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Pavel Žampa
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TRANSFORMATIONS OF COPULAS

Erich Peter Klement, Radko Mesiar and Endre Pap

Transformations of copulas by means of increasing bijections on the unit interval and
attractors of copulas are discussed. The invariance of copulas under such transformations
as well as the relationship to maximum attractors and Archimax copulas is investigated.

Keywords: copula, transformation of copulas, invariant copulas, maximum attractor, Archi-
max copula
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1. INTRODUCTION

Sklar’s Theorem [17] states that each random vector (X,Y ) is characterized by some
copula C in the sense that for its joint distribution HXY and for the corresponding
marginal distributions FX and FY we have HXY (x, y) = C(FX(x), FY (y)).

In this contribution we investigate transformations of copulas by functions in
one variable. Such transformations play a role in statistics: as an example, if
(X1, Y1), (X2, Y2), . . . , (Xn, Yn) are iid random vectors (characterized by some cop-
ula C) then the random vector (max(X1, X2, . . . , Xn), max(Y1, Y2, . . . , Yn)) is char-
acterized by the ϕ1/n-transform of C in the sense of (1) below with ϕ1/n(x) = x1/n

(see [18]).
Copulas form a subclass of the class V of functions V : [0, 1]2 → [0, 1] which

are continuous, non-decreasing in each component and satisfy RanV = [0, 1] (the
elements of V are also called binary aggregation operators [4, 11]).

If Φ denotes the set of all increasing bijections from [0, 1] to [0, 1], then for each
ϕ ∈ Φ and for each V ∈ V consider the function Vϕ : [0, 1]2 → [0, 1] given by

Vϕ(x, y) = ϕ−1(V (ϕ(x), ϕ(y))). (1)

Evidently, we always have Vϕ ∈ V, and U ≤ V implies Uϕ ≤ Vϕ. Moreover, for all
ϕ, ξ ∈ Φ we always get (Vϕ)ξ = Vϕ◦ξ.

The transition from V to Vϕ preserves many algebraic properties, among them
commutativity and associativity as well as the existence of a neutral element, of an
annihilator, of zero divisors, and of idempotent elements. Also, if V has a neutral
element and/or an annihilator in the set {0, 1}, so has Vϕ.

If, for V ∈ V and ϕ ∈ Φ, we have Vϕ = V then V is called ϕ-invariant (compare
[10]). As an immediate consequence, each ϕ-invariant V ∈ V is ϕ(n)-invariant for
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each n ∈ Z, where ϕ(0) = id[0,1] and, for each n ∈ N, ϕ(n) = ϕ ◦ ϕ(n−1) and
ϕ(−n) = (ϕ(n))−1. Also, if V is both ϕ-invariant and ξ-invariant then it is (ϕ ◦ ξ)-
invariant. Moreover, V is ϕ-invariant if and only if Vξ is (ξ−1 ◦ ϕ ◦ ξ)-invariant for
each ξ ∈ Φ.

The only elements of V which are ϕ-invariant for all ϕ ∈ Φ are the minimum, the
maximum, and the two projections π1 and π2 given by π1(x, y) = x and π2(x, y) = y,
respectively [15].

If, for V ∈ V and ϕ ∈ Φ, the limit limn→∞ Vϕ(n) exists and is an element of V,
then

V ∗ϕ = lim
n→∞

Vϕ(n)

is called a ϕ-attractor of V .
It is immediately seen that U ∈ V is a ϕ-attractor of some V ∈ V if and only if

U is ϕ-invariant. Also, if V ≤ V ∗ϕ then for all U ∈ V with V ≤ U ≤ V ∗ϕ we have
U∗ϕ = V ∗ϕ .

Observe that for each jointly strictly monotone V ∈ V (i. e., V (x, y) < V (x∗, y∗)
whenever x < x∗ and y < y∗) the diagonal section δV : [0, 1] → [0, 1] given by
δV (x) = V (x, x) is an element of Φ. Moreover, if V is also associative then V is
δV -invariant. In this statement, the associativity assumption may not be dropped:
the function V : [0, 1]2 → [0, 1] given by V (x, y) = 1

2 (min(x, y) + max(x+ y − 1, 0))
is jointly strictly monotone (note that V is a copula). Its diagonal section δV ∈ Φ is
given by δV (x) = max(x2 ,

3x−1
2 ), but V (0.4, 0.8) = 0.3 6= 0.2 = VδV (0.4, 0.8).

