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MONOGENICITY OF PROBABILITY MEASURES
BASED ON MEASURABLE SETS INVARIANT
UNDER FINITE GROUPS OF TRANSFORMATIONS

Jürgen Hille and Detlef Plachky

Let A denote a σ-algebra of subsets of a set Ω, G a finite group of (A,A)-measurable
transformations g : Ω → Ω, F (G) the set consisting of all ω ∈ Ω such that g(ω) = ω, g ∈ G,
is fulfilled, and let B(G,A) stand for the σ-algebra consisting of all sets A ∈ A satisfying
g(A) = A, g ∈ G. Under the assumption f(B) ∈ A|G|, B ∈ B(G,A), for f : Ω → Ω|G|

defined by f(ω) = (g1(ω), . . . , g|G|(ω)), ω ∈ Ω, {g1, . . . , g|G|} = G, where |G| stands for

the number of elements of G, Ω|G| for the |G|-fold Cartesian product of Ω, and A|G| for
the |G|-fold direct product of A, it is shown that a probability measure P on A is uniquely
determined among all probability measures on A by its restriction to B(G,A) if and only if
P ∗(F (G)) = 1 holds true and that F (G) ∈ A is equivalent to the property of A to separate
all points ω1, ω2 ∈ F (G), ω1 6= ω2, and ω ∈ F (G), ω′ /∈ F (G), by a countable system of
sets contained in A. The assumption f(B) ∈ A|G|, B ∈ B(G,A), is satisfied, if Ω is a
Polish space and A the corresponding Borel σ-algebra.

1. INTRODUCTION

The main result of this article concerns characterizations of the property of a prob-
ability measure P defined on a σ-algebra A of subsets of a set Ω to be uniquely
determined among all other probability measures defined on A by its restriction to
some sub-σ-algebra B, which consists in this article of all sets A ∈ A satisfying
A = g(A), g ∈ G, where G denotes a finite group of (A,A)-measurable transform-
ations g : Ω → Ω. For example the results of the second part of this article might
be applied to the special group of permutations acting on Rn or the finite group
consisting of 2n elements acting on Rn by changing the sign of the coordinates. In
the first case a probability measure P on B(Rn), where B(Rn) is introduced as the
Borel-σ-algebra of Rn, is uniquely determined by its restriction to the sub-σ-algebra
of B(Rn) consisting of all permutation-invariant Borel subsets of Rn, if and only
if P (∆) = 1 is valid, where ∆ stands for the diagonal of Rn. In the second case,
a probability measure P on B(Rn) is uniquely determined by its restriction to the
sub-σ-algebra of B(Rn) consisting of all sign-invariant Borel subsets of Rn, if and
only if P is already the one-point mass at the origin of Rn.
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In the sequel the underlying model for the investigation of problems of the pre-
ceding type will be introduced and studied in detail.

The starting point is the following generalization of a result concerning groups of
permutations (cf. [4]) to arbitrary finite groups of transformations.

Lemma 1. Let A denote a σ-algebra of subsets of some set Ω, G a finite group of
(A,A)-measurable transformations g : Ω → Ω, B(G,A) the σ-algebra consisting of
all A ∈ A satisfying A = g(A), g ∈ G, and C an algebra of subsets of Ω generating
A. Then B(G,A) is generated by {⋃g∈G g(C) : C ∈ C}.

P r o o f . Let D denote the σ-algebra generated by {⋃g∈G g(C) : C ∈ C}. Then
D ⊂ B(G,A) holds true, whereas the inclusion B(G,A) ⊂ D will follow from the ob-
servation thatM introduced as the set consisting of all A ∈ A such that

⋃
g∈G g(A) ∈

D is fulfilled, is a monotone class, since M already contains the algebra C generat-
ing A. Clearly

⋃
n An ∈ M is valid for any increasing sequence An ∈ M, n ∈ N,

because of
⋃

n(
⋃

g∈G g(An)) =
⋃

g∈G(
⋃

n g(An)). Furthermore, for any decreasing
sequence An ∈ M, n ∈ N, ω ∈ ⋂

n(
⋃

g∈G g−1(An)) implies that for any n ∈ N
there exists some gn ∈ G satisfying gn(ω) ∈ An, i. e. there exists a g ∈ G such that
g(ω) ∈ An for infinite many n ∈ N is fulfilled, since G is finite. Hence, g(ω) ∈ ⋂

n An

holds true, i. e. the inclusion
⋂

n(
⋃

g∈G g−1(An)) ⊂ ⋃
g∈G(g−1(

⋂
n An)) has been

shown, whereas the inclusion
⋃

g∈G(g−1(
⋂

n∈NAn)) ⊂ ⋂
n(

⋃
g∈G g−1(An)) is obvi-

ous. Therefore,
⋂

n(
⋃

g∈G g−1(An)) ∈ D has been proved for any decreasing sequence
An ∈M, i. e. M is a monotone class. 2

Remarks.

