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MODULAR ATOMIC EFFECT ALGEBRAS
AND THE EXISTENCE OF SUBADDITIVE STATES1

Zdenka Riečanová

Lattice effect algebras generalize orthomodular lattices and MV-algebras. We describe
all complete modular atomic effect algebras. This allows us to prove the existence of order-
continuous subadditive states (probabilities) on them. For the separable noncomplete ones
we show that the existence of a faithful probability is equivalent to the condition that their
MacNeille completion is a complete modular effect algebra.

Keywords: Effect algebra, modular atomic effect algebra, subadditive state, MacNeille com-
pletion of an effect algebra

AMS Subject Classification: 03G12; 06F99; 81P10

1. INTRODUCTION

In recent years quantum effects and fuzzy events have been studied within a gen-
eral algebraic framework called an effect algebra or, equivalently in some sense, a
D-poset. Thus, the elements of these structures represent events that may be un-
sharp or imprecise ([4, 10, 11]). Moreover, lattice ordered effect algebras generalize
orthomodular lattices [9] and MV-algebras ([1, 2]) – the algebraic structures which
have proved their importance in the investigation of the phenomenon of uncertainty
(see [3]).

It is known that there are (finite) effect algebras admitting no states and, hence,
no probabilities ([6, 15]). If there is a state on a lattice effect algebra it need not be
subadditive. We have shown in [16] that if a faithful subadditive state on a lattice
effect algebra E exists then E is separable and modular. Nevertheless, it remained
unanswered whether subadditive states on such effect algebras exist. In the present
paper we give a positive answer to this question. The proof is based on the fact that,
as we show, every irreducible complete atomic modular effect algebra is of finite
length and every complete atomic modular effect algebra is isomorphic to a direct
product of irreducible ones. Moreover, we show that the only irreducible complete
atomic effect algebras are either irreducible complete atomic modular ortholattices,
or finite chains, or effect algebras of length 2. These facts give a full description
of all complete atomic modular effect algebras and, as a consequence, a description

1This work was supported by grant G-1/0266/03 of MŠ SR, Slovakia and by Science and Tech-
nology Assitance??? Agency under the contract No. APVT-51-032002.
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of all atomic lattice effect algebras admitting order-continuous subadditive states
(probabilities).

2. EFFECT ALGEBRAS, BASIC NOTIONS AND FACTS

Definition 2.1. ([4]) A partial algebra (E;⊕, 0, 1) is called an effect-algebra if 0,
1 are two distinct elements and ⊕ is a partially defined binary operation on E which
satisfies the following conditions for any a, b, c ∈ E:

(Ei) b⊕ a = a⊕ b if a⊕ b is defined,

(Eii) (a⊕ b)⊕ c = a⊕ (b⊕ c) if one side is defined,

(Eiii) for every a ∈ P there exists a unique b ∈ P such that a⊕b = 1 (we put a′ = b),

(Eiv) if 1⊕ a is defined then a = 0.

We often denote the effect algebra (E;⊕, 0, 1) briefly by E. Moreover, if we write
a⊕ b = c for a, b, c ∈ E, then we mean both that a⊕ b is defined and a⊕ b = c. In
every effect algebra E we can define the partial operation ª and the partial order
≤ by putting

a ≤ b and bª a = c iff a⊕ c is defined and a⊕ c = b.

Since a ⊕ c = a ⊕ d implies c = d, the operation ª and the relation ≤ are well
defined. If E with the defined partial order is a lattice (a complete lattice) then
(E;⊕, 0, 1) is called a lattice effect algebra (a complete effect algebra). If, moreover,
E is a modular or distributive lattice then E is called modular or distributive effect
algebra.

Recall that a set Q ⊆ E is called a sub-effect algebra of the effect algebra E if

(i) 1 ∈ Q,

(ii) if out of elements a, b, c ∈ E with a⊕ b = c two are in Q, then a, b, c ∈ Q.

