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PV Press, Pod vrstevnićı 5, 140 00 Prague 4. — Orders and subscriptions should be placed
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WEAK LAW OF LARGE NUMBERS
FOR I.I.D. FUZZY RANDOM VARIABLES

Dug Hun Hong and Kyung Tae Kim

In this paper, weak laws of large numbers for sum of independent and identically dis-
tributed fuzzy random variables are obtained.
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AMS Subject Classification: 60F05, 60B12

1. INTRODUCTION

The celebrated Feller weak law of large numbers provided a necessary and sufficient
condition in the i.i.d. case in [1] as follows:

Theorem 1.1. (Feller) Let {Xn} be i.i.d. random variables and Sn =
∑n

i=1 Xi.
Suppose that EX1I[|X1|≤n] → u as n →∞. Then Sn/n → u in probability as n →∞
if and only if n Pr{|X1| > n} → 0 as n →∞.

Let a > 0. A positive measurable function f on [a,∞) varies regularly at infinity
with exponent ρ, ∞ < ρ < ∞, denote f ∈ RV(ρ), if and only if

f(tx)
f(t)

→ xρ as t →∞ for all x > 0.

If ρ = 0 the function is slowly varying at infinity; f ∈ SV.

Recently, Gut [3] provided the following more general Feller law concerning reg-
ularly and slowly varying functions.

Theorem 1.2. (Gut) Let {Xn} be i.i.d. random variables and Sn =
∑n

i=1 Xi.
Further, let, for x > 0, b ∈ RV(1/ρ), for some ρ ∈ (0, 1], that is, let b(x) = x1/ρl(x),
where l ∈ SV . Set bn = b(n). Then (1/bn)(Sn − nEX1I[|X1|≤bn]) → 0 in probability
as n →∞ if and only if n Pr{|X1| > bn} → 0 as n →∞.

The author should simply think c (constant), log x or log log x each time the
function l(x) appears.
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The concept of a fuzzy random variable was introduced as a natural generaliza-
tion of random sets in order to represent relationships between the outcomes of a
random experiment and inexact data. By inexactness here we mean non-statistical
inexactness due to the subjectivity and imprecision of human knowledge. Limit the-
orems for sums of independent fuzzy random variables have received much attentions
because of its usefulness in several applied fields. This paper concerns with weak
law of large numbers which is the one of limit theorems. Many authors have studied
the strong laws of large numbers for sums of independent fuzzy random variables.
For example, see Hong and Kim [4], Hong [5], Inoue [6], Joo and Kim [8], Kim [10],
Klement et al. [11], Kruse [12], Miyakoshi and Shimbo [13], Uemura [16] and so on
[7, 14]. On the other hand, weak laws of large numbers for fuzzy random variables
have been studied only by Joo [9] and Taylor et al. [15]. The purpose of this paper
is to obtain Feller, Gut [3] weak law of large numbers for sums of independent and
identically distributed (i.i.d.) fuzzy random variables.

2. PRELIMINARIES

In this section, we describe some basic concepts of fuzzy numbers. Let R denote the
real line. A fuzzy number is a fuzzy set ũ : R −→ [0, 1] with the following properties;

1. ũ is normal, i. e., there exists x ∈ R such that ũ(x) = 1.

2. ũ is upper semicontinuous.

3. supp ũ = cl{x ∈ R|ũ(x) > 0} is compact.

4. ũ is a convex fuzzy set, i. e., ũ(λx + (1 − λ)y) ≥ min(ũ(x), ũ(y)) for x, y ∈ R
and λ ∈ [0, 1].

We denote the family of all fuzzy numbers by F (R). For a fuzzy set ũ, the α-level
set of ũ is defined by

Lαũ =

{
{x|ũ(x) ≥ α}, 0 < α ≤ 1,

supp ũ, α = 0.
(1)

Then it follows that ũ is a fuzzy number if and only if L1ũ 6= φ and Lαũ is a closed
bounded interval for each α ∈ [0, 1]. Form this characterization of fuzzy numbers, a
fuzzy number, ũ is completely determined by the endpoints of the intervals Lαũ =
[u1

α, u2
α].