(i) The assertion of Lemma 1 does not hold longer true, in general, for countable
groups of transformations, as the following special case shows:
Let Ω stand for the set R of real numbers and A for the Borel σ-algebra of
R, which might be generated by the algebra C consisting of all finite unions
of pairwise disjoint intervals of the type (a, b], where a, b, a < b, are rational
numbers including −∞ and ∞. Furthermore, G is introduced by the countable
group consisting of all transformations gρ : R → R defined by gρ(x) = x +
ρ, x ∈ R, where ρ is some rational number. Then

⋃
ρ gρ(

∑n
i=1(ai, bi]), n ∈

N ∪ {0}, is equal to R in the case n ∈ N and empty in the case n = 0,
i. e. the σ-algebra generated by

⋃
ρ gρ(

∑n
i=1(ai, bi]), ai < bi, ai, bi rational,

i = 1, . . . , n, n ∈ N ∪ {0} is equal to {∅,R}, whereas B(G,A) 6= {∅,R} holds
true, since the set consisting of all rational numbers belongs to B(G,A).

(ii) The special case of Lemma 1, where G is the group acting as permutations on
Rn together with A as the Borel σ-algebra of Rn leads to a short proof of the
well-known fact that B(G,A) is induced by the order statistics T : Rn → Rn

sending (x1, . . . , xn) ∈ Rn to the corresponding n-tuple, which is increasingly
ordered, i. e. T−1(A) = B(G,A) is valid in this case.

(iii) Let Gj denote finite groups of transformations with underlying σ-algebras
Aj , j = 1, 2, then Lemma 1 implies B(G1 × G2, A1 ⊗ A2) = B(G1,A1) ⊗
B(G2,A2).
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Further applications of Lemma 1 concern a characterization of the atoms of
B(G,A) and the property of B(G,A) to be countably generated.

Corollary 1. Let A denote a σ-algebra of subsets of a set Ω, G a finite group of
(A,A)-measurable transformations g : Ω → Ω, and B(G,A) the σ-algebra consisting
of all the sets A ∈ A satisfying A = g(A), g ∈ G.

Then the following assertions hold true:
(i) B ∈ B(G,A) is an atom of B(G,A) if and only if B =

⋃
g∈G g(A) is valid for

an atom A of A,
(ii) B(G,A) is countably generated if and only if there exists a countably generated

σ-algebra A′ ⊂ A such that g : Ω → Ω is (A′,A′)-measurable, g ∈ G, and
B(G,A′) = B(G,A) is valid.

P r o o f . For the proof of part (i) let A ∈ A denote an atom of A. Then B ∈
B(G,A) defined by

⋃
g∈G g(A) is an atom of B(G,A), since g(A), g ∈ G, are atoms

of A, too. Therefore, C ∩ g(A) is equal to g(A) or empty, g ∈ G, where C ∈ B(G,A)
is some subset of B, i. e. C =

⋃
g∈H g(A), H ⊂ G. Now g(C) = C, g ∈ G, implies

C =
⋃

g∈G g(A), if H is not empty, which shows that C = B is valid or C is empty,
i. e. B given by

⋃
g∈G g(A), where A stands for some atom of A, is indeed an atom

of B(G,A).
For the proof of the converse implication let B ∈ B(G,A) stand for an atom

of B(G,A). According to Lemma 1 there exists a countable subset C of A such
that B already belongs to the σ-algebra B generated by {⋃g∈G g(C) : C ∈ C}.
Let Bi, i ∈ I, stand for the atoms of B and Aj , j ∈ J , for the atoms of the
σ-algebra A′ generated by {g(C) : C ∈ C, g ∈ G}. Then g : Ω → Ω, g ∈ G,
is (A′,A′)-measurable according to Lemma 1, since one might replace C by the
countable algebra generated by {g(C) : C ∈ C, g ∈ G}. Therefore, B = B(G,A′)
holds true and

⋃
j∈J Aj =

⋃
i∈I Bi = Ω. According to the above considerations⋃

g∈G g(Aj), j ∈ J , is an atom of B = B(G,A′). Now
⋃

j∈J

⋃
g∈G g(Aj) = Ω and⋃

i∈I Bi = Ω shows that any Bi, i ∈ I, is of the type
⋃

g∈G g(Aj) for some j ∈ J .
In particular, the atom B ∈ B(G,A) is of the type

⋃
g∈G g(A) for a certain set

A ∈ {Aj : j ∈ I}. Now A ∈ A must be an atom of A, since, otherwise, B ∈ B(G,A)
would not be an atom of B(G,A), because

⋃
g∈G g(A′) and

⋃
g∈G g(A \ A′) are

disjoint and their union coincides with
⋃

g∈G g(A) for any A′ ∈ A satisfying A′ ⊂ A,
i. e.

