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HAAR WAVELETS METHOD FOR SOLVING
POCKLINGTON’S INTEGRAL EQUATION

M. Shamsi, M. Razzaghi∗, J. Nazarzadeh, and M. Shafiee

A simple and effective method based on Haar wavelets is proposed for the solution
of Pocklington’s integral equation. The properties of Haar wavelets are first given. These
wavelets are utilized to reduce the solution of Pocklington’s integral equation to the solution
of algebraic equations. In order to save memory and computation time, we apply a threshold
procedure to obtain sparse algebraic equations. Through numerical examples, performance
of the present method is investigated concerning the convergence and the sparseness of
resulted matrix equation.

Keywords: Pocklington integral equation; numerical solutions; Haar wavelets

AMS Subject Classification: 65R20; 65T60; 78M2

1. INTRODUCTION

In recent years wavelets have gained a lot of interest in many application fields, such
as signal processing [3], and solving differential and integral equations [2]. Different
variations of wavelet bases (orthogonal, biorthogonal, multiwavelets) have been pre-
sented and the design of the corresponding wavelet and scaling functions has been
addressed [4, 7]. Wavelets permit the accurate representation of variety of func-
tions and operators. Moreover wavelets establish a connection with fast numerical
algorithms [1].

The use of wavelets in integral equations is a subject recently studied by many
authors. It was discovered in [1] that the representation of an integral operator by
compactly supported orthonormal wavelets produces numerically sparse matrices to
some degree of precision.

In the theory of linear antenna and scatters, the current distribution along the
wire satisfies the so-called Pocklington’s equation, first applied to dipoles by H. C.
Pocklington in 1897 [8]. This equation, which is in the form of a Fredholm integral
equation of first kind, is basically an integrodifferential equation. Due to the presence
of derivatives in the integral as well as the singular nature of the kernel, its numerical
evaluation requires a special treatment. In the past, the method of moments has
been used to solve Pocklington’s equation and several approaches are introduced to
eliminate the differential operator [5, 6]. These may be categorized as follows:
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1) writing the integrodifferential equation in the form of harmonic differential equa-
tion whose solution is used to form a single integral equation of Hallen’s type which
is then solved for the unknown function;
2) applying piecewise linear functions or sinusoids for basis and/or testing functions
in the moments methods and using integration by parts twice to eliminate the second
derivative which results in a difference equation;
3) replacing the second derivative in the equation by finite difference approximation
and thus obtain an integrodifference equation.

While the above approaches are aimed at removing the differential operator from
Pocklington’s equation, very little work has been done to treat the singularity of the
integral, which may cause serious difficulties in numerical computations.

In this paper we apply the Haar wavelet bases to solve Pocklington’s integral
equation. The method consists in reducing the Pocklington’s equation to a set of
algebraic equations by expanding the current as Haar wavelets with unknown coef-
ficients. The properties of Haar wavelets are then utilized to evaluate the unknown
coefficients.

The paper is organized as follows: In Section 2 we describe the basic formulation
of the Haar wavelets required for our subsequent development. Section 3 is devoted
to the formulation of the Pocklington’s integral equation. In Section 4 the proposed
method is used to approximate the Pocklington’s equation. In Section 5, we re-
port our numerical finding and demonstrate the accuracy of the proposed numerical
scheme by considering numerical examples.

2. HAAR WAVELETS

The Haar wavelets are the simplest orthonormal wavelets. The Haar scaling function
is defined as

φ(x) =
{

1, 0 ≤ x < 1
0, otherwise.

The Haar wavelet function is defined as

ψ(x) =





1, 0 ≤ x < 1/2
−1, 1/2 ≤ x < 1
0, otherwise.