Theorem 2.1. (Goetschel and Voxman [2]) For ũ ∈ F (R), denote u1(α) = u1
α and

u2(α) = u2
α by considering them as functions of α ∈ [0, 1]. Then the following hold:

1. u1 is a bounded non-decreasing function on [0,1].

2. u2 is a bounded non-increasing function on [0,1].

3. u1(1) ≤ u2(1).

4. u1 and u2 are left continuous on [0,1] and right continuous at 0.

5. If v1and v2 satisfy above (1) – (4), then there exists a unique ṽ ∈ F (R) such
that v1

α = v1(α), v2
α = v2(α), for all α ∈ [0, 1].
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The above theorem implies that we can identify a fuzzy number ũ with the param-
eterized representation {(u1

α, u2
α) | 0 ≤ α ≤ 1}, where u1 and u2 satisfy (1) – (4) of

Theorem 2.1. Suppose now that ũ, ṽ ∈ F (R) are fuzzy numbers whose representa-
tions are ũ = {(u1

α, u2
α) | 0 ≤ α ≤ 1} and ṽ = {(v1

α, v2
α) | 0 ≤ α ≤ 1}, respectively. If

we define
(ũ + ṽ)(z) = sup

x+y=z
min(ũ(x), ṽ(y)),

(λũ)(z) =

{
ũ(z/λ), λ 6= 0,

0̃, λ = 0,

where 0̃ = I{0} is the indicator function of {0}, then

ũ + ṽ = {(u1
α + v1

α , u2
α + v2

α) | 0 ≤ α ≤ 1}
λũ = {(λu1

α, λu2
α) | 0 ≤ α ≤ 1} for λ > 0.

Now, we define the metric d∞ on F (R) by

d∞(ũ, ṽ) = sup
0≤α≤1

dH(Lαũ, Lαṽ),

where dH denotes Hausdorff metric on closed subsets of R which admits in our
particular case the form

dH(Lαũ, Lαṽ) = max(|u1
α − v1

α|, |u2
α − v2

α|).
Also, the norm ‖ũ‖ of fuzzy number ũ will be defined as

‖ũ‖ = d∞(ũ, 0̃) = max(|u1
0|, |u2

0|).
Let (Ω,A, P ) denotes a complete probability space. For a fuzzy number valued

function X̃ : Ω → F (R) and a subset B of R, X̃−1(B) denotes the fuzzy subset of
Ω defined by

X̃−1(B)(ω) = sup
x∈B

X̃(ω)(x)

for every ω ∈ Ω. The function X̃ : Ω → F (R) is called a fuzzy random variables if for
every closed subset B of R, the fuzzy set X̃−1(B) is measurable when considered as
a function from Ω to [0, 1]. If we denote X̃(ω) = {(X1

α(ω), X2
α(ω)|0 ≤ α ≤ 1}, then

it is well known that X̃ is a fuzzy random variable if and only if for each α ∈ [0, 1],
X1

α and X2
α are random variables in the usual sense.

A fuzzy random variable X̃(ω) = {(X1
α(ω), X2

α(ω)|0 ≤ α ≤ 1}, is called integrable
if for each α ∈ [0, 1], X1

α and X2
α are integrable, equivalently,

∫ ‖X̃‖dP < ∞. In
this case, the expectation of X̃ is the fuzzy number EX̃ defined by

EX̃ =
∫

X̃ dP =
{(∫

X1
α dP,

∫
X2

α dP

) ∣∣∣0 ≤ α ≤ 1
}

.

Let {X̃n} be a sequence of fuzzy random variables. For α ∈ [0, 1] {X1
nα}, {X2

nα}
are sequences of independent and identically distributed random variables. Then
{X̃n} is called a sequence of independent and identically distributed fuzzy random
variables.
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3. MAIN RESULTS

We define X̃I[‖X̃‖≤t] as

X̃I[‖X̃‖≤t](ω) =

{
X̃(ω) if‖X̃(ω)‖ ≤ t,

I{0} otherwise.

Theorem 3.1. Let {X̃n} be a sequence of independent and identically distributed
fuzzy random variables and S̃n =

∑n
i=1 X̃i. Suppose that for a fuzzy number ũ ∈

F (R), d∞(EX̃1I[‖X̃1‖≤n], ũ) → 0 , then

d∞

(
S̃n

n
, ũ

)
→ 0 in probability (2)

iff

nP{‖X̃1‖ > n} → 0. (3)

To prove our main result, we need some lemmas.