⋃
g∈G g(A′) = ∅ or

⋃
g∈G g(A \ A′) = ∅ is valid, from which A′ = ∅ or A′ = A

follows.
For the proof of part (ii) let A′ be some countably generated σ-algebra contained

in A sucht that g : Ω → Ω is (A′,A′)-measurable, g ∈ G, and B(G,A′) = B(G,A)
holds true. Then B(G,A′)(= B(G,A)) is countably generated according to Lemma 1.

For the proof of the converse implication one might choose B(G,A) for A′. 2

Remarks.

(i) Let A be a countably generated σ-algebra of subsets of a given set Ω. Then
there exists a countably generated sub-σ-algebra A1 of A and a sub-σ-algebra
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A2 of A containing A1 such that it is not countably generated and that g :
Ω → Ω, g ∈ G, is both (A1,A1)-measurable and (A2,A2)-measurable; further
B(G,A1) = B(G,A2) = B(G,A) holds true if and only if the set E consisting
of all atoms of A not belonging to B(G,A) is uncountable, which might be
proved as follows:

Starting from the assumption B(G,A2) = B(G,A), where A is countably
generated and where A2 is a sub-σ-algebra of A such that g : Ω → Ω is
(A2,A2)-measurable, g ∈ G, it is sufficient to show that A2 is already count-
ably generated, if E is countable. For this purpose one observes that A∩Ωc

0 ⊂
B(G,A) ∩ Ωc

0 = B(G,A2) ∩ Ωc
0 ⊂ A2 ∩ Ωc

0 holds true for Ω0 introduced as⋃
E∈E E. Therefore, A ∩ Ωc

0 = A2 ∩ Ωc
0 is valid, from which it follows that A2

is countably generated.

For the proof of the other implication let A2 stand for the σ-algebra generated
by A1 and the atoms of A, where A1 coincides with B(G,A). It will be shown
that A2 is not countably generated, if E is uncountable. The assumption
on A2 to be countably generated results in an existence of a countable set
{Cn : n ∈ N} of atoms ofA such that, for any A ∈ A2, there exists a set B ∈ A1

satisfying A∆B ⊂ ⋃∞
n=1 Cn. Therefore, any C0 ∈ E \ {g(Cn) : n ∈ N, g ∈ G}

satisfies C0∆B0 ⊂
⋃∞

n=1 Cn for some B0 ∈ A1, which leads to C0 ⊂ B0 because
of C0 ∩ Cn = ∅, n ∈ N. Finally, C0 6= g0(C0) is valid for some g0 ∈ G, which
results in g0(C0) ∩ C0 = ∅, i. e. g0(C0) ⊂ B0 ∩ Cc

0 ⊂ ⋃∞
n=1 Cn holds true

because of g0(C0) ⊂ g0(B0) = B0. Hence, there exists a set Cn0 satisfying
g0(C0) = Cn0 , i. e. one arrives at the contradiction C0 = g−1

0 (Cn0).

(ii) Let A stand for a σ-algebra of subsets of a set Ω, G for a group not necessarily
finite, of (A,A)-measurable transformations g : Ω → Ω, and let P stand
for the set consisting of all G-invariant probability measures P on A, i. e.
P = P g, g ∈ G, is valid. Then it is well-known (cf. [1], p. 38 – 39) that the
extremal points of P might be characterized by the property of G-ergodicity,
i. e. P ∈ P is G-ergodic if and only if P restricted to the σ-algebra AP

consisting of all sets A ∈ A satisfying P (A∆g(A)) = 0, g ∈ G, is already
{0, 1}-valued. In case G is finite, the property of P ∈ P to be G-ergodic is
equivalent to the property of P ∈ P that its restriction to B(G,A) is {0, 1}-
valued. Under the additional assumption that A is countably generated, any
P ∈ P is G-ergodic, according to Corollary 1, if and only if there exist an
atom A ∈ A and gk ∈ G, k = 1, . . . , n, such that gk(A), k = 1, . . . , n, are
pairwise disjoint and P (gk(A)) = 1

n , k = 1, . . . , n, holds true. This result is
not longer valid for infinite groups of transformations, as a special case shows
in which the underlying set Ω is a compact, metrizable group G with A as the
corresponding Borel σ-algebra. In this case P only contains the normalized
Haar measure, if G is chosen for the corresponding group of (A,A)-measurable
transformations g : Ω → Ω.

