a system is determined by the rank of the reachability matrix. If
the rank is full, then all states in IRn can be obtained. For max-plus linear systems,
the transfer to any arbitrary state is not possible except in very special cases. Hence,
unlike the continuous-variable case, the event-time state space is seldom equal to all
of IRn.

Using (1) in a recursive fashion, we can write the state at event index q as
X(q) = AqX(0)⊕ [B AB · · ·Aq−1B]⊗ [UT (q) UT (q−1) · · ·UT (1)]T . By defining the
reachability matrix,

Γq := [B AB · · · Aq−1B],

and using a shorthand notation for the input sequence, U q = [UT (q) UT (q −
1) · · ·UT (1)]T , we can write X(q) = AqX(0)⊕ΓqU q. Unlike the continuous-variable
case, the contribution from the initial condition X(0) cannot be subtracted out.
Consider then, the following definition of a reachable state.

Definition 2. (Reachable State) Given X(0) ∈ IRn
max, a state X ∈ IRnis reachable

in q-steps from X(0) if there exists a control sequence {U(1), U(2), · · · , U(q)} over
IRmax which achieves X(q) = X.

The collection of all such states leads to the following definition.

Definition 3. (Reachable Set) Given X(0) ∈ IRn
max, and a positive integer q, let

Ωq,X(0) be the set of all states X ∈ IRn that can be reached in q steps from X(0),
that is,

Ωq,X(0) = {X ∈ IRn : X = AqX(0)⊕ ΓqU q, where U q ranges over IRpq
max}.

The issue of reachability pertains to whether a control sequence {U(1), U(2), · · ·
· · · , U(q)} can be found that achieves a desired state. To proceed further, we need
a result that deals with the solutions of general equations of the form A ⊗X = B,
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where X and B are column vectors with elements in IRmax. The solution involves
an operation † that acts like an “inverse,” and the min function. The operation
†, called conjugation in [4], represents the negation and transpose operations, i. e.,
for A = {aij}, A† = {−aji}. The symbol ⊗′ represents multiplication using the
min function, the counterpart to ⊗. From lattice theory, we have the following two
results [1, 4].

Proposition 3.1. Given A ∈ IRm×n
max , B ∈ IRm

max, there exists a solution in IR
n

max

to AX = B if and only if
Z = A† ⊗′ B (3)

is a solution; furthermore, Z is actually the greatest solution.

Proposition 3.2. Given A ∈ IRm×n
max , B ∈ IRm

max, the greatest subsolution in IR
n

max

to AX ≤ B is Z = A† ⊗′ B.

We can use these results to obtain a necessary and sufficient condition for a state
to be reachable.

Theorem 3.1. Given an initial state X(0) ∈ IRn
max, and a state X, then X ∈

Ωq,X(0) if and only if

Γq ⊗ (Γ†q ⊗′ X)⊕AqX(0) = X, (4)

in which case U q = Γ†q ⊗′ X drives the system state from X(0) to X(q) = X.

P r o o f . If (4) is true, then U q = Γ†q ⊗′ X. If U q ∈ IRpq, then obviously X ∈
Ωq,X(0); otherwise, if for some j, (U q)j = ∞, then (U q)j can be set to any value
in IRmax without changing the value of Γq ⊗U q = Γq ⊗ (Γ†q ⊗′ X). To see this, we
note that each element of the jth row of Γ†q must equal −ε; hence, the jth column of
Γq must consist entirely of ε. Since ε is absorbing for any element in IRmax, infinite
values in U q can be replaced by any value in IRmax. Thus, X ∈ Ωq,X(0). If X ∈
Ωq,X(0), then, by definition, some U q exists such that X = AqX(0)⊕ ΓqU q. Hence,
Γq ⊗U q ≤ X. By Proposition 3.2, U q = Γ†q ⊗′ X is the greatest subsolution; hence,
Γq ⊗ (Γ†q ⊗′ X) ≤ X. So, Γq ⊗ U q ≤ Γq ⊗ (Γ†q ⊗′ X) ≤ X. Adding AqX(0) to each
term, we have, AqX(0)⊕Γq ⊗U q ≤ AqX(0)⊕Γq ⊗ (Γ†q ⊗′X) ≤ AqX(0)⊕X. Since
the first and last terms are equal to X, Γq ⊗ (Γ†q ⊗′ X) ⊕ AqX(0) = X, i. e., (4) is
satisfied. 2

