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PARAMETRIZATION OF MULTI–OUTPUT
AUTOREGRESSIVE–REGRESSIVE MODELS
FOR SELF–TUNING CONTROL

Miroslav Kárný

Problem of parametrization of multi-output autoregressive regressive Gaussian model (ARX) is
studied in the context of prior design of adaptive controllers.

The substantial role of prior distribution of unknown parameters on the parametrization is
demonstrated. Among several parametrizations a nontraditional one is advocated which

– makes it possible to model the system output entrywise, thus it is very flexible;
– models relations among system outputs in a realistic way;
– is computationally cheap;
– adds an acceptable amount of redundant parameters comparing to the most general but

computationally most demanding parametrization which organizes the unknown regression
coefficients in column vector.

1. INTRODUCTION

Autoregressive-regressive model with exogenous inputs (ARX) is often used for mod-
elling of controlled systems especially in self-tuning control [1]. Popularity of ARX
models stems mainly from plausibility of least squares (LS) for estimating its pa-
rameters. If Bayesian setup is used, the statistics supplied by LS serve for a simple
evalution of posterior probabilities on structures of ARX models which compete for
the best description of the modelled system [2]. Thus, complete system identification
can be performed within the LS framework.

The cited results proved to be reliable and quite complex identification tasks
have been solved using them. In connection with preparation of theoretical tools
for prior tuning of linear-quadratic-Gaussian selftuners [3] the problem of redundant
parameters – which is of restricted importance in on line phase – has emerged.

This paper brings a sequence of simple propositions which summarize the relevant
results on idenfitication of ARX model for multi-output (MO) systems and brings
some arguments in favour of a nontraditional parametrization of ARX model called
here separated parametrization.

2. PRELIMINARIES

2.1. Manipulations with arrays

An inspection of multivariate systems requires handling multi-index arrays. Read-
ability of relations among them is much influenced by the notation. We hope the
following one to be a lucky choice:

– the arrays are mostly column-oriented, a row-oriented array is gained by the
transposition ′ of the column-oriented one;

– ith column of a matrix with entries xjk is denoted x∗i; xi∗ means ith row,
i.e. xi∗ = x′∗i;
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– the arrays assumed have generally non-rectangular shape (e.g. number of
entries in x∗i varies with i): the quotation marks above should indicate this
fact;

– the asterisk convention applies to tensors too: if a tensor S has the entries
Sijk then Sij∗ means the vector gained after fixing the indices i, j and Si∗∗ is
a matrix selected from Sijk when i is fixed.

3. BAYESIAN FORMALISM

Bayesian estimation adopted needs a probabilistic form of the model. For presenting
it, we shall use the following notation and notions:

– p(A|B) denotes the probability density function (abbr. p.d.f.) or the proba-
bility function (p.f.) of a random variable A conditioned on B (the random
variable, its realization and the corresponding p.d.f. argument are not distin-
guished as usual; a distinction of the p.d.f. and p.f. will be clear from the
context).

– N (y|ŷ, σ) denotes the Gaussian p.d.f. of a variable y determined by the ex-
pected (E) value ŷ of y and by the covariance σ.

– Data are measured on the system at discrete time moments labelled by t =
1, 2, . . . Those which can be directly manipulated are called the (system) input
and denoted u(t). The rest is called the (system) output, y(t). The dimension
of the output is denoted m.

– In conditioning, the following data collections are used

ti =
{{y(τ), u(τ)}t−1

τ=1, {yj(t)}i
j=1, u(t)

}
for i = 0, 1, . . . ,m

(by definition the set {·}01 is empty).

– The estimation task arises when a system model describing the output prob-
ability for a given past is parametrized by an unknown (finite-dimensional)
parameter Θ, i.e. it is described by the p.d.f. p(y(t)|t0,Θ). If the p.d.f. is
viewed as function of Θ (data are fixed) then it is called incremental likelihood
function.

– The estimation is performed assuming that the estimated parameter Θ is un-
known to the input generator (it fulfils natural conditions of control [4]), i.e.
assuming u(t),Θ to be independent under the condition t0, i.e. p(u(t)|t0,Θ) =
p(u(t)|t0).