(iii) The conclusion that the property of A to be countably generated implies that
B(G,A) is also countably generated might also be drawn from the observation
that 1

|G|
∑

g∈G Ig(A), where |G| stands for numbers of elements of G, is for any
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A ∈ A a regular, proper version of the conditional distribution P (A|B(G,A)),
where P is an arbitrary G-invariant probability measure on A (cf. [2]).

(iv) Let Aj denote σ-algebras of subsets of some set Ωj , j = 1, . . . , n (n ≥ 2). Then
the atoms of the n-fold direct product A1⊗ . . .⊗An might be characterized by
the property to be of the type A1 × . . .×An, where each Aj ∈ Aj is an atom
of Aj , j = 1, . . . , n. Clearly, sets of this type are atoms of A1⊗ . . .⊗An. The
converse direction might be proved with the aid of the observation that any
countably generated σ-algebra has atoms such that their union coincides with
the underlying set. In particular, let G denote the symmetric group of order n
acting as (An,An)-measurable permutations g : Ωn → Ωn, where Ωn stands for
the n-fold Cartesian product of the set Ω and An for the n-fold direct product
of the σ-algebra A of subsets of Ω. In this case, the atoms of B(G,An) are of
the type

⋃
π∈γn

Aπ(1) × . . . × Aπ(n), where Aj ∈ A, j = 1, . . . , n, are atoms
of A and γn is the symmetric group of order n consisting of all permutations
π : {1, . . . , n} → {1, . . . , n}.

The conclusion of part (iii) of the preceding remark, namely that B(G,A) is
countably generated for finite groups of (A,A)-measurable transformations g : Ω →
Ω, if A is countably generated, is not in general valid for countable groups as the
following example shows:

Example 1. Let Ω stand for the unit circle {exp ix : x ∈ R} with the corresponding
σ-algebra A and let P stand for the Haar measure of this compact group Ω with
P (Ω) = 1. Furthermore, let G be introduced as the countable group of (A,A)-
measurable transformations gρ : Ω → Ω defined by gρ(eix) = ei(x+ρ), x ∈ R, ρ ∈ Q,
where Q stands for the set of rational numbers. It will be shown that P restricted to
B(G,A) is {0, 1}-valued under the assumption that B(G,A) is countably generated,
which results in the contradiction that P ({exp i(x+Q)}) = 1 must be valid for some
atom exp i(x+Q), x ∈ R, of B(G,A). It remains to prove that one arrives, from the
assumption on B(G,A) to be countably generated, at a {0, 1}-valued restriction of
P to B(G,A), which might be seen as follows: For any set exp(iB) ∈ B(G,A), where
B is a Borel subset of R, the equation exp(iB) ∩ exp i(B + ρ) = exp(iB), ρ ∈ Q,
yields P (exp(iB) ∩ exp i(B + ρ)) = P (exp(iB)), ρ ∈ Q, from which P (exp(iB) ∩
exp i(B + x)) = P (exp(iB)), x ∈ R, follows, since the function defined by x →
P (exp(iB) ∩ exp i(B + x)), x ∈ R, is continuous (cf. [6], p. 191). Therefore, for
any x ∈ R and all sets eiB ∈ B(G,A), where B is a Borel subset of R, there exists
a P -zero set Nx such that Iexp(iB)(exp iy) · Iexp i(B+x)(exp iy) = Iexp(iB)(exp iy) for
exp iy /∈ Nx and y ∈ R holds true, if B(G,A) is countably generated, since one
might start from a countable algebra generating B(G,A) and apply a monotone
class argument. Now eiB ∈ B(G,A), where B is a Borel subset of R, implies that
ei(B−x) ∈ B(G,A), x ∈ R, which implies Iexp(iB)(exp iy) · Iexp i(B+x)(exp iy) =
Iexp(iB)(exp iy) for all exp iy /∈ N0 with y ∈ R and all x ∈ R, from which one derives
the equation Iexp(iB)(exp iy)P (exp i(y − B)) = Iexp(iB)(exp iy), exp iy /∈ N0 with
y ∈ R. Finally P (exp(iB)) > 0 yields the existence of a value exp iy ∈ exp iB
satisfying exp iy /∈ N0 with y ∈ R, i. e. P (exp i(y − B)) = P (exp(−iB)) = 1 and,
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therefore, P (exp(iB)) = 1 is valid, since P (exp(iB)) > 0 implies P (exp(−iB)) > 0,
i. e. B might be replaced by −B.