In the continuous-variable case, a system that is reachable ensures that any state
in IRn can be reached from the origin, i. e., the set of reachable states is all of
IRn. In the max-plus case, because of the max operation, AqX(0) ⊕ ΓqU q cannot
be equal to states that are less than the unforced terminal state AqX(0). Also,
note that for reachable systems in the continuous-variable case, all components of
the state can be set arbitrarily via the input and each component can be modified
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independently of other components. In the max-plus case, it is not possible to
ensure that all components can be set independently other than for a small class
of systems [6]. Instead, we focus on systems for which it is possible to reach a
state whose components are greater than the unforced terminal state and call such
systems weakly reachable. We reserve the term completely reachable for systems for
which any state in IRn can be obtained. Thus, we consider the following definition
of a weakly-reachable system.

Definition 4. (q-step weakly reachable) A system is said to be q-step weakly
reachable if given any X(0), a control sequence exists such that each component
of the terminal state X(q) can be made greater than the unforced terminal state
AqX(0), i. e., there exists U q such that (X(q))j > (AqX(0))j for j = 1, 2, . . . , n.

Before introducing a weakly reachability condition, we need to introduce a matrix
property defined in [4] called asticity.

Definition 5. (Asticity) A n×m matrix G = {gij} is termed row-astic if for each
row i = 1, 2, . . . , n,

⊕m
j=1 gij ∈ IR. Column-asticity is similarly defined. A matrix is

termed doubly-astic if it is both row and column-astic.

Theorem 3.2. A system is q-step weakly reachable if and only if Γq is row-astic.

P r o o f . If Γq is row-astic, then with a large enough U q, (ΓqU q)j > (AqX(0))j for
j = 1, 2, · · · , n. Hence, a state can easily be found which is greater than the unforced
terminal state. If a system is q-step weakly reachable, then for j = 1, 2, · · · , n, we
must have (ΓqU q)j > (AqX(0))j . Thus, (ΓqU q)j must be finite for each j, and hence
Γq must be row-astic. 2

While it may not be possible to set all components of the state independently for
a q-step weakly-reachable system, it is possible to set one component to an arbitrary
value. This result is stated next.

Corollary 3.1. If a system is q-step weakly reachable and X(0) = ε, then given
any β ∈ IR, there exists a control sequence that results in at least one component of
the terminal state being set to β. That is, there exists a U q such that (X(q))j = β
for at least one j ∈ {1, 2, · · · , n} .

P r o o f . See [6]. 2

We note that in the scalar case if a system is q-step weakly reachable and X(0) =
ε, then all states in IRn can be reached, i. e., the system is completely reachable.
The number of components that are able to be selected independently appears to
lead to a possible measure of the size of the set of states that can be reached by the
system.

Definitions for structural controllability are given in [1]. In contrast to the
algebraic notions defined in this work, these definitions pertain to the graphical
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representations of event graphs. Because of the strong tie between event graphs
and the max-plus algebra, however, the results are closely related. In essence, the
required row-asticity condition on the reachability matrix Γq ensures that a path
exists (over q events) from at least one input to each internal transition or state
component. Also, Cofer in [2] defines events to be controllable if their execution can
be arbitrarily delayed. This is equivalent to ensuring a path exists from some input
to the event.

In the continuous-variable case, the Cayley–Hamilton theorem is used to show
that only n-steps need be considered to determine the reachability of the system.
Here, the Cayley–Hamilton theorem in max-plus can be used to show that if the
system is not weakly reachable after n-steps, it won’t be weakly reachable for step
sizes larger than n. This result is stated next.

Corollary 3.2. If a system is not n-step weakly reachable, then the system will
not be weakly reachable for q ≥ n.

P r o o f . From the Cayley–Hamilton theorem, we have p+
A(A) = p−A(A) or An ⊕

p+
n−1A

n−1⊕· · ·⊕p+
0 E = p−n−1A

n−1⊕p−n−2A
n−2⊕· · ·⊕p−0 E, where E is the identity

matrix in max-plus and consists of e along the diagonal and ε everywhere else,
and the coefficients p+

i , p−i are determined from the characteristic equation of A
[9]. Since ⊗ distributes over ⊕ and since scalar multiplication commutes, we have
AnB⊕p+

n−1A
n−1B⊕· · ·⊕p+

0 B = p−n−1A
n−1B⊕p−n−2A

n−2B⊕· · ·⊕p−0 B. In essence,
the right-hand side is the check for the row-asticity of Γn and the left-hand side is
the check of Γn+1. Since the asticity checks are equal, the row-asticity of Γn+1 will
be the same as that of Γn. By assumption, Γn is not row-astic. Thus, Γn+1 is not
row-astic and the system is not weakly reachable. Proofs for q > n follow directly.2

Unlike the continuous-variable case, where the Cayley–Hamilton theorem can be
used to show that the reachable space does not change after n-steps, increasing the
number of steps may lead to reaching a state that was not reachable in fewer steps.
This result is stated next.