– The posterior p.d.f. p(Θ|tm) is Bayesian parameter estimate. Under natural
conditions of control, it is related to the prior p.d.f. p(Θ) by the following ver-
sion of Bayes rule: p(Θ|tm) ∝M(Θ; tm)p(Θ), where ∝ means proportionality
by a Θ-independent factor. The likelihood function M(Θ; tm) is the prod-
uct of the incremental likelihood function M(Θ; tm) = p(y(t)|t0,Θ)M(Θ; (t −
1)m), M(Θ; 0m) ≡ 1.

4. MULTI–OUTPUT ARX MODEL

Two parametrizations of the multi-output autoregressive-regresive model of con-
trolled systems (MO ARX) will be discussed.

Fundamental parametrization: The outputs are related to the past history by the
equations

yi(t) =
l̄i∑

k=1

θ̄kiψ̄ki(t) + ēi(t) = θ̄i∗ψ̄∗i(t) + ēi(t), i = 1, . . . ,m (1)
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where

θ̄ki are regression coefficients to be estimated;

l̄i denotes the number of coefficients related to the ith output;

ψ̄∗i(t) is the regression vector available for predicting yi(t), the regressor is a known
function of t0;

ēi(t) are zero mean Gaussian random variables with the covariance structure

E [ēi(t)ēj(τ)|t0, Θ̄] =
{

0 for t 6= τ
σ̄ij for t = τ

given by an unknown symmetric positive definite covariance matrix σ̄.

The unknown parameter Θ̄ of the fundamental parametrization is

Θ̄ ≡ (
θ̄ki, σ̄ij , i = 1, . . . ,m, i ≥ j, k = 1, . . . , l̄i

)
.

Separated parametrization: The outputs are related to the past history by the equa-
tions formally identical to (1)

yi(t) =
li∑

k=1

θkiψki(t) + ei(t) = θi∗ψ∗i(t) + ei(t), i = 1, . . . ,m (2)

with elements defined in a way which guarantees independency of e(t) entries

θki are regression coefficients to be estimated;

li denotes the number of coefficients related to the ith output;

ψ∗i(t) is the regression vector available for predicting yi(t), the regressor is a known
function of ti−1 (!);

ei(t) are zero mean Gaussian random variables having independent also entries (!)

E [ei(t)ej(τ)|tj ,Θ] =
{

0 for t 6= τ or i 6= j
σi for t = τ and i = j

given by an unknown diagonal positive definite covariance matrix σ.

The unknown parameter Θ of the separated parametrization is

Θ ≡ (θki; σi, i = 1, . . . ,m, k = 1, . . . , li) .

Let us stress the difference of the above definitions:

Fundamental parametrization has symmetrical noise covariance and unit ma-
trix at the predicted output;

Separated parametrization has diagonal noise covariance and a triangular matrix
at the predicted output.

5. ESTIMATION OF MO ARX

We shall write explicitly likelihood function as the key item needed in estimation.
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Proposition 1 [Incremental likelihood of MO ARX model.] The incremental like-
lihoods of Gaussian MO ARX model take the forms:
Fundamental parametrization

p(y(t)|t0, Θ̄) = (3)

= |2πσ̄|−0.5 exp



−0.5

m∑

i,j=1

[yi(t)− θ̄i∗ψ̄∗i(t)](σ̄−1)ij [yj(t)− θ̄∗jψ̄∗j(t)]



 =

= |2πσ̄|−0.5 exp



−0.5

m∑

i,j=1

(σ̄−1)ij

[ −1
θ̄∗i

]′
Ψ̄∗i(t)Ψ̄j∗(t)

[ −1
θ̄∗j

]



where the (regression) data vectors Ψ̄∗i(t) related to the time moment t and the ith
output are introduced

Ψ̄i∗(t) =
[
yi(t), ψ̄i∗(t)

]
.