2. MAIN RESULTS

In the sequel the property of a probability measure P on the σ-algebra A to be
monogenic with respect to the σ-algebra B(G,A) consisting of all G-invariant sets
belonging to A, i. e. A ∈ B(G,A) if and only if A = g(A), g ∈ G, holds true, will
be characterized by properties of approximation, where P is called monogenic with
respect to B(G,A) if and only if P is uniquely determined among all probability
measures on A by its restriction P |B(G,A) to B(G,A).

Lemma 2. Let A denote a σ-algebra of subsets of a set Ω, G a finite group of
(A,A)-measurable transformations g : Ω → Ω, and B(G,A) the σ-algebra of all
G-invariant sets belonging to A. Then a probability measure P on A is monogenic
with respect to B(G,A) if and only if P ((

⋃
g∈G g(A)) \ (

⋂
g∈G g(A))) = 0 holds true

for any A ∈ A.

P r o o f . Clearly, if P has this property of approximation, then P is monogenic
with respect to B(G,A), since

⋂
g∈G g(A) ⊂ A ⊂ ⋃

g∈G g(A) and
⋂

g∈G g(A),⋃
g∈G g(A) ∈ B(G,A), A ∈ A, is valid.
For the proof of the converse implication one might start from the observation

that P̄ defined by 1
|G|

∑
g∈G P g (|G| number of elements of G) is a probability

measure on A, whose restriction P̄ |B(G,A) to B(G,A) coincides with P |B(G,A).
Therefore, the property of P to be monogenic with respect to B(G,A) implies that
P is already G-invariant, i. e. P g = P, g ∈ G, holds true. Furthermore, P is an
extremal point of the convex set consisting of all probability measures on A whose
restriction to B(G,A) coincides with P |B(G,A). Hence, for any A ∈ A, there exists
a B ∈ B(G,A) satisfying P (A∆B) = 0, where ∆ stands for the symmetric difference
(cf. [7]). This property of approximation fulfilled by P together with the property of
P to be G-invariant results in P (A∆(

⋃
g∈G g(A))) = 0 and P (A∆(

⋂
g∈G g(A))) = 0

from which P ((
⋃

g∈G g(A)) \ (
⋂

g∈G g(A))) = 0 follows. 2

The remaining part of this article is devoted to the problem of simplifying the
monogenicity criterion of Lemma 2. In this connection the set F (G) consisting of
all ω ∈ Ω which are kept fixed under all g ∈ G, i. e. ω = g(ω), g ∈ G, holds true,
plays an essential role.

Lemma 3. Let An denote the n-fold direct product of the σ-algebra A of subsets of
some set Ω and let G denote the finite group of (An,An)-measurable transformations
g : Ωn → Ωn, Ωn being the n-fold Cartesian product of Ω, associated with some
subgroups of the symmetric group γn of all permutations of {1, . . . , n}. Then a
probability measure P on An is monogenic with respect to B(G,An) if and only if
P ∗(F (G)) = 1 holds true, where P ∗ stands for the outer probability measure of P .
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P r o o f . Clearly, P ∗(F (G)) = 1 is according to Lemma 2 sufficient for the prop-
erty of P to be monogenic with respect to B(G,An), since (

⋃
g∈G g(A))\(⋂g∈G g(A)) ⊂

(F (G))c is valid for all A ∈ An.
For the proof of the converse implication one might introduce the following equiv-

alence relation on {1, . . . , n} defined by i ∼ j for i, j ∈ {1, . . . , n} if and only if there
exists some γ ∈ Γ such that i = γ(j) is valid, where Γ stands for the subgroup of
the symmetric group γn associated with G. Let [i1], . . . , [ik], i1 < . . . < ik, ij ∈
{1, . . . , n}, j = 1, . . . , k, denote the corresponding equivalence classes. It will now
be shown that F (G) ⊂ ⋃∞

m=1(Am,1× . . .×Am,n) for Am,j ∈ A, j = 1, . . . , n, m ∈ N,
implies

∑∞
m=1 P (Am,1× . . .×Am,n) ≥ 1, from which the assertion P ∗(F (G,A)) = 1

follows. For this purpose one should take into consideration that Lemma 2 leads to
the following equations up to some P -zero set:

IAm,1 × . . .× IAm,n

= IT
g∈G g(Am,1×...×Am,n)

= IT
g∈G(Ω×...×Ω×Tj∈[i1] Am,j×Ω×...×Ω×Tj∈[i2] Am,j×Ω×...×Ω...×Tj∈[ik] Am,j×Ω×...×Ω),

where [i1]∪ . . .∪ [ik] = {1, . . . , n} is valid. Finally, let π denote the projection of Ωn

onto Ω{i1,...,ik} introduced as the k-fold Cartesian product of Ω. Then P (Am,1×. . .×
Am,n) = Pπ(

⋂
j∈[i1]

Am,j× . . .×⋂
j∈[ik] Am,j) is implied by the preceding equations.