2. TRANSFORMATIONS OF COPULAS

Recall that a (two-dimensional) copula is a function C : [0, 1]2 → [0, 1] such that
C(0, x) = C(x, 0) = 0 and C(1, x) = C(x, 1) = x for all x ∈ [0, 1], and C is 2-
increasing, i. e., for all x, x∗, y, y∗ ∈ [0, 1] with x ≤ x∗ and y ≤ y∗ for the volume
VolC of the rectangle [x, x∗]× [y, y∗] we have

VolC([x, x∗]× [y, y∗]) = C(x, y)− C(x, y∗) + C(x∗, y∗)− C(x∗, y) ≥ 0. (2)

Important examples of copulas are the Fréchet–Hoeffding bounds M and W given by
M(x, y) = min(x, y) and W (x, y) = max(x+ y − 1, 0), respectively, and the product
Π given by Π(x, y) = x · y. Obviously, each copula C satisfies W ≤ C ≤M .

Clearly, a ∈ [0, 1] is an idempotent element of C if and only if ϕ(a) is an idempo-
tent element of Cϕ, and M is the only copula which is ϕ-invariant for each ϕ ∈ Φ.

In general, the fact that C is a copula is neither necessary nor sufficient for Cϕ
being a copula.

Example 2.1. For ϕ ∈ Φ defined by ϕ(x) = x2 we have that Wϕ, which is given
by Wϕ(x, y) =

√
max(x2 + y2 − 1, 0), is not Lipschitz (see [9, Example 1.26]) and,

therefore, not a copula. However, for ξ ∈ Φ defined by ξ(x) =
√

1− (1− x)2 the
transformation (Wϕ)ξ is a copula (see [13, Table 4.1, (4.2.2)]).

Now we first are interested under which conditions Cϕ is a copula and under
which conditions a copula C is ϕ-invariant.
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Example 2.2. For p ∈ ]0,∞[ consider the function ϕp ∈ Φ defined by ϕp(x) =
xp.

(i) The product Π is ϕp-invariant for each p ∈ ]0,∞[.

(ii) The Fréchet–Hoeffding lower bound W is ϕp-invariant only if p = 1, and Wϕp

is a copula only if p ∈ ]0, 1].

The following result follows from [12, Theorem 7]:

Proposition 2.3. Assume that V ∈ V is associative and has neutral element 1,
and let ϕ ∈ Φ. Then Vϕ is a copula if and only if for all x, y, z ∈ [0, 1]

|ϕ−1(V (x, z))− ϕ−1(V (y, z))| ≤ |ϕ−1(x)− ϕ−1(y)|. (3)

Observe that for an associative copula C and ϕ ∈ Φ the function Cϕ is a copula
if and only if C satisfies (3) for all x, y, z ∈ [0, 1]. This can be seen either from
Proposition 2.3 or directly from the fact that an associative function V ∈ V with
neutral element 1 (i. e., a continuous t-norm [9]) is a copula if and only if it is
1-Lipschitz.

Theorem 2.4. For each ϕ ∈ Φ the following are equivalent:

(i) The function ϕ is concave.

(ii) For each copula C the function Cϕ is a copula.

P r o o f . In order to show that (ii) implies (i), recall that W is an Archimedean
copula and that tW : [0, 1] → [0,∞] given by tW (x) = 1− x is an additive generator
of W . Then Wϕ is also an Archimedean copula with additive generator tW,ϕ = 1−ϕ.
However, because of [16, Theorem 6.3.3], additive generators of Archimedean copulas
are necessarily convex functions, and thus ϕ = 1− tW,ϕ is a concave bijection.

Conversely, it suffices to show that Cϕ is 2-increasing. Fix arbitrary elements
x, x∗, y, y∗ ∈ [0, 1] with x ≤ x∗ and y ≤ y∗. Then also ϕ(x), ϕ(x∗), ϕ(y), ϕ(y∗) ∈ [0, 1]
with ϕ(x) ≤ ϕ(x∗) and ϕ(y) ≤ ϕ(y∗), and the fact that C is 2-increasing implies

C(ϕ(x∗), ϕ(y∗))− C(ϕ(x∗), ϕ(y)) ≥ C(ϕ(x), ϕ(y∗))− C(ϕ(x), ϕ(y)).