Corollary 3.3. If X /∈ Ωn,X(0), then X may belong to Ωq,X(0) where q > n.

P r o o f . See [6]. 2

This result leads directly to the following realization.

Corollary 3.4. Increasing the number of steps from n may result in reaching a
state that was not reachable in n or fewer steps.

P r o o f . Direct application of Corollary 3.3. 2

3.1.1. Feasible systems

The results presented thus far are for general A, B, and C matrices. Now, consider
system, input, and output matrices for a real or feasible system. A feasible system is
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one that could be implemented in practice. Thus, in a feasible system, service times
are real and nonnegative and release times must be nonnegative and nondecreasing.

Definition 6. (Feasible System) A feasible system is a system where the entries
of A,B, and C range over IR+

max.

Since ε represents a “zero” in max-plus, this definition allows entries of ε for
convenience.

Because negative release times result in an impractical, noncausal solution, a
feasible state must result from a sequence of nonnegative release times. Likewise,
for a practical system, release times must be nondecreasing.

Definition 7. (Feasible State) For X ∈ Ωq,X(0), X is feasible if the entries of the
control sequence U q that result in X are nonnegative and nondecreasing.

A sufficient condition that determines if a state is not feasible is given next.

Theorem 3.3. For a feasible system, if ∃ j such that (Γ†q0
⊗′ X)j < 0, and X ∈

Ωq0,X(0), then X will not be feasible. Furthermore, X will not be feasible for q ≥ q0.

P r o o f . Since X ∈ Ωq0,X(0), U q = Γ†q0
⊗′ X, and so by assumption, the jth

element is negative; hence, X is not feasible. Since Γq =
ˆ
Γq0 Aq0B · · ·Aq−1B

˜
, then

(Γ†q ⊗′ X)j < 0 and so X will not be feasible after q-steps either. 2

3.2. Observability

The ability to determine the states of the system from measurements of the output
is reflected in the property of observability. The conditions for state observabil-
ity in the max-plus case are more restrictive than in the continuous-variable case.
One difficulty arises from the lack of an additive inverse. For states that do not
directly contribute to the output, only an upper bound on the event-time state can
be determined.

As in the continuous-variable case, suppose that we have a sequence of q output
values. Using (1) – (2), we can write

2
6664

Y (k)
Y (k + 1)

...
Y (k + q − 1)

3
7775 =

2
6664

C
CA
...

CAq−1

3
7775X(k)⊕

2
6664

ε ε · · · ε
CB ε · · · ε
...

. . .
...

...
CAq−2B · · · CAB CB

3
7775

2
6664

U(k + 1)
U(k + 2)

...
U(k + q − 1)

3
7775 .

(5)
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Using a shorthand notation for the output and input sequences Y q := [Y T (k) Y T (k+
1) · · · Y T (k + q − 1)]T , U q := [UT (k + 1) UT (k + 2) · · · UT (k + q − 1)]T , and
defining the q-step observability matrix,

Oq :=




C
CA
...

CAq−1


 ,

we have
Y q = OqX(k)⊕HU q, (6)

where H is defined appropriately from (5). To begin, we define an output that has
been generated from the system under study as an “observed output”.

Definition 8. (Observed Output Sequence) A sequence of observed outputs Y q ∈
IRmq is a series of outputs given by Y q = OqX(k)⊕HU q where U q ∈ IRp(q−1)

max and
X(k) ∈ IR

n

max.

The collection of all such sequences leads to the following definition.

Definition 9. (Observed Output Sequence Set) Given a positive integer p and
U q ∈ IRp(q−1)

max , let

Σq,U q
= {Y q ∈ IRmq : Y q = OqX(k)⊕HU q, where X(k) ranges over IR

n

max}.

Consider the following necessary and sufficient condition for whether an output
sequence is an observed output sequence.