Now F (G) ⊂ ⋃∞
m=1(Am,1 × . . . × Am,n), together with F (G) = {(ω1, . . . , ωn) ∈

Ωn : ωi = ωj , i, j ∈ [iν ], ν ∈ {1, . . . , k}}, yields the inclusion Ω{i1,...,ik} ⊂⋃∞
m=1(

⋂
j∈[i1]

Am,j × . . .×⋂
j∈[ik] Am,j), from which

∑∞
m=1 P (Am,1× . . .×Am,n) =∑∞

m=1 Pπ(
⋂

j∈[i1]
Am,j× . . .×⋂

j∈[ik] Am,j) ≥ Pπ(Ω{i1,...,ik}) = 1 follows, i. e. mono-
genicity of P with respect to B(G,An) implies P ∗(F (G)) = 1. 2

Remarks.

(i) If G is associated with the symmetric groups γn, then F (G) is equal to the
diagonal ∆ of Ωn. It is known that ∆ ∈ An is equivalent to the property of
A to separate points ω ∈ Ω by a countable system of sets belonging to A. A
short proof of this characterization of ∆ ∈ An might be based on the fact that
the atoms of An are of the type A1× . . .×An, where Aj ∈ A, j = 1, . . . , n, are
atoms of A (cf. part (iv) of the remark following Corollary 1). The assumption
∆ ∈ An implies ∆ ∈ An

0 , where A0 is a countably generated sub-σ-algebra of
A. Therefore, ∆ is equal to the union of atoms of An

0 of the type A1× . . .×An,
where Aj ∈ A0, j = 1, . . . , n, are atoms of A0, i. e. Aj , j = 1, . . . , n, must be
singletons. Hence, any countable generator C of A0 separates points ω ∈ Ω.
The converse implication follows easily from the fact that ∆c is the union of
sets of the type Ω× . . .×Ω×A×Ω× . . .×Ω×Ac×Ω× . . .×Ω, where A runs
through some countable subsets of A, which might be assumed to be closed
with respect to complements. The property of A to separate points ω ∈ Ω
by a countable system of sets belonging to A implies that the cardinality of
the underlying set Ω exceeds the cardinality of the set R of real numbers. In
particular, π1 − π2 is not (A⊗A, A)-measurable, where πj : Ω× Ω, j = 1, 2,
are the projections associated with the Banach space Ω, if the cardinality of
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Ω exceeds the cardinality of R and A is the corresponding Borel σ-algebra (cf.
[5]).

(ii) The case P ∗(∆) = 1 together with P∗(∆) = 0 is possible, where P∗ stands for
the inner probability measure of P as the following special case shows: Let Ω
be an uncountable set, let A be the σ-algebra of subsets of Ω generated by all
singletons {ω}, ω ∈ Ω, i. e. A = {A ⊂ Ω : A or Ac is a countable subset of Ω},
and let P stand for the probability measure on A defined by P (A) = 0, if A
is a countable subset of Ω, resp. P (A) = 1, if Ac is a countable subset of Ω.
Then it is not difficult to see that (P ⊗ P )∗(∆) = 1 and (P ⊗ P )∗(∆) = 0 is
valid.

In the sequel Lemma 3 will be extended to arbitrary finite groups of transform-
ations. The special case of a finite group G of transformations g : Ω → Ω with
F (G) /∈ {∅, Ω} together with the σ-algebra A consisting of the sets ∅,Ω, F (G), and
(F (G))c, i. e. B(G,A) = A is valid, shows that some additional assumption must be
introduced, which is given in the following

Theorem 1. Let A denote a σ-algebra of subsets of a set Ω, G a finite group
of (A,A)-measurable transformations g : Ω → Ω, B(G,A) the σ-algebra consist-
ing of all G-invariant sets belonging to A, F (G) the set consisting of all ω ∈ Ω
satisfying g(ω) = ω, g ∈ G, f : Ω → Ω|G|, where |G| stands for the number of
elements of G, the mapping defined by f(ω) = (g1(ω), . . . , g|G|(ω)), ω ∈ Ω, G =
{g1, . . . , g|G|}, Ω|G| the G-fold Cartesian product of Ω, and A|G| the |G|-fold direct
product of A. Under the assumption f(B) ∈ A|G|, B ∈ B(G,A), the following
assertions hold true:

(i) A probability measure P on A is monogenic with respect to B(G,A) if and only
if P ∗(F (G)) = 1 is valid, where P ∗ stands for the outer probability measure
of P .