From the monotonicity of C it follows that C(ϕ(x∗), ϕ(y)) ≥ C(ϕ(x), ϕ(y)). As a
consequence of the convexity of the function ϕ−1 we obtain

ϕ−1(C(ϕ(x), ϕ(y∗)))− ϕ−1(C(ϕ(x), ϕ(y)))
≤ ϕ−1(C(ϕ(x∗), ϕ(y)) + C(ϕ(x), ϕ(y∗))− C(ϕ(x), ϕ(y)))− ϕ−1(C(ϕ(x), ϕ(y)))
≤ ϕ−1(C(ϕ(x∗), ϕ(y∗)))− ϕ−1(C(ϕ(x∗), ϕ(y))),

i. e., Cϕ(x, y∗) − Cϕ(x, y) ≤ Cϕ(x∗, y∗) − Cϕ(x∗, y), thus proving that Cϕ is 2-
increasing. ¤
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Example 2.5. Fix ε, δ ≥ 0. Then the function Cε,δ : [0, 1]2 → [0, 1] defined by

Cε,δ(x, y) = xy
(
1 + xεyδ(1− x)(1− y)

)

is a (non-associative) copula, and for each n ∈ N also (Cε,δ)ϕ1/n
given by

(Cε,δ)ϕ1/n
(x, y) = xy

(
1 + xε/nyδ/n

(
1− x1/n

)(
1− y1/n

))n

is a copula. Observe that for all (x, y) ∈ [0, 1]2 we have

lim
n→∞

(Cε,δ)ϕ1/n
(x, y) = xy.

Moreover, for each n > 1 the product Π is the ϕ1/n-attractor of Cε,δ.

Note that, in general, transformations do not preserve the structure of copulas.
For example, a transformation of a shuffle of M [13] is not necessarily a shuffle of
M , and also topological properties of the support of a copula may be changed by a
transformation.

3. INVARIANT COPULAS

Denote by Φc the set of all concave functions in Φ. Clearly, if ψ ∈ Φc then also ψ(n) ∈
Φc for each n ∈ N. Therefore, we only look for copulas which are ψ-attractors for
some ψ ∈ Φc. Let us start with some negative result whose proof is straightforward.

Lemma 3.1. Let C 6= M be a copula which satisfies at least one of the following
properties:

(i) There exists an idempotent element of C in ]0, 1[, and 1 is not an accumulation
point of the set of idempotent elements in ]0, 1[.

(ii) There exists u ∈ ]0, 1[ such that each x ∈ [u, 1] is an idempotent element of C.

(iii) There exists a zero divisor of C.

Then C is ψ-invariant only if ψ = id[0,1].

On the other hand, if for some ψ ∈ Φc we have W ∗
ψ = M then we obtain C∗ψ = M

for each copula C.

Lemma 3.2. If ψ ∈ Φc satisfies ψ′(1−) = 0 then no Archimedean copula is a
ψ-attractor.

P r o o f . Fix ψ ∈ Φ \ {id[0,1]} and suppose that some Archimedean copula C with
continuous additive generator t : [0, 1] → [0,∞] is a ψ-attractor or, equivalently,
satisfies Cψ = C. Then

C(x, y) = Cψ(x, y) = (t ◦ ψ)(−1)(t ◦ ψ(x) + t ◦ ψ(y))
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implies that t ◦ ψ is an additive generator of C, i. e., we have t ◦ ψ = k · t for some
k ∈ ]0, 1[∪ ]1,∞[. Then t(0) = ∞, i. e., t is a bijection and we get ψ(x) = t−1(k ·t(x))
for each x ∈ [0, 1]. The convexity of t implies

t′(x) ≤ t′(ψ(x)) = t′(t−1(k · t(x))) < 0

for all points of differentiability of t in ]0, 1[, yielding

ψ′(x) =
k · t′(x)

t′(t−1(k · t(x))) ≥ k,

which means that necessarily ψ′(1−) ≥ k > 0. ¤

Example 3.3. Consider the function ψ ∈ Φc defined by ψ(x) = 1 − (1 − x)2 and
observe that ψ(n)(x) = 1− (1− x)2

n

and ψ(−n)(x) = 1− (1− x)2
−n

for each n ∈ N.
Then for each (x, y) ∈ [0, 1]2 we obtain

Wψ(n)(x, y) = 1−min((1− x)2
n

+ (1− y)2
n

, 1)2
−n

,

implying W ∗
ψ = M . Therefore C∗ψ = M for each copula C, i. e., M is the only

ψ-attractor in the class of copulas. Note also that ψ′(1−) = 0.

