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ALGORITHMS FOR BAYESIAN ESTIMATION
OF SPLINE MODEL STRUCTURE

Jan Spousta

A special case of model structure identification is studied. Convolution models with the kernel
described by first order spline-functions are tested. Fast algorithm for finding the most probable
structure of the model is described.

1. INTRODUCTION

There are two contradictory demands in practice of discrete adaptive control of
continuous dynamic systems.

– For good knowledge of system behavior, we must choose a short sampling
period.

– If an adaptive regression model based regulator with a given order is used, the
numerical sensibility grows up with the sampling frequency. An increasing of
the order which can improve the robustness is often not possible because of
limited computing time, storage size etc.

One way to solve this antagonism is to use a continuous data filtration. In this
paper we use the filtration based on the spline-function approximation of the convo-
lution kernel in the convolution model of a linear dynamic system. The motivation
is to obtain a flexible tool for modelling kernels, particularly those with limited sup-
ports. An approximating spline-function can be expressed as a linear combination
of given base spline-functions. The problem is to find the set of base functions, their
number and some other demands (order, defect) are given. The crucial demand is
that they must give “good” approximation of the (slowly changing) kernel of the
system for purposes of control.

We deal with the filtration derived from a spline-approximated convolution kernel
in the convolution model of linear dynamic system. The kernel (denoted by K(t)) is
parametrized through a fixed number of basic spline functions. This parametrization
can be more flexible in comparison with usually used exponentials in the case of
limited support of the kernel. The supports of the spline functions are namely
limited, too. If the basic spline functions are denoted by fKi(t) and some real
parameters θi for i = 1, 2, . . . , m, we write K(t) ≈ ∑m

i=1 θi fKi(t). The parameters θi

are then estimated (and changed) on-line and through this estimation the adaptivity
of the regulator is realized.

The problem solved in the paper is to define the functions fKi(t) before the
adaptive regulation starts. As a basis for this choice we have some knowledge of the
system behavior, that is the data d(N) for some N .

Our solution is based on a Bayes decision algorithm, described in [2]. In our case,
we must choose one hypothesis about the basis spline-functions from a set of all a
priori defined hypotheses. In more detail we must:
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– define the set of all hypothesis {Hp}M
p=1 about the bases. Any hypothesis Hp

corresponds to some basis Bp for each p. From the data (or from a sufficient
statistic V ) and from the corresponding bases (or from the filter matrices Sp

defined by the bases Bp) we shall then need to compute the probabilities of all
so given hypotheses in the Bayes manner. Therefore we must

– adapt the algorithm for computing probabilities of the above hypotheses i.e.
probabilities of the hypotheses about filter matrices on given data (see subsec-
tion 2.5.) and

– find the optimal sequence of the hypotheses for the computation so that the
results from one step could be used in the next one (see subsection 3.1.) and
find how to do it (see 3.2.).

2. PRELIMINARIES

2.1. The System Equation

In this paper, we deal with the one-dimensional linear autonomous dynamic system
described by the equation

y(t) =
∫ t

0

K(τ) y(t− τ) dτ + θ0 + e(t), (1)

where y(t) — a signal value at time t
K( . ) — a convolution kernel
θ0 — an absolute term
e(t) — a Gaussian, zero mean term standing for

uncertainty of the system behavior.

We have measured the system output y(t) in N discrete equidistant time instants.
We introduce a data set d(N) = {y(t1), y(t2), . . . y(tN )} which is, we suppose, all our
information about the system. Further we shall denote yi = y(ti) for simplicity.

Our problem is to estimate the structure of the kernel K.

2.2. Spline-approximation

There are different ways for description of convolution kernels of linear dynamic sys-
tems. One of them is the description through spline functions, piecewise polynomial
functions. We choose the splines with degree 1 and defect 1 as the most simple.
These splines are broken lines in fact.

The points of breaking are called nodes of the spline-function and the set of
all nodes ∆ = {v0, v1, . . . , vm+1} for some m is called splitting of the definition
interval of the spline-function. Spline-functions with the same splitting create a
linear functional space. The set of m “hat” functions

fKi(t) =





(x− vm−i−1)/(vm−i − vm−i−1) for x ∈ 〈vm−i−1, vm−i)
(vm−i+1 − x)/(vm−i+1 − vm−i) for x ∈ (vm−i, vm−i+1〉
0 otherwise

(2)

form a functional basis in the subspace of all first-order spline-functions, which
satisfy the condition to be zero in v0 and vm+1. The space (and so the basis) is then
determined through the number and the positions of nodes. In this paper we require
to have the number m fixed.

A kernel K(t) can be approximated as a superposition of the basis functions

K(t) ≈
m∑

i=1

θi fKi(t), (3)
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where the weights {θi}m
i=1 parametrize now the corresponding kernel.