(ii) F (G) ∈ A holds true if and only if there exists a countable system contained
in A which separates all points ω1, ω2 ∈ F (G), ω1 6= ω2, and ω ∈ F (G), ω′ /∈
F (G).

P r o o f . The finite group G = {g1, . . . , g|G|} induces a subgroup SG of the sym-
metric group γ|G| of permutations of {1, . . . , |G|} according to πg(1, . . . , |G|) =
(gπ(1), . . . , gπ(|G|)), where π stands for the permutation of {1, . . . , |G|} associated
with g ∈ G by (g1g, . . . , g|G|g) = (gπ(1), . . . , gπ(|G|)). In particular, f−1(A1 ×
. . . × A|G|) =

⋂
g∈G g(A) ∈ B(G,A) is valid for A1 = . . . = A|G| = A ∈ A

according to Lemma 1, from which B(G,A) = f−1(C) follows, where C stands
for the σ-algebra of subsets of Ω|G| generated by all sets of the type A1 × . . . ×
A|G|, A1 = . . . = A|G| = A ∈ A. This observation shows that monogenicity
of the probability measure P f on A|G| with respect to B(SG,A|G|), where P f

stands for the probability measure on A|G| induced by the probability measure
P on A and the (A,A|G|)-measurable mapping f , implies that P is monogenic
with respect to B(G,A). This follows, according to Lemma 2, from the equation
P f (A1 × . . . × A|G| \

⋂
π∈SG

Aπ(1) × . . . × Aπ(|G|)) = 0, Aj ∈ A, j = 1, . . . , |G|,
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since the special case Aj = Ω, j = 2, . . . , |G| and A1 = g1(A), A ∈ A, results in
P (A \ f−1(B1 × . . .×B|G|)) = 0, Bj = A, j = 1, . . . , |G|, if one takes into consider-
ation that the subgroup of γ|G| associated with SG acts transitively on {1, . . . , |G|}.

For the converse implication, namely that monogenicity of P with respect to
B(G,A) implies that P f is monogenic with respect to B(SG,A|G|) one might start
from the equation P (A \ B) = 0, A ∈ A, B =

⋂
g∈G g(A), according to Lemma 2.

Now, f(B) ∈ A|G| is valid by assumption, from which P f (A1× . . .×A|G| \ f(B)) =
0 follows for Aj ∈ A, j = 1, . . . , |G|, where B stands for

⋂
g∈G g(C) and C for⋂|G|

j=1 g−1
j (Aj) = f−1(A1 × . . . × A|G|) ∈ A. Finally, f(B) ∈ B(SG,A|G|), which is

implied by B ∈ B(G,A), shows that P f is monogenic with respect to B(SG,A|G|) if
and only if P is monogenic with respect to B(G,A).

Now everything is prepared for the proof of part (i) of Theorem 1. For this
purpose let P stand for a probability measure on A being monogenic with respect to
B(G,A). Then P f is monogenic with respect to B(SG,A|G|), i. e. (P f )∗(F (SG)) = 1
holds true according to Lemma 3. Now f−1(F (SG)) = F (G) together with the
assumption f(B) ∈ A|G|, B ∈ B(G,A), leads to P ∗(F (G)) = 1, since the coverings
of F (G) entering into the definition of P ∗(F (G)) might have been chosen to belong
to B(G,A). Clearly, the property of P to fulfill the last equation P ∗(F (G)) = 1
implies, with regard to Lemma 2, that P is monogenic with respect to B(G,A)
because of

⋃
g∈G g(A) \ ⋂

g∈G g(A) ⊂ (F (G))c, A ∈ A, i. e. part (i) of Theorem 1
has been proved.