When investigating copulas which are invariant with respect to some fixed ϕ ∈ Φ,
we can restrict ourselves to transformations ϕ with trivial fixed points 0 and 1 only
(i. e., satisfying ϕ(x) 6= x for all x ∈ ]0, 1[), as a consequence of the following result.
Recall that for ϕ ∈ Φ the set [0, 1] \ {x ∈ [0, 1] | ϕ(x) = x} is open and can be
written as a union of pairwise disjoint open intervals ]ak, bk[, k ∈ K.

Proposition 3.4. Assume that ϕ ∈ Φ \ {id[0,1]} and let

[0, 1] \ {x ∈ [0, 1] | ϕ(x) = x} =
⋃

k∈K
]ak, bk[ ,

where the intervals ]ak, bk[ are pairwise disjoint. Then a copula C is ϕ-invariant if
and only if it can be written as ordinal sum C = (〈aj , bj , Cj〉)j∈J with K ⊆ J , where
for each k ∈ K the copula Ck is ϕk-invariant, with ϕk : [0, 1] → [0, 1] being given by

ϕk(x) =
ϕ(ak + (bk − ak)x)− ak

bk − ak
.

(Note that for each j ∈ J \K, Cj can be an arbitrary copula.)

4. ARCHIMAX COPULAS

The class of increasing bijections ϕp introduced in Example 2.2 contains all trans-
formations ϕ1/n mentioned in the introduction. Moreover, because of the Lipschitz
continuity, a copula C is ϕp-invariant for each p ∈ ]0,∞[ if and only if C is ϕ1/n-
invariant for each n ∈ N.
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Following [7] (compare also [5]), a copula C∗ is said to be the maximum attractor
of the copula C (or, equivalently, C belongs to the maximum domain of attraction
of C∗) if for all (x, y) ∈ [0, 1]2 we have

lim
n→∞

Cn(x1/n, y1/n) = C∗(x, y).

Observe that for each ε, δ ≥ 0 and for the copula Cε,δ considered in Example 2.5 we
have (Cε,δ)∗ = Π, i. e., the product is a maximum attractor of Cε,δ.

Evidently, each copula C which is ϕp-invariant for each p ∈ ]0,∞[ is a maximum
attractor of itself, i. e., C∗ = C.

The set of all maximum attractor copulas will be denoted by M. Putting

A = {A : [0, 1] → [0, 1] | A is convex and max(x, 1− x) ≤ A(x) for all x ∈ [0, 1]},
from [14, 18] (compare also [6]) we know that each maximum attractor copula C∗

can be expressed in the form

C∗(x, y) = elog(xy)·A( log x
log(xy) ) (4)

for some A ∈ A. Evidently, Π is the weakest maximum attractor and M is the
strongest one. The class M is closed under suprema and weighted geometric means.
Although W belongs to the maximum domain of attraction of Π, there are copulas
not belonging to any maximum domain of attraction.

Example 4.1.

(i) This example is derived from [3, pp. 166–167]: consider the strict copula C
whose additive generator t : [0, 1] → [0,∞] is given by

t(x) = log2 x+ 2n−5 sin log2 x
2n if n ∈ Z and 2n+1π ≤ log2 x < 2n+2π.

Then we have C2n

(x2−n

, y2−n

) = C(x, y) for all n ∈ N and for all (x, y) ∈
[0, 1]2, but C3(x1/3

0 , y
1/3
0 ) 6= C(x0, y0) for some (x0, y0) ∈ [0, 1]2. Consequently,

lim
n→∞

C2n

(x2−n

0 , y2−n

0 ) = C(x0, y0) 6= C3(x1/3
0 , y

1/3
0 ) = lim

n→∞
C3·2n

(x2−n/3
0 , y

2−n/3
0 ),

showing that lim
n→∞

Cn(x1/n, y1/n) does not exist for all (x, y) ∈ [0, 1]2.

(ii) Consider the following copula (which is an ordinal sum of infinitely many copies
of W )

C = (〈2−22k

, 2−22k−2
,W 〉)k∈Z.