Furthermore φ(x) and ψ(x) satisfy the following two-scale difference equations,

φ(x) = φ(2x) + φ(2x− 1), (1)
ψ(x) = φ(2x)− φ(2x− 1). (2)

Let φjl(x) and ψjl(x), j = 0, 1, · · · and l = 0, · · · , 2j − 1, be obtained from φ(x) and
ψ(x) by dilation and translation,

φjl(x) = 2j/2φ(2jx− l),

ψjl(x) = 2j/2ψ(2jx− l).
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For any fixed nonnegative integer J , a function f(x) defined over [0, 1) can be ap-
proximated by the scaling functions as

f(x) '
2J−1∑

l=0

cJlφJl(x) = CT Φ(x), (3)

where

C =
[
cJ0, · · · , cJ,2J−1

]T
,

Φ(x) =
[
φJ0(x), · · · , φJ,2J−1(x)

]T
,

and the coefficients cJl are computed by

cJl =
∫ 1

0

f(x)φJl(x) dx = 2J/2

∫ τ̄J,l+1

τ̄Jl

f(x) dx,

where
τ̄Jl =

l

2J
, J = 0, 1, · · · , l = 0, · · · , 2J − 1.

The decomposition of f(x) in the Haar wavelets is given by

f(x) ' c00φ00(x) +
J−1∑

j=0

2j−1∑

l=0

djlψjl(x) = DT Ψ(x), (4)

where

D = [ c00 | d00 | d10, d11 | · · · | dJ0, · · · , dJ,2J−1 ]T ,

Ψ(x) = [ φ00(x) | ψ00(x) | ψ10(x), ψ11(x) | · · · | ψJ−1,0(x), · · · , ψJ−1,2J−1−1(x) ]T ,

and the coefficients djl are computed by

djl =
∫ 1

0

f(x)ψjl(x) dx.

In practice one will first calculate coefficients cJl, for fixed J in equation (3), and
then the wavelets coefficients in equation (4) are computed by applying the following
relations recursively for j = J − 1, · · · , 0 and l = 0, · · · , 2j − 1 [1,3],

cjl =
1√
2

(cj+1,2l + cj+1,2l+1) , (5)

djl =
1√
2

(cj+1,2l − cj+1,2l+1) . (6)

These relations follow from equations (1) and (2) and are linear mappings from R2J

to R2J

that convert the vector C to D.
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Now, let κ(x, y) be a function of two independent variables defined for x, y ∈ [0, 1).
then κ can be expanded in the Haar wavelets as

κ(x, y) '
2J∑

m=1

2J∑
n=1

UmnΨm(x)Ψn(y) = ΨT (x)UΨ(y), (7)

where

Umn =
∫ 1

0

∫ 1

0

κ(x, y)Ψm(x)Ψn(y) dxdy.

Similarly one may expand κ(x, y) by the scaling functions as

κ(x, y) '
2J∑

m=1

2J∑
n=1

VmnΦm(x)Φn(y) = ΦT (x)V Φ(y), (8)

where

Vmn =
∫ 1

0

∫ 1

0

κ(x, y)Φm(x)Φn(y) dxdy = 2J

∫ τ̄J,m+1

τ̄Jm

∫ τ̄J,n+1

τ̄Jn

κ(x, y) dxdy.

To obtain matrix U in equation (7) in practice we first calculate matrix V in
equation (8), and then by using equations (5) and (6), we evaluate U .

3. POCKLINGTON’S INTEGRAL EQUATION

Pocklington’s integral equation for the thin-wire cylindrical antenna of length L and
radius a is given in [8] as

(
d2

dz2
+ β2

) ∫ L

0

Iz(z′)
e−jβR

R
dz′ = −j4πωε0Ei

z(z), (9)

where
R =

√
(z − z′)2 + a2.

In equation (9) β = 2/λ (λ=wavelength) is the wavenumber, ω is the angular fre-
quency and ε0 is the permitivity of the medium. This equation relates the unknown
total axial current Iz to the axial component of known incident electric field Ei

z on
the surface of the cylinder. Richmond [9] has derived a convenient form of (9) by
interchanging the order of integration and differentiation. The result is

∫ L

0

Iz(z′)K(z, z′) dz′ = θ(z), (10)

where

K(z, z′) =
e−jβR

R5

[
(1 + jβR)(2R2 − 3a2) + (βaR)2

]
, (11)

and
θ(z) = −j4πωε0Ei

z(z).
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4. DISCRETIZATION OF POCKLINGTON’S INTEGRAL EQUATION

In this section we discretize the Pocklington integral equation (10) by using Haar
wavelets. For this propose, for any fixed nonnegative integer J , we use equation (4),
to approximate the current Iz(z′) as