Lemma 3.2. (Kim [10]) For each ũ ∈ F (R) and each ε > 0, there exists a partition
0 = α0 < α1 < · · · < αr = 1 of [0, 1] such that

max(u1
αk
− u1

α+
k−1

, u2
α+

k−1
− u2

αk
) < ε, k = 1, 2, . . . , r,

where ui
α+ denotes the right-hand limit of u1 at α, i = 1, 2.

Lemma 3.3. (Hong [5]) For a sequence {ũn} ∈ F (R) and a continuous ũ ∈ F (R),
suppose that for each α ∈ [0, 1], dH(Lαũn, Lαũ) → 0. Then we have d∞(ũn, ũ) → 0.

Lemma 3.4. Let {X̃n} be a sequence of independent and identically distributed
fuzzy random variables. Let X̃

′
jn = X̃jI[‖X̃j‖≤n] and let S

′
n =

∑n
j=1 X

′
jn. If

nP{‖X̃1‖ > n} → 0, then for each α ∈ [0, 1], (1/n)((S̃
′
n)1α − (ES̃

′
n)1α) → 0 in

probability.
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P r o o f . By the assumption, for α ∈ [0, 1],

E




(
S̃
′
n

n

)1

α

−
(

ES̃
′
n

n

)1

α




2

=
1
n2

n∑

j=1

E((X
′
jn)1α − E(X

′
jn)1α)2

≤ 1
n2

n∑

j=1

E((X
′
jn)1α)2

=
1
n

E((X
′
1n)1α)2

=
1
n

n∑

j=1

∫

[j−1<‖X̃1‖≤j]

((X
′
1n)1α)2

≤ 1
n

n∑

j=1

∫

[j−1<‖X̃1‖≤j]

‖X̃1‖2

≤ 1
n

n∑

j=1

j2
[
P{‖X̃1‖ > j − 1} − P{‖X̃1‖ > j}

]

=
1
n

[
P{‖X̃1‖ > 0} − n2P{‖X̃1‖ > n}

+
n−1∑

j=1

((j + 1)2 − j2)P{‖X̃1‖ > j}]

≤ 3
n


1 +

n−1∑

j=1

jP{‖X̃1‖ > j}



= o(1),

which completes the proof. ¤

P r o o f o f T h e o r e m 3.1. (⇐=) Set X̃
′
jn = X̃jI[‖X̃j‖≤n] for 1 ≤ j ≤ n and

S̃
′
n =

∑n
j=1 X̃

′
jn. Then, for each n ≥ 2, {X̃ ′

jn, 1 ≤ j ≤ n} are i.i.d. and for ε > 0,

P{d∞(S̃n/n, S̃
′
n/n) > ε} ≤ P{S̃n 6= S̃

′
n} = P{∪n

j=1[X̃j 6= X̃
′
jn]} ≤ nP{‖X1‖ > n},

so that (2) entails
d∞(S̃n/n, S̃

′
n/n) → 0 in probability. (4)

Next, we verify that d∞(S̃
′
n/n,ES̃

′
n/n) = d∞(S̃

′
n/n,EX̃1I[‖X̃1‖≤n]) → 0 in probabil-

ity. By Lemma 3.2, there exists a partition 0 = α0 < α1 < · · · < αk = 1 satisfying
|u1

αi
−u1

α+
i−1
| < ε/4 for all i, and since (EX̃1I[‖X̃1‖≤n])

1
α converges to u1(α) uniformly

with respect to α, there exist N1 > 0 such that for any n ≥ N1, |(EX̃1I[‖X̃1‖≤n])
1
α −

u1
α| < ε/4 for all α. Now, since nP{|X1

1α| > n} ≤ nP{‖X1
1‖ > n} → 0, by

Lemma 3.4 there exist N2 > 0 such that for any n ≥ N2, P{|( S̃
′
n

n )1αi
− (ES̃

′
n

n )1αi
| >
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ε
4} ≤ ε/k for all i = 1, 2, . . . , k. Here, we note that, for n ≥ max{N1, N2} = N , if
supi |(S̃