Assume that (E1;⊕1, 01, 11) and (E2;⊕2, 02, 12) are effect algebras. An injection
ϕ : E1 → E2 is called an embedding if ϕ(11) = 12 and for a, b ∈ E1 we have a ≤ b′ iff
ϕ(a) ≤ (ϕ(b))′ in which case ϕ(a⊕1 b) = ϕ(a)⊕2 ϕ(b). We can easily see that then
ϕ(E1) is a sub-effect algebra of E2 and we say that E1 and ϕ(E1) are isomorphic,
or that E1 is up to isomorphism a sub-effect algebra of E2. We usually identify E1

with ϕ(E1).
We say that a finite system F = (ak)n

k=1 of not necessarily different elements of
an effect algebra (E;⊕, 0, 1) is ⊕-orthogonal if a1 ⊕ a2 ⊕ · · · ⊕ an (written

⊕n
k=1 ak

or
⊕

F ) exists in E. Here we define a1⊕ a2⊕ · · · ⊕ an = (a1⊕ a2⊕ · · · ⊕ an−1)⊕ an

supposing that
⊕n−1

k=1 ak exists and
⊕n−1

k=1 ak ≤ a′n. An arbitrary system G =
(aκ)κ∈H of not necessarily distinct elements of E is called ⊕-orthogonal if

⊕
K

exists for every finite K ⊆ G. We say that for a ⊕-orthogonal system G = (aκ)κ∈H

the element
⊕

G exists iff
∨{⊕K|K ⊆ G, K is finite} exists in E and then we put
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⊕
G =

∨{⊕ K|K ⊆ G, K is finite} (we write G1 ⊆ G iff there is H1 ⊆ H such
that G1 = (aκ)κ∈H1). We refer the reader to [17].

An effect algebra (E;⊕, 0, 1) is called Archimedean if for no nonzero element e ∈ E
the elements ne = e⊕ e · · · ⊕ e︸ ︷︷ ︸

n times

exist for all n ∈ N . An Archimedean effect algebra is

called separable if every ⊕-orthogonal system of elements of E is at most countable.
We can show that every complete effect algebra is Archimedean [13].

For an element x of an effect algebra E we write ord (x) = ∞ if nx exists for
every n ∈ N . We write ord (x) = nx ∈ N if nx is the greatest positive integer such
that nxx exists in E. Clearly, in an Archimedean effect algebra nx < ∞ for every
x ∈ E.

Recall that elements x and y of a lattice effect algebra are called compatible
(written a ↔ b) if x ∨ y = x⊕ (y ª (x ∧ y)). For x ∈ E and Y ⊆ E we write x ↔ Y
iff x ↔ y for all y ∈ Y . If every two elements of E are compatible then E is called
an MV -effect algebra.

Every finite chain 0 < a < 2a < · · · < 1 = naa is a distributive effect algebra in
which every pair of elements is compatible, hence it is an MV -effect algebra.

An element a of an effect algebra E is called an atom if 0 ≤ b < a implies b = 0
and E is called atomic if for every x ∈ E, x 6= 0 there is an atom a ∈ E with a ≤ x.
Clearly every finite effect algebra is atomic.

For more details we refer the reader to (Dvurečenskij and Pulmannová [3]) and
the references given therein. We review only a few properties.

Lemma 2.1. The elements of an effect algebra (E;⊕, 0, 1) satisfy the following
properties:

(i) a⊕ b is defined iff a ≤ b′,

(ii) if a⊕ b and a ∨ b exist then a ∧ b exists and a⊕ b = (a ∧ b)⊕ (a ∨ b),

(iii) if u ≤ a, v ≤ b and a⊕ b is defined then u⊕ v is defined,

(iv) [8] If E is a lattice and Y ⊆ E with
∨

Y existing in E then x ↔ Y ⇒
x ∧ (

∨
Y ) =

∨{x ∧ y|y ∈ Y } and x ↔ ∨
Y .