Although W belongs to the maximum domain of attraction of Π, we have

lim
n→∞

C22n

(0.52−2n

, 0.52−2n

) = 0.5 6=
√

2
4 = lim

n→∞
C22n+1

(0.52−2n−1
, 0.52−2n−1

),

showing that the sequence (Cn(0.51/n, 0.51/n)))n∈N does not converge.

Now we clarify the relationship between ϕp-invariant copulas and the class M of
maximum attractors:
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Proposition 4.2. For a copula C, the following are equivalent:
(i) C ∈M.

(ii) Cϕp = C for all p ∈ ]0,∞[.

(iii) Cϕp = Cϕq = C for some p, q ∈ ]0,∞[ such that log p
log q is irrational.

P r o o f . The equivalence of (ii) and (iii) follows from the fact that, for p, q ∈
]0,∞[, the set {mp + nq | m,n ∈ Z} is a dense subset of R if and only if log p

log q is
irrational (compare [1]).

As already mentioned, the class of ϕp-invariant copulas is a subclass of M. For
the converse, let C∗ ∈ M be given as in (4). Then for all p ∈ ]0,∞[ and for all
(x, y) ∈ [0, 1]2

(Cϕp
)∗(x, y) =

(
elog(xpyp)·A( log xp

log(xpyp) )
)1/p

= C∗(x, y),

showing that also (i) and (ii) are equivalent. ¤

Observe that Cϕp
= C for some single p ∈ ]0,∞[ is not sufficient to guarantee

C ∈M (see Example 4.1 (i)).
If t : [0, 1] → [0,∞] is a convex, decreasing bijection (and, therefore, an additive

generator of some strict copula C(t)) and if A ∈ A then the copula Ct,A defined by

Ct,A(x, y) = t−1
(
(t(x) + t(y)) ·A( t(x)

t(x)+t(y) )
)
. (5)

was called an Archimax copula in [5] (compare also [10]). It is obvious that the class
A t = {Ct,A | A ∈ A} contains both M and the strict copula C(t), and we always
have C(t) ≤ Ct,A ≤M . Moreover, M = A− log (note that C(− log) = Π).

For a fixed convex, decreasing bijection t : [0, 1] → [0,∞] and for p ∈ ]0,∞[ define
τp : [0, 1] → [0, 1] by τp(x) = t−1(pt(x)). Evidently, τp ∈ Φ for each p ∈ ]0,∞[.

Note that a strict copula C(t) is ϕ-invariant with respect to some ϕ ∈ Φ if and
only if t ◦ ϕ = p · t, i. e., if ϕ = τp for some p ∈ ]0,∞[.

In complete analogy to Proposition 4.2 we have:

Corollary 4.3. Let t : [0, 1] → [0,∞] be a convex, decreasing bijection such that
tp is not convex whenever p ∈ ]0, 1[. Then for each copula C the following are
equivalent:

(i) Cτp = C for each p ∈ ]0,∞[.
(ii) Cτp = Cτq = C for some p, q ∈ ]0,∞[ such that log p

log q is irrational.

The proof of the following result is a matter of simple computation:

Proposition 4.4. Each Archimax copula Ct,A is τp-invariant for each p ∈ ]0,∞[.

However, not each copula which is τp-invariant for each p ∈ ]0,∞[ is an element
of A t: take the function t : [0, 1] → [0,∞] given by t(x) = log2 x (which generates
some Gumbel copula, see [13, Table 4.1, (4.2.4)] and [8]); then τp(x) = x

√
p and Π is

τp-invariant for each p ∈ ]0,∞[, but Π /∈ A t.
Putting B = {A t | t : [0, 1] → [0,∞] is a convex, decreasing bijection}, we can

determine maximal elements of B:
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Theorem 4.5. Let t : [0, 1] → [0,∞] be a convex, decreasing bijection and define
λ∗ = inf{λ ∈ ]0, 1[ | tλ is convex}. Then A tλ∗ is a maximal element of B with the
property that all of its elements are τp-invariant for each p ∈ ]0,∞[.

P r o o f . Observe first that for each λ ∈ ]0,∞[ and for each p ∈ ]0,∞[ we have

(tλ)−1(ptλ(x)) = t−1
(
p1/λt(x)

)
= τp1/λ(x).

Based on [1] it can be shown that the only strict t-norms [9] which are τp-invariant
for each p ∈ ]0,∞[ are generated by tλ with λ ∈ ]0,∞[. Among them, only the
functions tλ with λ ∈ [λ∗,∞[ are convex and, therefore, generate a copula. As a
consequence of Proposition 4.4, only the classes A tλ with λ ∈ [λ∗,∞[ consist of
Archimax copulas which are τp-invariant for each p ∈ ]0,∞[.

