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AN APPLICATION OF THE
EXPECTATION–MAXIMIZATION ALGORITHM
TO INTERFERENCE REJECTION FOR
DIRECT–SEQUENCE SPREAD–SPECTRUM
SIGNALS

Quan G. Zhang and Costas N. Georghiades

For a direct-sequence spread-spectrum (DS-SS) system we pose and solve the problem of
maximum-likelihood (ML) sequence estimation in the presence of narrowband interference,
using the expectation-maximization (EM) algorithm. It is seen that the iterative EM
algorithm obtains at each iteration an estimate of the interference which is then subtracted
from the data before a new sequence estimate is produced. Both uncoded and trellis coded
systems are studied, and the EM-based algorithm is seen to perform well, outperforming a
receiver that uses an optimized notch filter to remove the intereference, especially for large
interference levels.

1. INTRODUCTION

With the proliferation of wireless communication products and the crowding of the
radio frequency spectrum, the problem of combatting interference has become more
pronounced. For example, in the unlincensed industrial, scientific and medical (ISM)
bands, in which the so-called FCC Part 15 devices (cordless phones, wireless ethernet
cards, etc.) operate, users must be able to sustain interference. Many of the systems
in these bands use spread spectrum technology, which is known to be robust to
narrowband interference and multipath. Spread spectrum alone, however, is not
enough to alleviate the interference problem, and further steps are needed to combat
it, especially in severe interference environments.

There are in general two ways to further reduce interference: 1) by preventing
it from entering the receiver front-end through appropriate antenna design (i. e.
“smart antennas”), and/or 2) by suitably processing the received signal in order
to negate the effects of interference. The work we present next belongs to the
second category of interference rejection techniques. In contrast to most algorithms,
however, which focus on estimating the interference (using one technique or another)
and then subtracting it from the received signal, in this paper we pose the problem
as one of maximum-likelihood (ML) sequence estimation (i. e. we use a minimum
error probability criterion).
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To make the problem of obtaining ML estimates tractable, we use the expectation-
maximization (EM) algorithm [2, 10], and apply it first to the simple problem of
single-tone interference, where the interfering frequency is known, but either the
phase or the amplitude are unknown. This problem is admittedly not realistic, but
it does serve to illustrate the use of the EM algorithm and to assess its potential
performance compared to other techniques. For the single-tone interference problem,
an obvious (but suboptimal) technique for combatting the interference is to use a
notch filter, which however, besides suppressing the interference, also suppresses
part of the signal. We will see next, that the EM-based algorithm significantly
outperforms the notch filter approach, particularly at large interference levels.

For an excellent tutorial on interference rejection techniques the interested reader
is referred to [8]. Other applications of the EM algorithm to communication scenarios
include [1] – [6].

Section 2 introduces the EM-based algorithms, Section 3 looks at performance
and makes comparisons, and Section 4 concludes.

2. THE EM–BASED ALGORITHMS FOR INTERFERENCE REJECTION

The EM algorithm is based on the notion of complete and incomplete data. The
incomplete data consist of the data actually oberved, from which a ML estimates
must be obtained. The complete data is a set of desirable data, whose availability
makes the estimation problem easy in some sense.

The EM algorithm proceeds as follows. Suppose x and y are the complete and
incomplete data respectively, and b is a parameter vector to be estimated. The
two-step iterative algorithm at the ith iteration is:

1. E–step: Compute Q(b|bi) = E[log p(x|b)|y, bi],

2. M–step: Compute bi+1 = arg maxb Q(b|bi),

where bi is the estimated parameter at the ith step, and p(x|b) is the conditional
density of x, given b.

We apply the algorithm to the case of single-tone interference next.

A. Single-tone interference with random phase

Let the single-tone interference be

J(t) = B cos(ωt + θ), (1)

where θ is a uniformly distributed random phase, and B and ω are known amplitude
and frequency respectively. The received signal in an additive white Gaussian noise
n(t) of spectral density N0/2 is then

r(t) = S(t; a) + J(t) + n(t), (2)

where
S(t; a) = A

∑

i

∑

k

aickp(t− kTc − iT ) (3)
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is the baseband spread spectrum signal, {ck} is the spreading sequence, p(t) is the
baseband pulse, Tc and T are the chip and bit intervals, respectively, A is the signal
amplitude, and {ai} is the data sequence with data taking values in {−1,+1}. The
problem is to estimate a from r(t), using the EM algorithm. Towards this end, we
choose the complete data as [r(t), θ]. Then the E-Step of the EM iteration is:

Q(a|ak) = E
[
log p[r(t), θ|a]|r(t), ak

]
, (4)

where ak is the sequence estimate at the kth iteration, and log p[r(t), θ|a] is the
log-likelihood function for the complete data. After some simplifications and ma-
nipulations, we obtain

Q(a|ak) =
∫ [

r(t)− Ĵ(t, ak)
]
S(t, a) dt, (5)

where

Ĵ(t, ak) = B
I1[C(ak)]
I0[C(ak)]

cos
[
ωt− θ̂(ak)

]
, (6)

C1(ak) = 2B
N0

+∞∫

−∞

[
r(t)− S(t,ak)

]
cos(ωt) dt, (7)

C2(ak) = 2B
N0

+∞∫

−∞

[
r(t)− S(t,ak)

]
sin(ωt) dt, (8)

C(ak) =
√

C2
1 (ak) + C2

2 (ak), (9)

θ̂(ak) = arctan
[

C2(ak)
C1(ak)

]
. (10)

Here the I0[·] and I1[·] are the zeroth and first order modified Bessel functions
respectively.