Theorem 3.4. Given a sequence Y q ∈ IRmq, and an input sequence U q ∈ IRp(q−1)
max ,

then Y q ∈ Σq,U q
if and only if

Oq(O†q ⊗
′
Y q)⊕HU q = Y q. (7)

P r o o f . The proof is similar in nature to that of Theorem 3.1. See [6] for details.
2

Because of the nature of the max-plus algebra, specifically because addition is
idempotent, determination of the actual system state is often not possible. Instead,
we consider whether it is possible to determine the latest state that results in the
observed output sequence. The latest state provides an upper bound on the comple-
tion times that result in the output sequence. Consider then, the following definition
of the latest event-time state.
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Definition 10. (Latest Event–Time State) Given a q-length sequence of observed
outputs Y q with a sequence of inputs U q, the latest event-time state γ(k) which
results in Y q is

γ(k) := max
X(k)

{X(k) ∈ IR
n

max : Y q = OqX(k)⊕HU q},

where the max is over each component.

Because the latest event-time state may not be finite, γ(k) is defined over IR
n

max.
Since infinite event times represent the trivial case and do not provide any informa-
tion about the state, a definition of observability should exclude this case by requiring
the latest event-time state to be finite. This leads to the following definition of weak
observability.

Definition 11. (q-step weakly observable) A system is q-step weakly observable
if for any q-length sequence of observed outputs Y q ∈ Σq,U q

, the latest event-time
state γ(k) is finite and can be computed from Y q.

A necessary and sufficient condition for a system to be q-step weakly observable
is given next.

Theorem 3.5. A system is q-step weakly observable if and only if Oq is column-
astic.

P r o o f . If Oq is column-astic, then for a finite Y q, γ(k) = O†q ⊗′ Y q is finite.
Given any Y q ∈ Σq,U q

, by Theorem 3.4, Oq(O†q ⊗
′
Y q) ⊕HU q = Y q and so γ(k)

results in an observable output sequence. On the other hand, if the system is q-step
weakly observable, γ(k) must be finite and must be computable from a sequence of
observed outputs Y q. By Theorem 3.4, Oq(O†q ⊗

′
Y q) ⊕ HU q = Y q. In order for

γ(k) = O†q ⊗′ Y q to be finite, Oq must be column-astic. 2

Definitions for structural observability are given in [1]. As mentioned before,
the results here are closely related to the graphical constructs given in the cited
references. The required column-asticity condition on the observability matrix Oq

ensures that a path exists from each internal transition or state to at least one
output.

Similar to the continuous-variable case, the Cayley–Hamilton theorem can be
used to show that the column-asticity of the observation matrix will not change by
adding rows of higher powers of A. Using the Cayley–Hamilton theorem, we have
the following result.

Corollary 3.5. If On is not column-astic, then Oq, where q > n, will not be
column-astic.

P r o o f . The proof is similar in nature to that of Theorem 3.2. See [6] for details.
2
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The direct result of this theorem is that observing more than n output values
does not provide more information regarding the latest event-time state.

Corollary 3.6. If a system is not n-step weakly observable, then it won’t be q-step
weakly observable for q ≥ n.

P r o o f . Direct application of Corollary 3.5. 2

3.3. Duality

As in the continuous-variable case, there exists a duality between the properties of
weak reachability and weak observability.

Theorem 3.6. If the system described by (A,B, C) is q-step weakly reachable
(q-step weakly observable), then the dual system (AT , CT , BT ) is q-step weakly
observable (q-step weakly reachable).

P r o o f . If the system (A,B,C) is q-step weakly reachable, then Γq must be

row-astic. In the dual system, Odual
q =




BT

BT AT

...
BT (AT )q−1


 = (Γq)T . Hence, Odual

q

is column-astic and the dual system is q-step weakly observable. If (A,B, C) is
q-step weakly observable, then Oq is column-astic. In the dual system, Γdual

q =[
CT AT CT · · · (AT )q−1CT

]
= (Oq)T . Hence, Γdual

q is row-astic and the dual
system is q-step weakly reachable. 2

4. CONCLUSIONS

This paper examined the properties of reachability and observability of linear max-
plus systems in an algebraic fashion. Necessary and sufficient conditions were pre-
sented for determining if a system is weakly reachable and weakly observable. In
addition, a necessary and sufficient condition was given for determining if a state
is reachable. Future work centers on further exploring the size and linearity of the
reachability set, considering stronger definitions and conditions for reachability and
observability, investigating the implications of reachability on state-feedback control,
and examining ways to determine a limit on the required number of steps to reach
a given state.
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