′
n/n)1αi

− (EX̃1I[‖X̃1‖≤n])
1
αi
| ≤ ε/4, then supα |(S̃

′
n/n)1α− (EX̃1I[‖X̃1‖≤n])

1
α| ≤

ε. It is because for α ∈ (αi−1, αi]

(S̃
′
n/n)1α −

(
EX̃1I[‖X̃1‖≤n]

)1

α
≤ (S̃

′
n/n)1αi

−
(
EX̃1I[‖X̃1‖≤n]

)1

α+
i−1

≤
(
EX̃1I[‖X̃1‖≤n]

)1

αi

−
(
EX̃1I[‖X̃1‖≤n]

)
α+

i−1

+
ε

4

≤ u1(αi)− u1(α+
i−1) +

ε

4
+

ε

4
+

ε

4
= ε,

and similarly we have

(
EX̃1I[‖X̃1‖≤n]

)1

α
−

(
S̃
′
n

n

)1

α

≤ ε,

and hence it follows. Now, for n ≥ N

P



sup

α

∣∣∣∣∣∣

(
S̃
′
n

n

)1

α

−
(

ES̃
′
n

n

)1

α

∣∣∣∣∣∣
> ε





≤ P



sup

i

∣∣∣∣∣∣

(
S̃
′
n

n

)1

αi

−
(

ES̃
′
n

n

)1

αi

∣∣∣∣∣∣
>

ε

4





≤
k∑

i=1

P





∣∣∣∣∣∣

(
S̃
′
n

n

)1

αi

−
(

ES̃
′
n

n

)1

αi

∣∣∣∣∣∣
>

ε

4





≤ k
ε

k
= ε.

Hence, we proved supα |(S̃
′
n/n)1α − (EX̃1I[‖X̃1‖≤n])

1
α| → 0 in probability. Similarly,

it can be proved supα |(S̃
′
n/n)2α − (EX1I[‖X1‖≤n])2α| → 0 in probability. Therefore,

we obtain
d∞(S̃

′
n/n,ES̃

′
n/n) → 0 in probability. (5)

Now by (3) and (4), we have that

P

{
d∞

(
S̃n

n
, ũ

)
> ε

}

≤ P

{
d∞

(
S̃n

n
,
S̃
′
n

n

)
+ d∞

(
S̃
′
n

n
,
ES̃

′
n

n

)
+ d∞

(
ES̃

′
n

n
, ũ

)
> ε

}

≤ P

{
d∞

(
S̃n

n
,
S̃
′
n

n

)
>

ε

3

}
+ P

{
d∞

(
S̃
′
n

n
,
ES̃

′
n

n

)
>

ε

3

}
+ P

{
d∞

(
ES̃

′
n

n
, ũ

)
>

ε

3

}
→ 0
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which completes the proof. ¤

(=⇒) If (1) holds, then S1
n0/n → u1

0 in probability and S2
n0/n → u2

0 in probability.
Then the classical WLLN (see [1]) implies

nP{|X1
10| > n} → 0 and nP{|X2

10| > n} → 0.

Therefore,

nP{‖X̃1‖ > n} = nP{max(|X1
10|, |X2

10|) > n}
≤ n(P{|X1

10| > n}+ P{|X2
10| > n}) → 0.

Theorem 3.5. Let {X̃n} be a sequence of independent and identically distributed
fuzzy random variables and S̃n =

∑n
i=1 X̃i. Let b(x) = x1/ρl(x) for some ρ ∈ (0, 1],

where l ∈ SV and limx→∞ l(x) = ∞ for ρ = 1. Set bn = b(n). Suppose that
(1/bn) d∞(nEX̃1I[‖X̃1‖≤bn], 0̃) → 0 as n →∞ then

(1/bn) d∞(S̃n, 0̃) → 0 in probability as n →∞ (6)

iff
nP

{
‖X̃1‖ > bn

}
→ 0 as n →∞. (7)

To prove above result, we need the following lemma.

Lemma 3.6. (Gut [3]) Let {Xn} be a sequence of i.i.d. random variables. Let
X ′

j = XjI[|Xj |≤bn] for 1 ≤ j ≤ n and let S
′
n =

∑n
j=1 X

′
j . Let b(x) = x1/ρl(x) for

some ρ ∈ (0, 1], where l ∈ SV and set bn = b(n). If nP{|X1| > bn} → 0 as n →∞,
then 1

bn
(S

′
n − ES

′
n) → 0 in probability as n →∞.