The structure estimation means estimation of suitable nodes in ∆ and thus esti-
mation of the corresponding basis.

The task will be solved through the Bayesian algorithm, described in [4]. We
must design a set of hypothesis about the structure of K, i.e., a set of functional
bases composed of the above-mentioned “hat” functions. Now, our idea is to shape
properly comparatively long kernel with a compratively small number of parameters
and so to be able to consider larger period of data sampling.

For approximation of a signal we take the first-order-splines, too. If the sampling
period is equal to one, we have also a basis for signal description:

fY i(t) =





x− n + 1 forx ∈ 〈n− 1, n)
n + 1− x forx ∈ (n, n + 1〉
0 otherwise.

(4)

The coefficients for the description are then simply the sampled values of the
system output yt:

y(t) ≈
N∑

i=1

yi fY i(t). (5)

2.3. Sufficient Statistics

For the computation of hypothesis probabilities we shall use the ideas proposed for a
multivariate regression model in [2]. Here, a sufficient matrix statistic V(t) ∈ Rm×m

is described which is evaluated by the regression of “shifted” data:

V(t) = V(t−1) + f̄(t) f̄T
(t), Vt0−1 = εI, (6)

where ε > 0 is some small number, t = t0, t0 + 1, . . . , t0 + k and the vector f̄(t) has
the structure

f̄(t) = (y(t), y(t−1), . . . , y(t−l), 1)T

for l = m− 2 which corresponds to the lenght of the kernel.
The positive definite matrix V(t) (we shall write only V ) can be decomposed into

the form
V = L D LT (7)

where L is a unique lower triangular matrix with units on the diagonal and D is a
positive diagonal matrix. The computing of the probabilities (see [2]) is based on in
the decomposition obtained values Dii.

2.4. Definition of the Hypotheses

Let us have an equidistant splitting ∆∗ of the interval 〈0, T 〉, where T means the
maximum a priori known lenght of the kernel K(.) — i.e. we suppose suppK ⊂
〈0, T 〉. The splitting ∆∗ consists of n nodes:

∆∗ = {v∗1 , v∗2 , . . . , v∗n},

where 0 < v∗1 < v∗2 < . . . < v∗n < T and moreover

v∗1 − 0 = v∗2 − v∗1 = . . . = T − v∗n

(equidistant splitting). Let m < n. Let us choose some subset of the splitting:
δp ⊂ ∆∗, δp = {v∗ik

}m
k=1. Then the set ∆p = δp ∪ {0, T} defines a spline basis on
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interval 〈0, T 〉 according to (2), if we adjoin vp
0 = 0, vp

k = v∗ik
for k = 1 to m, and

vp
m+1 = T. For all possible choices of the subsets δp we have

M =
(

n
m

)

bases Bp = {fp
i (t)}m

i=1 for p = 1 to M .
A hypothesis Hp corresponds to the basis Bp: the hypothesis insists that the basis

Bp is the most probable from all the M bases, if we know the data dN (and we have
no other informations).

2.5. The Computation of Hypothesis Probability

A spline linear dynamic model can be converted to regression one by filtering the
data. Let the filter matrix S is given by the convolution at time n (see [4])

Sij = [fKi ∗ fY j ](n), i = 1, . . . ,m; j = 1, . . . , n. (8)

It follows from the substitution of both approximated the kernel (3) and the
signal (5) into the system equation (1). The convolution is then reduced into a
matrix multiplying, where the middle term is the matrix S.

The “spline” model keeps the properties of multivariate regression models for
filtered data: f̄spline(t) = Sf̄regression(t). (The index “spline” means the spline model
and “regression”means the original data.) It holds

Vspline(t) = S Vregression(t) ST (9)

and with the filtered statistics, we can compute the probability in the way of the
following decomposition algorithm.

The positive definite matrix Vspline(t) (we shall write only V ) can be decomposed
in form

V = L D LT (10)

where L is a unique lower triangular matrix with units on the diagonal and D is a
positive diagonal matrix.

About the kernel, we have a set of hypothesis {H1,H2, . . . ,Hl, . . . ,HM}. For all
the hypothesis we can compute the statistics {V1, V2, . . . , Vl, . . . , VM} based on the
observed data:

Vl = SlVregressionST
l , (11)

where the matrix Sl is given by (8), and decomposed them:

Vl = LlDlL
T
l , Dl = diag(d1, d2, . . . , dn+2). (12)

Then according to [2], it can be written:

p(Hl|k + 1 measured data) ∝ 1√
(dn+2)k

∏n+1
i=1 di

. (13)

Computing all M probabilities is in real cases extremly demanding on the com-
puter time. The following chapter says how to carry out this computations as efficient
as possible.
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3. MAIN RESULTS

3.1. Idea of an Algorithm for the Sequential Computation of all the
Hypotheses Probabilities

Computing all the M probabilities in the way of (8), (11), (12), (13) step-by-step
takes too much time. But, it is possible to choose a sequence of computed hypothesis
so that a large part of computations-results in the previous step executed probability-
computation (matrix rows, columns etc.) is utilized for the next steps.