3. IRREDUCIBLE COMPLETE ATOMIC MODULAR EFFECT ALGEBRAS

Recall that a direct product
∏{Eκ|κ ∈ H} of effect algebras Eκ is a Cartesian

product with ⊕, 0 and 1 defined “coordinatewise”. An element z ∈ E is called central
if the intervals [0, z] and [0, z′] with the inherited ⊕-operation are effect algebras in
their own right and E ∼= [0, z]× [0, z′], (see [7]). The set C(E) = {z ∈ E|z is central}
is called a center of E. If C(E) = {0, 1} then E is called irreducible.

In every lattice effect algebra E the set S(E) = {x ∈ E|x ∧ x′ = 0} is an
orthomodular lattice [8] and B(E) = {x ∈ E|x ↔ E} is an MV-effect algebra shuch
that S(E) and B(E) are sub-lattices and sub-effect algebras of E [14]. Moreover, we
have shown in [12] that z ∈ C(E) iff x = (x ∧ z) ∨ (x ∧ z′) for all x ∈ E which gives
C(E) = B(E) ∩ S(E) for every lattice effect algebra E. Further, S(E), B(E) and
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C(E) are closed with respect to all existing infima and suprema [17]. In general,
C(E) = {0, 1} does not imply C(S(E)) = {0, 1}.

Recall that the length of a finite chain is the number of its elements minus 1. The
length (height) of a lattice L is finite if the supremum over the number of elements
of chains in L equals to some natural number n and then n − 1 is called length of
the lattice L.

Theorem 3.1. For every irreducible complete atomic modular effect algebra E at
least one of the following conditions is satisfied.

(i) E is an irreducible complete atomic modular ortholattice.

(ii) E is a finite chain.

(iii) E is a horizontal sum of a family of Boolean algebras and chains, all of length 2.

P r o o f . (i) This is the case when a ∧ a′ = 0 for every atom a ∈ E, because then
E = S(E) = {x ∈ E|x ∧ x′ = 0}. Indeed, if there is x ∈ E with x ∧ x′ 6= 0 then
there exists an atom a ∈ E with a ≤ x ∧ x′ which gives a ≤ x ≤ (x′)′ ≤ a′; a
contradiction. Since S(E) is an orthomodular lattice in every lattice effect algebra
and E is modular, the equality E = S(E) implies that E is a modular ortholattice.
Moreover, C(S(E)) = B(S(E)) = B(E) ∩ S(E) = C(E) = {0, 1}, because the
compatibility in S(E) coincides with the compatibility in derived effect algebra.

(ii) Assume now that there is an atom a ∈ E such that a ≤ a′ and let a ∈ B(E).
Then also naa ∈ B(E) (by [14]) and, by [18, Theorem 2.4], naa ∈ S(E). Thus
naa ∈ B(E) ∩ S(E) = C(E) = {0, 1}, which gives naa = 1. It follows that for
every atom b ∈ E we have nbb ≤ 1 = naa. Assume that there is an atom b ∈ E,
b 6= a. Then either nbb = naa, and hence by [18, Theorem 3.1] we have 2a = 2b = 1
which gives a 6↔ b. Or nb = 1 and na = 2 which gives 1 = 2a = b ⊕ b′ = b ∨ b′,
hence again b 6↔ a, a contradiction. We conclude that E has a unique atom, hence
E = {0, a, 2a, . . . , 1 = naa}.

(iii) Finally, assume that there is an atom a ∈ E such that a ≤ a′ and a 6∈ B(E).
Then there exists an atom b ∈ E with b 6↔ a. As E is modular we have [a ∧ b, b] ∼=
[a, a ∨ b] which yields that a ∨ b covers a and hence there exists an atom c ∈ E
such that a ⊕ c = a ∨ b, which gives c ≤ a′. Evidently, c 6= b as b 6≤ a′. If c 6= a
then a ⊕ c = a ∨ b, which implies b ≤ a ∨ c ≤ a′, a contradiction. Thus c = a and
a ∨ b = 2a.