P r o o f o f T h e o r e m 3.5. (⇐=) Set X̃
′
j = X̃jI[‖X̃j‖≤bn] for 1 ≤ j ≤ n and

S̃
′
n =

∑n
j=1 X̃

′
j . Then, for each n ≥ 2, {X̃ ′

j , 1 ≤ j ≤ n} are i.i.d. and for ε > 0,

P{d∞(S̃n/n, S̃
′
n/n) > ε} ≤ P{S̃n 6= S̃

′
n} = P{∪n

j=1[X̃j 6= X̃
′
j ]} ≤ nP{‖X1‖ > bn},

so that (6) entails

(1/bn) d∞(S̃n, S̃
′
n) → 0 in probability as n →∞. (8)

Next, we verify that (1/bn) d∞(S̃
′
n, 0̃) → 0 in probability as n →∞. We note that

d∞(S̃
′
n, 0̃) ≤ |(S̃′n)10|+ |(S̃′n)20|

≤
[
|(S̃′n)10 − (nEX̃1I[‖X̃1‖≤bn])

1
0|+ d∞(nEX̃1I[‖X̃1‖≤bn], 0̃)

]

+
[
|(S̃′n)20 − (nEX̃1I[‖X̃1‖≤bn])

2
0|+ d∞(nEX̃1I[‖X̃1‖≤bn], 0̃)

]

≤ 2
[
dH(L0S̃

′
n, L0(nEX̃I[‖X̃1‖≤bn])) + d∞(nEX̃1I[‖X̃1‖≤bn], 0̃)

]
.
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Therefore, by Lemma 3.6 and the assumption, we obtain

(1/bn) d∞(S̃
′
n, 0̃) → 0 in probability as n →∞. (9)

Now by (7), and (8), we have that

P
{

(1/bn)d∞(S̃n, 0̃) > ε
}

≤ P
{

(1/bn) d∞(S̃n, S̃
′
n) + (1/bn) d∞(S̃

′
n, 0̃) > ε

}

≤ P
{

(1/bn) d∞(S̃n, S̃
′
n) >

ε

2

}
+ P

{
(1/bn) d∞(S̃

′
n, 0̃) >

ε

2

}
→ 0.

(=⇒) If (5) holds, then S1
n0/bn → 0 in probability and S2

n0/bn → 0 in probability.
Then

(1/bn)(Si
n1 − nEXi

10I[|Xi
10|≤bn]) → 0, i = 1, 2

in probability as n →∞, since

EXi
10I[|Xi

10|≤bn] ≤ d∞E(X̃1I[‖X̃1‖≤bn], 0̃), i = 1, 2.

Then Theorem 1.2 implies

nP{|X1
10| > bn} → 0 and nP{|X2

10| > bn} → 0.

Therefore,

nP
{
‖X̃1‖ > bn

}
= nP

{
max(|X1

10|, |X2
10|) > bn

}

≤ n
(
P

{|X1
10| > bn

}
+ P

{|X2
10| > bn

}) → 0

as n →∞, which completes the proof. ¤

Remark 3.7. In Theorem 3.5, if d∞(EX̃1I[‖X̃1‖≤bn], ũ) → 0 for a fuzzy number
ũ ∈ F (R) or ‖EX̃1I[‖X̃1‖≤bn]‖, n = 1, 2, . . . , are bounded then the assumption
(1/bn) d∞(nEX̃1I[‖X̃1‖≤bn], 0̃) → 0 as n →∞ holds since n/bn → 0 as n →∞.