Iz(z′) = αT Ψ(z′), (12)

where α is an unknown vector. We also expand θ(z) and K(z, z′) as

θ(z) = FT Ψ(z), (13)

K(z, z′) = ΨT (z)BΨ(z′), (14)

where F and B are calculated similarly to equations (4) and (7) respectively. By
using equations (12) – (14) and the orthonormal property of Ψ(z′), the integral equa-
tion (3) is thereby approximated by the system

Bα = F, (15)

which is a system of 2J equations in 2J unknowns. Equation (15) may be solved
numerically for α and hence yield an approximate solution to equation (12).

It should be pointed out that because of the local supports and vanishing moment
property of the Haar wavelets, many of the elements of matrix B are very small
compared to the largest element, and can be dropped without significantly affecting
the solution [1]. This is referred to as “thresholding”, which set those elements
of the matrix to zero that are smaller (in magnitude) than some positive number
ε (0 ≤ ε < 1), known as the threshold parameter, multiplied by the largest elements
of the matrix [6]. The value of threshold parameter ε needs to be well chosen so as to
balance the computational efficiency and accuracy of the approximation solutions.
After this process, a sparse matrix is obtained and the sparse matrix can be very
efficiently solved by using a sparse matrix solver such as the conjugate gradient
method.

To obtain matrix B in equation (14), we first calculate matrix A where

K(z, z′) = ΨT (z)BΨ(z′) = ΦT (z)AΦ(z′),

and then using equations (5) and (6) we evaluate B. For m,n = 1, · · · , 2J we get

Amn = 2J

∫ τ̄J,m+1

τ̄Jm

∫ τ̄J,n+1

τ̄Jn

K(z, z′) dzdz′. (16)

For m 6= n the entry Amn in equation (16) of the system matrix A can be evaluated
by using the numerical quadrature rule. When m = n the integrand of equation
(16) is very sharply peaked, particularly for small value of a. Therefore, from the
computational point of view, it would be advantageous to isolate and extract the
singularity from equation (11). This may be accomplished by writhing K(z, z′) as

K(z, z′) = K(n)(z, z′) +K(s)(z, z′), (17)
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where K(n) and K(s) denote the nonsingular and singular parts of kernel K and are
given in [10] as

K(n)(z, z′) =
[e−jβR + jβR− 1][(1 + jβR)(2R2 − 3a2) + (3aR)2]

R5

+
[R2/2][(2 + (3a/2)2)(3R)2 − (3 + j2βR)(3a)2]

R5
,

(18)

and

K(s)(z, z′) = β2

[
1− 1

8
(βa)2

]
1
R

+ 2
[
1− 1

4
(βa)2

]
1
R3

− 3a2 1
R5

. (19)

By using equation (17), we can express equation (16) as

Amn = A(n)
mn +A(s)

mn,

where

A(n)
mn = 2J

∫ τ̄J,m+1

τ̄Jm

∫ τ̄J,n+1

τ̄Jn

K(n)(z, z′) dzdz′, (20)

and

A(s)
mn = 2J

∫ τ̄J,m+1

τ̄Jm

∫ τ̄J,n+1

τ̄Jn

K(s)(z, z′) dzdz′. (21)

The integrand of the integral in equation (20) is extremely well behaved and, as
a consequence, may be efficiently and accurately evaluated numerically. The inte-
grand of the integral in equation (21) contains a singularity and can be evaluated
analytically as follows,

A(s)
mn = h(τ̄J,l+1, τ̄J,l′+1)− h(τ̄J,l+1, τ̄J,l′)− h(τ̄J,l, τ̄J,l′+1) + h(τ̄J,l, τ̄J,l′),

where
∂2h(z, z′)
∂z∂z′

= K(s)(z, z′). (22)

By using equations (19) and (21) we can get h(z, z′) as

h(z, z′) =
(
−1

8
β4a2 +

3
2
β2

)
R− 1

R

+
(
β2 − 1

8
β4a2

)
(z ln (−z + z′ +R) + z′ ln (z − z′ +R)) .