The dimension of the ith data vector is L̄i = l̄i + 1.
Separated parametrization

p(y(t)|t0,Θ) =
m∏

i=1

(2πσi)−0.5 exp
{
−0.5
σi

[yi(t)− θi∗ψ∗i(t)]2
}

(4)

=
m∏

i=1

(2πσi)−0.5 exp

{
−0.5
σi

[ −1
θ∗i

]′
Ψ∗i(t)Ψi∗(t)

[ −1
θ∗i

]}

where the (regression) data vectors Ψ∗i(t), i = 1, . . . ,m, related to the time moment
t and the ith output are introduced

Ψi∗(t) = [yi(t), . . . , y1(t), ψi∗(t)] . (5)

The dimension of the ith data vector is Li = li + i.

P r o o f . By straightforward manipulations. 2

Proposition 2 [Likelihood of MO ARX model.] The likelihoods of a Gaussian MO
ARX model take the forms:
Fundamental parametrization

M(Θ̄; tm) = |2πσ̄|−0.5ν(t) exp



−0.5

m∑

i,j=1

(σ̄−1)ij

[ −1
θ̄∗i

]′
V̄ ij(t)

[ −1
θ̄∗j

]

(6)

where the scalar ν(t) and (L̄i, L̄j) matrices V̄ ij(t), i, j = 1, . . . ,m, are sufficient
statistics for estimating the parameter Θ̄. They are defined by the formulae

ν̄(t) = ν̄(t− 1) + 1, ν̄(0) = 0

V̄ ij(t) = V̄ ij(t− 1) + Ψ̄∗i(t)Ψ̄j∗(t), V̄ ij(0) = 0, i, j = 1, . . . ,m.

Generally, it is needed s̄t = 1+
∑m

i=1

[
0.5L̄i(L̄i + 1) +

∑i−1
j=1 L̄iL̄j

]
storage elements

for keeping the values of these statistics.
Separated parametrization

M(Θ; tm) =
m∏

i=1

(2πσi)−0.5ν(t) exp

{
−0.5
σi

[ −1
θ∗i

]′
V i(t)

[ −1
θ∗i

]}
(7)
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where the scalar ν(t) and (Li, Li) matrices V i(t), i = 1, . . . ,m, are sufficient statistics
for estimating the parameter Θ. They are defined by the formulae

ν(t) = ν(t− 1) + 1, ν(0) = 0

V i(t) = V i(t− 1) + Ψ∗i(t)Ψi∗(t), V i(0) = 0, i = 1, . . . ,m.

Generally, it is needed st = 1 +
∑m

i=1 0.5Li(Li + 1) ≈ s̄t/m storage elements for
keeping the values of these statistics.

P r o o f . Implied by the Bayes rule and previous proposition. 2

The exceptional position of Gaussian ARX model among practically used system
descriptions stems from the fact that it possesses finite dimensional statistics and
thus admits self-reproducing prior p.d.f.

Proposition 3 [Estimation of MO ARX model with self-reproducing prior.] Let
us change the zero initial conditions in the recursions for sufficient statistics to:
Fundamental parametrization

ν̄(0) = ν̄0, with a positive ν̄0

V̄ ij(0) = V̄ ij
0 giving a positive definite




V̄ 11
0 . . . V̄ 1m

0

. . . . . . . . .
V̄ m1

0 . . . V̄ mm
0


 .

Separated parametrization

ν(0) = ν0, with a positive ν0

V i(0) = V i
0 with a positive definite V i

0 .

Then the likelihood functions modified in this way are respectively proportional to
p(Θ̄|tm) and p(Θ|tm) with finite proportionality factors.

P r o o f . See [4]. 2

Remark. It can be shown [4] that collection of the sufficient statistics is alge-
braically equivalent to least squares. The prior p.d.f. adds non-trivial initial condi-
tions to recursive version of LS and regularize them.

6. COMPUTATION AND REDUNDANCY ASPECTS

6.1. Relations of the parametrizations

The parametrizations assumed are generically equivalent.

Proposition 4 [Relations of the fundamental and separated parametrizations.] Let
σ̄ be a positive definite matrix with the (necessarily unique) factorization σ̄ =
L−1S(L−1)′ where L is the lower triangular matrix with unit diagonal and S is
the diagonal matrix.