Let p ∈ E be an atom. Then either p 6↔ a which, as we have just shown, implies
that p ≤ p ∨ a = 2a ≤ naa, or p ↔ a and hence p ↔ naa for every atom p ∈ E. By
[17], for every x ∈ E we have x =

∨{u ∈ E|u ≤ x, u is a sum of finite sequence of
atoms}. Since naa ↔ p for every atom p and hence naa ↔ u for every finite sum
u of atoms, we conclude by Lemma 2.1, (iv), that naa ↔ x for every x ∈ E. Thus
naa ∈ B(E) ∩ S(E) = C(E) = {0, 1}, which implies that naa = 1. It follows that
for every atom p ∈ E, the inequality npp ≤ naa = 1 implies by [18, Theorem 3.1]
that np = 1 or np = 2. If np = 2 then [0, npp] is a chain {0, p, 1 = 2p} and if np = 1
then [0, npp] is a Boolean algebra {0, p, p′, 1 = p⊕ p′}. 2
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Corollary 3.1. The unique example of a complete atomic modular effect algebra
E with C(E) = {0, 1} and C(S(E)) 6= {0, 1} is a horizontal sum of the Boolean
algebra {0, a, a′, 1 = a⊕ a′} and chain {0, b, 1 = 2b}.

In a lattice of finite length with 0 we define a height function as follows:
For a∈L let h(a) denotes the length of a longest maximal chain in [0, a]. Here a

chain P ⊆ [0, a] is called maximal if for any chain Q⊆ [0, a] we have P ⊆Q⇒P =Q.
For a lattice of finite length the following conditions are equivalent:

(i) L is modular,

(ii) h(a) + h(b) = h(a ∨ b) + h(a ∧ b) for all a, b ∈ L (see [5, pp. 227–228]).

In [14] it has been shown that every maximal subset M of pairwise compatible
elements of a lattice effect algebra E is a sub-effect algebra and a sublattice of E
called a block of E. Moreover, E is a union of its blocks. Clearly, the blocks of E
are MV-effect algebras.

Corollary 3.2. Every irreducible complete atomic modular effect algebra E is of
finite length n which equals to the length of any block of E

P r o o f . For the case (i) of Theorem 3.1, see [9, p. 209]. For cases (ii) and (iii)
the statement is evident. 2

4. COMPLETE ATOMIC MODULAR EFFECT ALGEBRAS
AND THE EXISTENCE OF SUBADDITIVE STATES

Recall that a map ω : E → [0, 1] is called a (finitely additive) state on an effect
algebra E if ω(1) = 1 and x ≤ y′ ⇒ ω(x ⊕ y) = ω(x) + ω(y); ω is called (o)-

continuous if xα
(o)−→ x ⇒ ω(xα) → ω(x). Here for a net (xα)α∈E of elements of E

we write xα
(o)−→ x if there exist a nondecreasing net (uα)α∈E and a nonincreasing

net (vα)α∈E such that uα ≤ xα ≤ vα for all α ∈ E and uα ↑ x and vα ↓ x. A
state ω is called σ-additive if ω

(⊕∞
n=1 xn

)
=

∑∞
n=1 ω(xn) for every ⊕-orthogonal

sequence (xn)∞n=1 for which
⊕∞

n=1 xn exists in E. A state ω on E is called faithful
if ω(x) = 0 → x = 0.

If E is a lattice effect algebra then a state ω is called subadditive iff ω(x ∨ y) ≤
ω(x) + ω(y) for all x, y ∈ E. We have shown in [16] that a state ω is subadditive
iff ω(a) + ω(b) = ω(a ∨ b) + ω(a ∧ b) for all a, b ∈ E (ω is called a valuation) and
this occurs iff a ∧ b = 0 ⇒ ω(a ∨ b) = 0. Moreover, if a faithful subadditive state
on a lattice effect algebra exists then E is separable and modular, see [16]. It is a
matter of a routine verification that for every complete separable effect algebra E
and a faithful state ω on E the following conditions are equivalent:

(i) ω is σ-additive,

(ii) xn ↓ 0 ⇒ ω(xn) ↓ 0,
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(iii) xn ↑ x ⇒ ω(xn) ↑ ω(x),

(iv) ω is (o)-continuous,

(v) ω(
⊕

G) =
∨{∑x∈F ω(x)|F ⊆ G is finite} for every ⊕-orthogonal system G

for which
⊕

G exists in E.