Example 3.8. Let ũ ∈ F (R) be fixed and let {Yn} be a sequence of i.i.d. random
variables with common density

f(x) =

{
c

x2 log |x| for|x| ≥ 2,

0 otherwise,

where c is a normalizing constants. We define (X̃n(ω))(x) = ũ(x − Yn(ω)), i. e.,
X̃n(ω) is the translation of ũ by Yn(ω) in the real axis. Then

X̃1
nα(ω) = u1

α + Yn(ω) and X̃2
nα(ω) = u2

α + Yn(ω).
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We note that

nP{‖X̃1‖ > n} = nP{max(|X1
10|, |X2

10|) > n}
≤ n(P{|u1

0 + Y1| > n}+ P{|u2
0 + Y1| > n}) → 0

and

dH(LαEX̃1I[‖X̃1‖≤n], Lαũ)

= max
(∣∣∣(EX̃1I[‖X̃1‖≤n])

1
α − u1

α

∣∣∣ ,
∣∣∣(EX̃1I[‖X̃1‖≤n])

2
α − u2

α

∣∣∣
)

=

∣∣∣∣∣
∫

[‖X̃1‖≤n]

(u1
α + Y1) dP − u1

α

∣∣∣∣∣ +

∣∣∣∣∣
∫

[‖X̃1‖≤n]

(u2
α + Y1) dP − u2

α

∣∣∣∣∣

≤ 2

∣∣∣∣∣
∫

[‖X̃1‖≤n]

Y1 dP

∣∣∣∣∣ + ‖ũ‖P{‖X̃1‖ > n}

≤ 2
∫

[n−u1
0,n+u1

0]

|Y1|dP + 2
∫

[n−u2
0,n+u2

0]

|Y1| dP + ‖ũ‖P{‖X̃1‖ > n}

≤ 4
∫

[n−‖ũ‖,n+‖ũ‖]
|Y1|dP + ‖ũ‖P{‖X̃1‖ > n}

≤ 4(n + ‖ũ‖)P{|Y1| > n− ‖ũ‖}}+ ‖ũ‖P{‖X̃1‖ > n}
≤ 4(n− ‖ũ‖)P{|Y1| > n− ‖ũ‖}+ 8‖ũ‖P{‖X̃1‖ > n− ‖ũ‖}+ ‖ũ‖P{‖X̃1‖ > n}
→ 0.

Then we have

d∞

(
S̃n

n
, ũ

)
→ 0 in probability

by the criteria in Theorem 3.1.

Example 3.9. Let ρ ∈ (0, 1], and suppose that {Yn} is a sequence of i.i.d. random
variables with common density

f(x) =

{
ρ

2|x|1+ρ for|x| ≥ 1,

0 otherwise.

Then nP{|Y1| > (n log n)1/ρ} → 0 as n → 0 (Example 1.3 [3]). We define
(X̃n(ω))(x) = ũ(x − Yn(ω)), i. e., X̃n(ω) is the translation of ũ by Yn(ω) in the
real axis. Then

X̃1
nα(ω) = u1

α + Yn(ω) and X̃2
nα(ω) = u2

α + Yn(ω).
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We can easily check that nP{‖X̃1‖ > (n log n)1/ρ} → 0. Next we consider that

dH

(
LαEX̃1I[‖X̃1‖≤(n log n)1/ρ], 0

)

= max
(∣∣∣(EX̃1I[‖X̃1‖≤(n log n)1/ρ])

1
α

∣∣∣ ,
∣∣∣(EX̃1I[‖X̃1‖≤(n log n)1/ρ])

2
α

∣∣∣
)

=

∣∣∣∣∣
∫

[‖X̃1‖≤(n log n)1/ρ]

(u1
α + Y1) dP

∣∣∣∣∣ +

∣∣∣∣∣
∫

[‖X̃1‖≤(n log n)1/ρ]

(u2
α + Y1) dP

∣∣∣∣∣

≤ 2

∣∣∣∣∣
∫

[‖X̃1‖≤(n log n)1/ρ]

Y1 dP

∣∣∣∣∣ + 2‖ũ‖

≤ 4
∫

[(n log n)1/ρ−‖ũ‖,(n log n)1/ρ+‖ũ‖]
|Y1| dP + 2‖ũ‖

≤ 4((n log n)1/ρ + ‖ũ‖)P{|Y1| > (n log n)1/ρ − ‖ũ‖}}+ 2‖ũ‖,

and hence we have that (1/(n log n)1/ρ) d∞(nEX̃1I[‖X̃1‖≤(nlogn)1/ρ], 0̃)→0 as n→∞.
Then we have

d∞

(
S̃n

(n log n)1/ρ
, 0̃

)
→ 0 in probability

by the criteria in Theorem 3.5.
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