Then – with probability 1 specified by p(Θ̄) – there is one-to-one mapping between
both parametrizations which is given by the equalities

σ = S, li = l̄i + i− 1 (8)

ψki(t) =
{
yk(t) for k < i
ψ̄(k−i+1)i for k ≥ i

, θki =
{ −Lik for k < i∑i

j=1 θ̄(k−i+1)jLij for k ≥ i

P r o o f . By straightforward algebraic manipulations. 2

Proposition 4 is seemingly in a contradiction with Propositions 2 as the sufficient
statistics of both models differ. The real difference, however, enters through the
self-reproducing priors.
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Proposition 5 [Richness of self-reproducing priors.] Let P̄, P be sets of all proper
self-reproducing priors related to fundamental and separated models, respectively.
Let us denote T mapping of P̄ described by (8). Then P is proper subset T P̄.

P r o o f . The inclusion P ⊆ T P̄ is implied directly by the definition of T . The
strict inclusion is seen from the following example which will be used in the furher
discussion too.

Let m = 2 and p(Θ̄) = p̄ assign nonzero probability to the following Θ̄

θ̄1∗ = [f̄ ′, ḡ′, 0′], number of zeros = dim(k̄) 6= 0
θ̄2∗ = [0′, h̄′, k̄′], number of zeros = dim(f̄) 6= 0, dim(h̄) = dim(ḡ)
L21 = α

Then, there is no p ∈ P such that the corresponding image is p̄ because the mapping

θ1∗ = [f̄ ′, ḡ′, 0′] = θ̄1∗
θ2∗ = [αf̄ ′, αḡ′ + h̄′, k̄′]

is non-invertible. 2

Remarks.

1. Proposition 5 exemplifies that the prize we paid for smaller dimension of suf-
ficient statistics is the loss of modelling flexibility: we are not able to assign
fixed (zero) values to arbitrary entries of the estimated regression coefficients.

2. The superfluous parameters introduced are called redundant. With this notion,
we can formulate the above statement in another way: redundancy is the price
paid for handling MO model as independent single output models.

6.2. Special cases

Various special cases of the above parametrizations have been published. This para-
graph discusses mutual relations of the most often met cases.

– Matrix coefficients:
This is the case for which the fundamental parametrization fulfils l̄i = l̄ and
ψ̄∗i(t) = ψ̄(t) with some fixed l̄ and ψ̄(t). If we look on ψ̄∗i as selections from
a “maximal” ψ̄, the definition is equivalent to the requirement: if indices k, i
exist such that θ̄ki ≡ 0 then θ̄k∗ ≡ 0.
Separated-parametrization counterpart is gained through the mapping (8).

– Independent parametrization:
This case is specified by diagonal noise covariance σ̄ in the fundamental pa-
rametrization.

Proposition 6 [Relations of special parametrizations.]

– Matrix parametrization

M(Θ̄; tm) ∝ |σ̄|−0.5ν̄(t) exp

{
−0.5tr

[ −I
θ̄

]′
V̄ M (t)

[ −I
θ̄

]}
(9)

where I is unit matrix of an appropriate dimension, the matrix θ̄ consists of
columns θ̄∗i and

V̄ M (t) = V̄ M (t− 1) + Ψ̄(t)Ψ̄′(t), Ψ̄′(t) = [y′(t), ψ̄′(t)], V̄ M (0) = 0.
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For separated parametrization, the likelihood M(θ; tm) coincides with (7) for
V i(t) = V̄ M (t), i = 1, . . . ,m.

If P̄M is the set of prior p.d.f. in P̄ restricted to matrix models then the
mapping T restricted to it is always invertible.

– Independent parametrization
The separated parametrization coincides with the fundamental one, thus likeli-
hoods are given by (7): models related to the respective outputs are estimated
independently.