A σ-additive subadditive state on a lattice effect algebra will be called a proba-
bility.

Finally, recall that a lattice effect algebra E is called (o)-continuous if xα ↑ x ⇒
xα ∧ y ↑ x ∧ y for all xα, x, y ∈ E, and it is iff the lattice operations ∨ and ∧ are
(o)-continuous.

Theorem 4.1. Every irreducible complete atomic modular effect algebra E pos-
sesses an (o)-continuous subadditive state. In fact, ω = h

n , where n is the length of
E and h is the height function on E.

P r o o f . Let x ∈ E. Then [0, x] is a modular lattice of finite length and hence
any two maximal chains of [0, x] are of the same length h(x) [5, p. 223, Theorem 1].
Moreover, every maximal chain of [0, x] is of the form 0 < a1 < a1 ⊕ a2 < · · · <
a1 ⊕ a2 ⊕ · · · ⊕ ak = x, where a1, a2, . . . , ak is a finite sequence of not necessarily
different atoms of E and k = h(x). Thus, if y ≤ x′ and y = b1 ⊕ b2 ⊕ · · · ⊕ b` for
some sequence of atoms b1, b2, . . . b` of E, then x⊕ y = a1 ⊕ · · · ⊕ ak ⊕ b1 ⊕ · · · ⊕ b`

and hence h(x ⊕ y) = h(x) + h(y). This proves that ω = h
n is a state on E. Since

for all x, y ∈ E we have h(x ∨ y) = h(x) + h(y)− h(x ∧ y), we conclude that ω = h
n

is subadditive. The (o)-continuity of ω is trivial as E is of finite length. 2

Theorem 4.2. Let E be a complete atomic modular effect algebra. Then

(i) E ∼= L×M×E0, where L is a modular ortholattice, M is an MV-effect algebra
and E0 is a direct product of lattice effect algebras of length 2. The factors
M , L and E0 are complete and atomic, or trivial factors {0}.

(ii) E is (o)-continuous.

(iii) There is an (o)-continuous subadditive state on E.

(iv) There is a faithful (o)-continuous subadditive state on E iff C(E) is separable.

P r o o f . (i) By [18, Theorem 3.2], C(E) is a complete atomic Boolean algebra and
by [18, Lemma 4.3] we obtain that E ∼= ∏{[0, p]|p is an atom of C(E)}. Since for
every atom p of C(E) the effect algebra [0, p] is irreducible and any direct product
of finite chains is an MV-effect algebra, the statement follows by Theorem 3.1.

(ii) For every atom p of C(E) the effect algebra [0, p] is of finite length and hence
it is (o)-continuous. Thus, the direct product

∏{[0, p]|p is an atom of C(E)} is
(o)-continuous as well. By part (i) we conclude that E is (o)-continuous.

(iii) If C(E) = {0, 1} the statement follows by Theorem 4.1. Let C(E) 6= {0, 1}
and p is an atom of C(E). Then by Theorem 4.1 there is a faithful subadditive state
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ωp on [0, p]. Since p ∈ C(E) for x, y ∈ E we have (x ∨ y) ∧ p = (x ∧ p) ∨ (y ∧ p) by
Lemma 2.1, (iv). If x ≤ y′ then (x⊕y)∧p = (x∧p)⊕(y∧p) by [18, Lemma 4.1]. Thus
ω defined by ω(x) = ωp(x∧p) for all x ∈ E is a faithful subadditive state on E. Since
by (ii) E is (o)-continuous, xα ↑ x ⇒ xα∧p ↑ x∧p and hence ωp(xα∧p) ↑ ωp(x∧p),
as [0, p] has a finite length. It follows that ω(xα) ↑ ω(x), which proves that ω is
(o)-continuous.