The idea is simple: we choose the sequence of the computed probabilities (and
also the corresponding bases) so that the next basis differs from the previous one
only in the position of a single node. This implies that in the next basis {f (p+1)

K }
there are maximally 3 basis-functions f

(p+1)
K,i−1, f

(p+1)
K,i and f

(p+1)
K,i+1 different from the

previous base {f (p)
K }. It implies that in the filter matrix Sp+1 at maximum three

rows differ from rows the matrix Sp. Moreover, the elements of the three rows can
be recalculated even more efficiently.

We shall see that the re-computation of the LDLT decomposition after the change
of one node is more efficient if we change a node with small index.

Example. We show the work of the algorithm on a very simple example with
n = 6 and m = 3.

Position
No. 1st 2nd 3rd 4th 5th 6th

1 . . . x x x
2 . . x . x x
3 . x . . x x
4 x . . . x x
5 x . . x . x
6 . . x x . x
7 . x . x . x
8 . x x . . x
9 x . x . . x

10 x x . . . x
11 x x . . x .
12 x . . x x .
13 . . x x x .
14 . x . x x .
15 . x x . x .
16 x . x . x .
17 x x . . x .
18 x x . x . .
19 x . x x . .
20 . x x x . .
21 x . x x . .
22 x x . x . .
23 x x x . . .

(“x” means “node”, “.” means “the position is free”. The standard defined nodes in
the 0th and 7th positions are not displayed.) In this example M = 20, but we need
23 steps. Bases No. 17, 21 and 22 had been already computed in previous steps.
The algorithm does not compute the probability in this cases; it changes only the
matrices in the storage. 2

On the assumption that the first node and the last one are fixed on positions 0
and n + 1 respectively and that p is the vector of the nodes positions, the algorithm
works in following manner:

– Put all nodes as right as possible.
– Change step-by-step the position of the second node to all its possible positions.
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– While the nodes are not as left as possible do:

– If p(3) = 2,
then find the lowest left shiftable node, shift it once to left and shift all
the left neighbours of this node step-by-step as right as possible;
else shift the 3rd node once to the left, but before that “clear” the place
for it, if it is not empty.
end of if

– Change step-by-step the position of the second node to all its posible posi-
tions.

end of while

end of the algorithm

3.2. The Data Matrices and Their Re-calculation

There are the auxiliary algorithms described in this section.

3.2.1. Storing of the Filter Matrix

The way of writing the filter matrix into the storage is described here.
Detailed analysis shows that the filter matrix S has not more than L = 2(m+n−2)

elements different from zero. (For the proof see [6].) Between two non-zero elements
in every column (row) are only non-zero elements. So, the whole matrix can be
stored in four data vectors:

– real-vector values(L) containing rowvise values of the non-zero elements of
the matrix;

– integer-vector first(m) containing in its ith element the column index of the
first non-zero element in the ith row of the matrix;

– integer-vector last(m) containing in its ith element the column index of the
last non-zero element in the ith row of the matrix;

– integer-vector index(m) containing in its ith element the index of the first
non-zero element in the ith matrix row in the vector values.

This method does the computation with the matrix more efficient and economizes
the storage.

Example. Let us have a filter matrix 12 × 5.




a11 a12 a13 a14 0 0 0 0 0 0 0 0
0 0 a23 a24 a25 a26 a27 0 0 0 0 0
0 0 0 0 a35 a36 a37 a38 a39 0 0 0
0 0 0 0 0 0 a47 a48 a49 a4,10 a4,11 a4,12

0 0 0 0 0 0 0 0 a59 a5,10 a5,11 a5,12




The data vectors are then:
values(30) = (a11, . . . , a14, a23, . . . , a27, a35, . . . , a39, a47, . . . , a4,12,

a59, . . . , a5,12, 0, 0, 0, . . . , 0);
first(5) = (1, 3, 5, 7, 9);
last(5) = (4, 7, 9, 12, 12);
index(5) = (1, 5, 10, 15, 21). 2
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3.2.2. Re-calculation of the Elements of Filter Matrix

If the position of one node is changed, maximally three rows of the filter matrix
are changed: the node is an element of supports of three basic spline-functions, in
maximum, and one basic function corresponds with one row. Moreover, according
to the definition it is not necessary to compute all elements of the changed row.
This subsection shows how to re-calculate most of elements without computing of
convolutions.