The data sequence can be obtained by maximizing Q(a|ak) over all data se-
quences a. This can be done efficiently through symbol-by-symbol detection when
no coding is used, or by using the Viterbi algorithm if trellis coding is used. In
initializing the algorithm, we assume (at the start of the iteration process) that
θ = 0.

The general structure of the EM-based algorithm is shown in Figure 1.
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sequence estimation
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Fig. 1. Structure of the EM-based receiver.
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Random amplitude interference

As another application, we assume here that only the amplitude B of the tone
interferer is random. We consider two example cases, but others can be solved as
easily: 1) when B is uniformly distributed over a known interval; and 2) when B is
Rayleigh distributed. In other words,

pB(B) =
1
η
, 0 ≤ B ≤ η

for a uniform distribution, and

pB(B) = Be−
B2
2

for a Rayleigh distribution.
It is easily seen that equation (5) still holds (in fact it holds in general for any

interference J(t)), where

Ĵ(t,ak) = B̂ cos(ωt + θ). (11)

Skipping the derivations, we have:

— Uniform case:

B̂ =

η∫
0

Be−K2(B− K1
2K2

)2dB

η∫
0

e−K2(B− K1
2K2

)2dB

. (12)

— Rayleigh case:

B̂ =
K6

K5
, (13)

where,

K1(ak) =
1

N0

∫ [
r(t)− S(t,ak)

]
cos(ωt + θ) dt, (14)

K2 =
1

2N0

∫
cos2(ωt + θ) dt, (15)

K5 =

+∞∫

0

BeK1B−(K2+
1
2 )B2

dB, (16)

K6 =

+∞∫

0

B2eK1B−(K2+
1
2 )B2

dB. (17)

All the time-integrals above are over the data sequence length.

We look at performance next.
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3. SIMULATION RESULTS

In this section, we investigate the error-probability performance of the EM-based
algorithms for both coded and uncoded systems and compare it to that obtained
using a notch filter. Simulations are run for various parameters, such as the observed
data sequence length, processing gain, and interference strength. A sampling rate
of 10 samples per chip (more than adequate) was used in the simulations. The
frequency offset of the tone interferer from the carrier was fixed to about 1/6 of the
chip rate. Other offsets were also tried, but it was seen that there was no observable
difference in the performance of the EM-based algorithms as a function of frequency
offset.

In the figures, J/S is the interference to signal ratio in dB, defined as the ratio
of the interference power to the signal power, and L is the observed sequence length
in bits. Figure 2 shows the performance of the EM algorithm for interference levels
of 10 dB and 20 dB. The comparison is to a conventional detector that ignores the
interference, and to the performance of a ML detector in the absence of intereference.
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Fig. 2. Performance with and without the EM-algorithm.

It can be seen from Figure 2 that the EM estimator is effective for interference
rejection for a large range of interference levels, even when L = 1.

Figure 3, which plots performance as a function of interference for an SNR of
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8 dB, illustrates this further.
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Fig. 3. Performance as a function of intereference level for L = 1.

Figure 4 shows the influence of the observed data sequence length L for an inter-
ference level of 3 dB.

The figure indicates that a window size of about 5 achieves most the possible
performance gain.

Figure 5 shows performance for different chip rates. It can be seen that the
EM-based algorithm performs well, even at small processing gains.

Figure 6 shows coded performance for a rate 1/2 4-state convolutional code and
for both soft and hard-decision decoding. The structure of the EM-based algorithm
allows the use of the Viterbi algorithm for efficient decoding.

The EM-cased algorithm was seen to converge mostly within two to three iter-
ations. Results for the random amplitude case have also been obtained and are
similar to those presented above for random phase.

Finally, we compare the performance of the EM algorithm with that of a notch fil-
ter, implemented as a two-sided transversal filter and optimized as described in [10].
Figure 7 compares the performance of the notch filter receiver and the EM-based
algorithm for both the random phase and amplitude cases.

Here the filter is implemented using 13 taps, the processing gain is 31, and the
interference to signal ratio is 10 dB. The observation window length for the EM
algorithm is 5. It can be seen that the performance is improved by using the EM
algorithm, but at the cost of increased computational complexity.
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4. CONCLUSIONS

We have applied the EM algorithm to the problem of sequence estimation in the
presence of narrowband interference. The EM-based algorithm performed very well,
achieving near-optimal performance for a large range of interference levels, at the
cost, however, of increased complexity. This increased complexity probably means
that the EM-based algorithm will not replace the simple notch filter algorithm for
rejecting tone interference. However, the overall success of the EM algorithm does
provide motivation for applying it to more general and realistic models of interfer-
ence, where the increased complexity may be justified by the improved performance
compared to alternative algorithms.

(Received April 8, 1998.)
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