5. ILLUSTRATIVE EXAMPLES

In this section, two numerical examples are presented to illustrate the validity and
the merits of this technique. In both examples data are given for two selected wire
lengths so that they include special cases of practical interest, e. g., L = λ/2 and
L = λ. In Example 1, the convergence of our method is reported. As mentioned
before one main merit of this technique is the generation of a sparse matrix from an
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integral operator. This advantage is illustrated in Example 2. For this propose for
thresholding parameter ε the matrix sparsity (Sε), is defined by [6]

Sε =
N0 −Nε

N0
× 100%

whereN0 is the total number of elements andNε is the number of elements remaining
after thresholding. The relative error caused by thresholding is defined by

eε =
‖I0 − Iε‖2
‖I0‖2 × 100%.

The symbol ‖ ·‖2 denotes the L2 norm and I0 and Iε represent the solution obtained
from equation (15) without and with thresholding the matrix elements.

Example 1. In this example we consider the Pocklington integral equation (10) for
a thin wire with radius a = .001λ, β = 2π/λ, ω = 6π/λ×108 and ε0 = 8.854×10−10

for the following cases

a) L = λ/2, λ = 2,

b) L = λ, λ = 1.

In both cases we consider a rectangular pulse for Ei
z(z),

Ei
z(z) =

{
1/2∆, |z − L/2| < ∆

0, otherwise,

where ∆ = 0.01λ.

By applying the technique described in preceding section with J = 7, 8, 9 we
approximate current Iz(z) by using equation (12). The magnitudes of normalized
currents (Iz(z′)/‖Iz(z′)‖2) are shown in Figures 1 and 2 for cases (a) and (b) re-
spectively.

As can be seen in Figures 1 and 2 the solution converge rapidly with increasing
the values of J .

Example 2. In this example, our goal is to see how the thresholding affects the
sparsity of the matrix and precision of the solution. We use the same antenna as in
Example 1.
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Fig. 1. The magnitude of normalized current for case L = λ/2.
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Fig. 2. The magnitude of normalized current for case L = λ.
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ε = 10−7 ε = 10−5

Fig. 3. The remaining nonzero elements in B after thresholding with ε

where ε = 10−7, 10−5, L = λ and J = 8.

Table. Sparsity(Sε) and Relative error(eε) for Haar wavelets.

as a function of Threshold parameter and J

L = λ/2 L = λ
Threshold Sparsity Relative Sparsity Relative

Parameter (ε) (Sε) Error (eε) (Sε) Error (eε)
10−7 44 % 0.0053 % 47 % 0.0004 %

J = 7 10−6 60 % 0.1363 % 65 % 0.0143 %
10−5 73 % 2.1627 % 77 % 0.5076 %
10−7 61 % 0.0086 % 67 % 0.0018 %

J = 8 10−6 74 % 0.1453 % 78 % 0.0549 %
10−5 83 % 4.2817 % 85 % 0.6813 %
10−7 73 % 0.0097 % 79 % 0.0027 %

J = 9 10−6 82 % 0.1477 % 86 % 0.0770 %
10−5 88 % 4.1797 % 91 % 0.6483 %

In table we report sparsity and relative error of matrix B in equation (15), as a
function of threshold parameter and J . This table show that even with 80 % sparsity
the result is reasonably accurate. Figure 3 illustrate the sparseness structures of the
matrix elements B in equation (15) for ε = 10−7 and ε = 10−5 for cases (b) in
Example 1. The results are given for J = 8. In this figure the solid boxes indicate
the remaining nonzero elements.

6. CONCLUSION

The Haar wavelets are used to solve Pocklington’s integral equation for a thin-
wire. Some properties of Haar wavelets are presented and are utilized to reduce the
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computation of Pocklington’s integral equation to some sparse matrix equation. The
method is computationally attractive and applications are demonstrated through
illustrative examples.
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