An element of a filter matrix S is defined by the convolution s = [fK ∗ fY ](τ).
The function fK is the 1st-order spline, linear everywhere except the nodes nleft <
ncenter < nright, continuous everywhere and fK(nleft) = fK(nright) = 0 and fK(ncenter) =
1.

– Suppose, that in the next step the node ncenter is changed: n̄center = ncenter+ξ,
ξ ∈ (nleft−ncenter, nright−ncenter). The nodes nleft, n̄center, nright define a new
function f̄K and s̄ = [f̄K ∗ fY ](τ). Then the following implications are valid:

supp fY ⊂ (−∞, min{ncenter, n̄center}〉 ⇒ s̄ =
ncenter − nleft

n̄center − nleft
s, (14)

supp fY ⊂ 〈max{ncenter, n̄center}+∞) ⇒ s̄ =
nright − ncenter

nright − n̄center
s, (15)

– Suppose that in the next step the node nright is changed: n̄right = nright + ξ,
ξ ∈ (ncenter−nright, +∞). The nodes nleft, ncenter, n̄right define a new function
f̄K and s̄ = [f̄K ∗ fY ](τ). Then the following implications are valid:

supp fY ⊂ (−∞, ncenter〉 ∪ 〈max{nright, n̄right}, +∞) ⇒ s̄ = s, (16)

supp fY ⊂ 〈ncenter, min{nright, n̄right}〉 ⇒ (17)

⇒ s̄ =
nright − ncenter

n̄right − ncenter
s +

ξ

n̄right − ncenter

∫ +∞

−∞
fY (t) dt.

– Suppose, that in the next step the node nleft is changed: n̄left = nleft + ξ,
ξ ∈ (−∞, ncenter − nleft). The nodes n̄left, ncenter, nright define a new function
f̄K and s̄ = [f̄K ∗ fY ](τ). Then the following implications are valid:

supp fY ⊂ (−∞, min{nleft, n̄left}〉 ∪ 〈ncenter, +∞) ⇒ s̄ = s, (18)

supp fY ⊂ 〈max{nleft, n̄left}, ncenter〉 ⇒ (19)

⇒ s̄ =
ncenter − nleft

ncenter − n̄left
s− ξ

ncenter − n̄left

∫ +∞

−∞
fY (t) dt.

Thus we may simplify the re-computation of the matrix.

Example. Three rows of a filter matrix are given. We change the common node
of the three corresponding basic functions. Letters in the rows mean the implications:
A means (14), B means (15), C means (16), D means (17), E means (18). K means
“the convolution is computed per definition”.
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


. . .
...

. . . C C K K D D K K
B B B B K K A

K K K E . . .
...

. . .




The equation (19) is in this example not used. 2

3.2.3. The Product S V ST and Its LD LT-decomposition.

There are only three rows and three columns changed in the actualized S V ST

matrix product after one step. If the changed node is the (m+1− i)-th the changed
rows/columns are the i− 1, i, i + 1.

Example. for m = 12, i = 7 (“x” means “modified”, “.” means “not modified”,
omitted means “zero”. ):

S V ST =




. . . . . x x x . . . .

. . . . . x x x . . . .

. . . . . x x x . . . .

. . . . . x x x . . . .

. . . . . x x x . . . .
x x x x x x x x x x x x
x x x x x x x x x x x x
x x x x x x x x x x x x
. . . . . x x x . . . .
. . . . . x x x . . . .
. . . . . x x x . . . .
. . . . . x x x . . . .




LD =




.

. .

. . .

. . . .

. . . . .
x x x x x x
x x x x x x x
x x x x x x x x
. . . . . x x x x
. . . . . x x x x x
. . . . . x x x x x x
. . . . . x x x x x x x




.

2

Even, it is not necessary to change all elements of matrices of the LD LT-
decomposition are all changed. In the matter of fact, the non-changed elements
are all elements in the first i− 2 columns of the matrix L with exception of the rows
i− 1, i, i + 1 and the i− 2 “first” (in index) elements of the matrix D.

This implies that our algorithm for the next-step-search is correct: it changes
mostly the low-index nodes.
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4. CONCLUSIONS

This work links up the results from papers [2] (automatic estimation of the model
order) and [4] (spline approximation in adaptive controllers). The solved problem
is to estimate the most probable structure of spline description of the convolution
kernel.

The above algorithm computes m-times faster compared with the computation
“per definition” (m means the given number of base functions). The structure of the
main algorithm is open to parallelisation and/or adaptable to consider an additional
information (omitting of hypothesis known as non-probable etc.).

A remaining problems are to extend the results to a more general linear system
and to restrict the big number of prior hypotheses by using some another additional
prior knowledge.

(Received July 18, 1991.)
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