Moreover, for each λ = k · λ∗ with k ∈ [1,∞[ and for each B ∈ A we obtain
Ctλ,B = Ctλ∗ ,A, where A ∈ A is given by

A(x) = (xk + (1− x)k)1/k ·B1/k
(

xk

xk+(1−x)k

)
,

showing that A tλ∗ ⊇ A tλ . Moreover, no strict copula C(f) with additive generator
f /∈ {tλ | λ ∈ [λ∗,∞[} is τp-invariant for all p ∈ ]0,∞[, implying C(f) /∈ A tλ∗ . ¤

Example 4.6. Consider the convex, decreasing bijection t : [0, 1] → [0,∞] defined
by t(x) = 1

x−1 (observe that it satisfies t′(1−) = −1) which generates the copula C(t)

given by C(t) = xv
x+y−xy . The corresponding family (τp)p∈]0,∞[ is then determined

by τp(x) = x
p+(1−p)x . Therefore, C(t) is the weakest copula which is τp-invariant for

all p ∈ ]0,∞[, and each Ct,A ∈ A t is given by

Ct,A(x, y) =
xy

xy +A( (1−x)y
x+y−2xy ) · (x+ y − 2xy)

.

Note also that the functions τp are just multiplicative generators of the family of
Ali–Mikhail–Haq copulas [2, 13].

Evidently, C(tλ∗ ) is the weakest associative copula which is τp-invariant for all
p ∈ ]0,∞[. Whether it is also the weakest copula which is τp-invariant for all
p ∈ ]0,∞[ is still an open problem. As a partial answer to this we have the following
result:

Theorem 4.7. Let t : [0, 1] → [0,∞] be a convex, decreasing bijection such that
t′(1−) 6= 0. Then C(t) is the weakest copula which is τp-invariant for all p ∈ ]0,∞[.

P r o o f . Recall that the function tW : [0, 1] → [0,∞] given by tW (x) = 1 − x is
an additive generator of W . Fixing p ∈ { 1

3 ,
1
2}, it is obvious that Wτp is a nilpotent

t-norm whose additive generator tW,p : [0, 1] → [0,∞] is given by tW,p(x) = 1−τp(x)
p .
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Moreover, we have (τp)(n)(x) = τpn for each n ∈ N, and thus W ∗
τp

(if it exists)
coincides with limn→∞Wτpn . However, for all x ∈ ]0, 1[ we have

lim
λ→0+

1− τλ(x)
λ

= lim
λ→0+

1− t−1(λt(x))
λ

= − t(x)
t′(1−)

= c · t(x)

for some c ∈ ]0,∞[. Therefore, as a consequence of [9, Theorem 8.14] we obtain
W ∗
τ1/3

= W ∗
τ1/2

= C(t). Then, because of Corollary 4.3, we have W ∗
τp

= C(t) for all
p ∈ ]0,∞[, and C(t) is the weakest copula which is τp-invariant for all p ∈ ]0,∞[. ¤

5. OPEN PROBLEMS

Problem 1. For ψ ∈ Φc, do we have C∗ψ = M for each copula C if and only if
ψ′(1−) = 0?

Problem 2. For a convex, decreasing bijection t : [0, 1] → [0,∞], do we have

A tλ∗ = {C | C is a copula which is τp-invariant for all p ∈ ]0,∞[}?

A potentially helpful result related to Problem 2 is the following:

Proposition 5.1. Let C ∈ M be a maximum attractor copula, let t : [0, 1] →
[0,∞] be a convex, decreasing bijection, and put ξ(t) = e−t. Then the aggregation
operator Cξ is a copula which belongs to At. Moreover, if C is described by the
dependence function A ∈ A then we have Cξ = Ct,A.

P r o o f . If C is characterized by A ∈ A, i. e., C(x, y) = elog(xy)·A( log x
log(xy) ), then

from

Cξ(x, y) = t−1

(
− log e

log(e−t(x)e−t(y))·A
(

log e−t(x)

log(e−t(x)e−t(y))

))

= t−1
(
(t(x) + t(y)) ·A( t(x)

t(x)+t(y)

))

= Ct,A(x, y)

the assertion follows. ¤
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