(iv) By [16, Theorem 2.8] the existence of a faithful state on E implies that E is
separable and hence C(E) is separable. Conversely, assume that C(E) is separable.
Let K ⊆ N = {1, 2, . . . } and AC(E) = {pk|k ∈ K} be the set of all atoms of C(E).
Let ωk be faithful subadditive states on [0, pk], k ∈ K. Further, take ck ∈ (0, 1) ⊆ R
with

∑
k∈K ck = 1. For every x ∈ E, let us put ω(x) =

∑
k∈K ckωk(x ∧ pk). By

similar reasonings as in part (iii), ω is a faithful subadditive state on E. Let us show
that ω is (o)-continuous. Let xα, x ∈ E, α ∈ E , and xα ↑ x. By Lemma 2.1, (iv), we
have x = x∧1 = x∧∨{pk|k ∈ K} =

∨{x∧pk|k ∈ K} =
∨{(x∧p1)⊕(x∧p2)⊕· · ·⊕(x∧

pn)|n ∈ K} because (x∧p1)⊕(x∧p2)⊕· · ·⊕(x∧pn) = (x∧p1)∨(x∧p2)∨· · ·∨(x∧pn),
since for k 6= ` we have pk ≤ p′` and pk ∧ p` = 0 which gives pk ∨ p` = pk ⊕ p`

by Lemma 2.1, (ii). Since E is (o)-continuous, it is compactly generated by finite
elements (i.e, by finite sums of atoms, see [18, Theorem 4.5]). It follows that for every
n ∈ K there is αn ∈ E such that (x∧p1)⊕(x∧p2)⊕· · ·⊕(x∧pn) ≤ xαn

and therefore
we may assume α1 ≤ α2 ≤ . . . . Obviously xαn ↑ x. Further, ω(x) ≥ ω(xαn) ≥
ω
(
(x∧ p1)⊕· · ·⊕ (x∧ pn)

)
= c1ω1(x∧ p1)+ c2ω2(x∧ p2)+ · · ·+ cnωn(x∧ pn) ↑ ω(x)

and hence ω(xαn) ↑ ω(x) which gives ω(xα) ↑ ω(x). 2

Corollary 4.1. For a complete atomic effect algebra E the following conditions
are equivalent:

(i) There exists a faithful probability on E.

(ii) E is separable and modular.

Note that (i) ⇒ (ii) has been proved in [16].
Finally, note that a lattice effect algebra admitting a subadditive state (not nec-

essarily faithful) need not be modular. Nevertheless, every complete effect algebra
admitting an (o)-continuous subaddtive state can be decomposed into a direct prod-
uct of two effect algebras at least one of which is modular, or it is modular.

Theorem 4.3. If for a complete effect algebra E the set M = {ω : E → [0, 1] ⊆
R|ω is a subadditive (o)-continuous state} is nonempty then either E is modular, or
there is d0 ∈ C(E) such that d0 6= 0, [0, d0] admits no (o)-continuous subadditive
state and [0, d′0] is modular.

P r o o f . For every ω ∈ M, we put dω = {∨{x ∈ E|ω(x) = 0}. Then, as we
have shown in [15, Theorem 5.1], ω(dω) = 0, E ∼= [0, dω]× [0, d′ω] and the restriction
ω|[0,d′ω] is a faithful probability on [0, d′ω]. This gives that [0, d′ω] is a separable
modular effect algebra.
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Put d0 =
∧{dω|ω ∈ M}. Then d0 ∈ C(E), as C(E) is a complete sublattice of