P r o o f . By straightforward algebra. 2

Proposition 7 [Redundancy ordering of special parametrizations.] Let nF , nS , nM

be minimal numbers of parameters of fundamental, separated and matrix parametriza-
tions of the ARX model for describing of the same data, respectively. Then,

nF ≤ nS ≤ nM

P r o o f . The minimality of nF is implied by the construction. The second in-
equality can be proved by induction (over m) starting from the case given in the
proof of Proposition 5. 2

Remarks.
1. The matrix version is rather often used in MO system modelling. When some

entry of ψ̄ influences some output then this entry has to be assumed in the
remaining channels too. This is the key drawback of this model.

Separated model brings no advantages in this case.
2. Independent parametrization is plausible as it requires no redundant param-

eters. As the noise models all unmeasurable influences, the independency of
the noise entries might be quite poor model of reality in MO cases.

6.3. Selection matrices in off-line estimation

The collection of statistics may be quite demanding task. In off-line identification,
especially in connection with structure estimation, the collection of maximal statis-
tics combined with use of “selection” matrices may be advantageous.

The maximal data vectors Φ(t) are defined as known functions of t0 which:
– have a fixed length L;
– the data vectors Ψ̄∗i (Ψ∗i(t)) can be constructed from them by fixed selection
(L̄i, L) ((Li, L)) matrices S̄i∗∗ (Si∗∗)

Ψ̄∗i(t) = S̄i∗∗Φ(t), Ψ∗i(t) = Si∗∗Φ(t), t = 1, 2, . . . .

Typically, S̄i∗∗ and Si∗∗ consist of zero and units and they are of a row-like shape.
Some entries of the maximal data vector Φ(t) have to coincide necessarily with y(t).

Proposition 8 [Likelihood functions with selection matrices.] Using selection ma-
trices, the statistics V̄ M (t) (see Proposition 6) with Ψ̄(t) = Φ(t) have to be stored
for determining likelihoods for both parametrization assumed:
Fundamental model

M(Θ̄; tm) = |2πσ̄|−0.5ν(t) exp



−0.5

m∑

i,j=1

(σ̄−1)ij

[ −1
θ̄∗i

]′
S̄i∗∗V̄ M (t)S̄∗∗j

[ −1
θ̄∗j

]

 .
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Separated parametrization

M(Θ; tm) =
m∏

i=1

(2πσi)−0.5ν(t) exp

{
−0.5
σi

[ −1
θ∗i

]′
Si∗∗V̄ M (t)S∗∗i

[ −1
θ∗i

]}

The posterior p.d.f.’s are gained from the above likelihoods by choosing a positive
definite V̄ M (0) iff for
Fundamental parametrization

V̄ ij(0) = S̄i∗∗V̄ M (0)S̄∗∗j , i, j = 1, . . . ,m.

Separated parametrization

V i(0) = Si∗∗V̄ M (0)S∗∗i, i = 1, . . . ,m.

P r o o f . A simple consequence of the definitions of the elements involved. 2

Remark. The second part of Proposition 7 stresses again the influence of the prior
p.d.f. on the parametrization: the possibility to update the statistics V̄ M (t) only
depends on properties of V̄ M (0).

7. CONCLUSIONS

Parametrizations of multi-output ARX model have been discussed. They are char-
acterized as follows:

Fundamental parametrization has symmetrical noise covariance and unit matrix at
the predicted output;

Separated parametrization has diagonal noise covariance and a triangular matrix at
the predicted output.

Matrix parametrization coincides with the fundamental one when no regressor entry
can be omitted in predicting any output entry.

Independent parametrization coincides with the separated one with triangular ma-
trix reduced to unit matrix.

Methodological gain of the paper lies in the recognition of the key role of prior
probability density functions in defining a model structure.

From the practical view point, it has been shown that

– the fundamental parametrization is the most flexible in exploiting a priori
known values of regression coefficients; the flexibility is, however, paid by sub-
stantial increase of computational demands;

– the separated parametrization retains a lot of flexibility of the fundamental
parametrization; it introduces some redundant parameters but it spares a lot
of computations;

– the matrix parametrization used up to now is uniformly worse that the sepa-
rated one and should be avoided;

– the independent parametrization often recommended and used is computation-
ally close to separated parametrization but rather often it can be poor model
of reality and should be avoided, too.

(Received August 6, 1991.)
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