E. Since d′0 =
∨{d′ω|ω ∈ M} we see that [0, d′ω] ⊆ [0, d′0], for all ω ∈ M. Let us

show that [0, d′0] is a modular lattice.
By [8], for every x ∈ [0, d′0] we have x = x ∧ d′0 = x ∧ (∨{d′ω|ω ∈ M}) =∨{x ∧ d′ω|ω ∈ M}. Further, for every ω ∈ M and x, y, z ∈ [0, d′0] with x ≤ z

we have x ∧ d′ω ≤ z ∧ d′ω and because [0, d′ω] is modular and d′ω ↔ E we obtain(
x ∨ (y ∧ z)

) ∧ d′ω = (x ∧ d′ω) ∨ (
(y ∧ z) ∧ d′ω

)
=

(
(x ∧ d′ω) ∨ (y ∧ d′ω)

) ∧ (z ∧ d′ω) =(
(x ∨ y) ∧ z

) ∧ d′ω. This yields x ∨ (y ∧ z) =
∨ {(

x ∨ (y ∧ z)
) ∧ d′ω|ω ∈M

}
=∨ {(

(x ∨ y) ∧ z
) ∧ d′ω|ω ∈M

}
= (x ∨ y) ∧ z. Thus [0, d′0] is modular and evidently

it is a complete sub-lattice of E. It follows that if E is not modular then d′0 6= 1 and
hence d0 6= 0.

Finally, let us show that [0, d0] admits no (o)-continuous subadditive state. As-
sume on the contrary that d0 6= 0 and there is an (o)-continuous subadditive state
m on [0, d0]. Then ω : E → [0, 1] defined by ω(x) = m(x ∧ d0), x ∈ E is an (o)-
continuous subadditive state on E. This follows from the facts that for all x, y ∈ E
we have (x∨y)∧d0 = (x∧d0)∨(y∧d0) and if x ≤ y′ then (x⊕y)∧d0 = (x∧d0)⊕(y∧d0)
by [18, Lemma 4.1]. Further, for xα ↓ x, xα, x ∈ E we have xα∧d0 ↓ x∧d0 and hence
ω(xα) = m(xα ∧ d0) ↓ m(x ∧ d0) = ω(x), which implies that ω is (o)-continuous by
[18, Theorem 6.2]. Let dω =

∨{x ∈ E|ω(x) = 0}. Then dω ∈ C(E), ω(dω) = 0 and
d0 ≤ dω which gives ω(d0) = m(d0) = 0, a contradiction. This yields that [0, d0]
admits no (o)-continuous probability.

It is well known that every poset (P ;≤) has the MacNeille completion (completion
by cuts). By J. Schmidt [19] the MacNeille completion of a poset P is any complete
lattice P̂ into which the poset P can be supremum and infimum densely embedded,
i. e., for each x ∈ P̂ there are Q,M ⊆ P such that x =

∨
ϕ(M) =

∧
ϕ(Q), where

ϕ : P → P̂ is the embedding. We usually identify P with ϕ(P ).
A complete effect algebra (Ê, ⊕̂, 0̂, 1̂) is called a MacNeille completion of an effect

algebra (E;⊕, 0, 1) if, up to isomorphism, E is a sub-effect algebra of Ê and, as posets,
Ê is a MacNeille completion of E. It is known that there are (finite) effect algebras
the MacNeille completion of which are not again effect algebras [13]. 2

Corollary 4.2. If E is a complete effect algebra with C(E) = {0, 1} then every
(o)-continuous subadditive state on E is faithful.

Theorem 4.4. For an atomic lattice effect algebra E the following conditions are
equivalent:

(i) There is a faithful probability ω on E.

(ii) The MacNeille completion of E is a separable complete atomic modular effect
algebra

P r o o f . (i) ⇒ (ii) If ω is a faithful probability on E then E is separable and hence
ω is (o)-continuous. It follows by [16, Theorem 5.4] that the MacNeille completion
Ê of E is a separable complete atomic and modular effect algebra.
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(ii) ⇒ (i) In this case, by Theorem Th.4.1, there is a faithful probability ω̂ on the
MacNeille completion Ê of E. Hence the restriction ω̂|E is a faithful probability on
E. 2

(Received November 24, 2003.)
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