The proof of part (ii) of Theorem 1 might be based on the observation that the
subgroup of γ|G| associated with SG acts transitively on {1, . . . , |G|}, from which
F (SG) = {(ω1, . . . , ω|G|) : ω1 = . . . = ω|G| = ω, ω ∈ Ω} follows. Now the assump-
tion f(B) ∈ A|G|, B ∈ B(G,A) together with the condition F (G) ∈ A results in
f(Ω) ∩ F (SG) = f(F (G)) ∈ A|G|. Therefore, f(F (G)) ∈ Â|G| for a certain count-
ably generated sub-σ-algebra Â of A holds true. Now the atoms of Â|G| are of
the type A1 × . . . × A|G|, where Aj ∈ Â, j = 1, . . . , |G|, are atoms of Â (cf. part
(iv) of the remark following Corollary 1), and the union of all atoms of Â|G| coin-
cides with Ω|G|. Hence, the atoms of Â|G|, whose union coincides with f(F (G)),
are of the type A1 × . . . × A|G|, where Aj ∈ A, j = 1, . . . , |G|, are singletons of
the type {ω}, ω ∈ F (G), i. e. any countable system of sets generating Â separates
all points ω1, ω2 ∈ F (G), ω1 6= ω2 and ω ∈ F (G), ω′ /∈ F (G). Conversely, the
existence of a countable system C ⊂ A with this property of separation results in
f(Ω) ∩ F (SG) ∈ A|G| because the complement of f(Ω) ∩ F (SG) = f(F (G)) consists
of the union of the sets of the type A1 × . . . × A|G|, Aj = C ∈ C, Ak = Cc, j, k ∈
{1, . . . , |G|}, j 6= k, Ai = Ω, i ∈ {1, . . . , |G|} \ {j, k}, since one might assume with-
out loss of generality that C is already closed with respect to complements. Finally,
f(F (G)) ∈ A|G| together with f−1(f(F (G))) = F (G) yields F (G) ∈ A, i. e. part
(ii) of Theorem 1 has been proved. 2

Remarks.

(i) The condition f(B) ∈ A|G|, B ∈ B(G,A), is fulfilled, if Ω is a Polish space
and A the correspondingBorel σ-algebra (cf. [3], p. 276).
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(ii) The σ-algebra generated by all sets of the type A1 × . . . × A|G|, A1 = . . . =
A|G| = A ∈ A, which occurs in the proof of Theorem 1, has been characterized
in [4].

In the final part of this article a further rather simple condition will be introduced,
which yields simultaneously F (G) ∈ A and the characterization of monogenicity of
a probability measure P on A with respect to B(G,A) by P (F (G)) = 1.

Theorem 2. Let A denote a σ-algebra of subsets of a set Ω, G a finite group of
(A,A)-measurable transformations g : Ω → Ω, B(G,A) the σ-algebra consisting of
all G-invariant sets belonging to A, and F (G) the set {ω ∈ Ω : g(ω) = ω, g ∈ G}.
Under the assumption that A separates all points ω, g(ω), ω ∈ Ω, g ∈ G, ω 6= g(ω),
by a countable system of sets belonging to A, the following assertions hold true:

(i) F (G) ∈ A,

(ii) a probability measure P on A is monogenic with respect to B(G,A) if and
only if P (F (G)) = 1 is valid.

P r o o f . Let C ⊂ A stand for a countable system such that for ω ∈ Ω, g ∈ G, ω 6=
g(ω), there exists a C ∈ C satisfying ω ∈ C, g(ω) /∈ C or ω /∈ C, g(ω) ∈ C. Then⋃

C∈C((
⋃

g∈G g(C)) \ (
⋂

g∈G g(C))) = (F (G))c holds true, from which P (F (G)) =
1 follows, if P is monogenic with respect to B(G,A), since this property implies
according to Lemma 2 the equation P ((

⋃
g∈G g(C)) \ (

⋂
g∈G g(C))) = 0. Clearly,

P (F (G)) = 1 yields, by Lemma 2 being applied, that P is monogenic with respect
to B(G,A). 2

Remarks.

(i) The property of A to separate points ω, g(ω), ω ∈ Ω, g ∈ G, ω 6= g(ω),
by a countable system of sets belonging to A is shared by all countably gen-
erated σ-algebras A of subsets of Ω satisfying {ω} ∈ A, ω ∈ Ω, since such
σ-algebras separates all points ω1, ω2 ∈ Ω, ω1 6= ω2, by a countable system of
sets belonging to the corresponding σ-algebra.

(ii) In case G is associated with the symmetric group γn of all permutations π of
{1, . . . , n} acting (An,An)-measurably on Ωn, the property of An to separate
points ω, g(ω), ω ∈ Ωn, g ∈ G, ω 6= g(ω), by a countable system of sets
belonging to An, is equivalent to the property of A to separate all points
ω1, ω2 ∈ Ω, ω1 6= ω2, by a countable system of sets belonging to A. This
follows from the observation that any σ-algebra generated by some system C
of sets belonging to this σ-algebra and separating a given set of points by
some countable system of sets belonging to this σ-algebra, already separates
this given set of points by a countable system of sets belonging to C.

An application of Theorem 2 and Lemma 1 results in
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Corollary 2. Let Aj denote σ-algebras of subsets of some set Ωj , Gj finite groups
of (Aj ,Aj)-measurable transformations g : Ω → Ω, B(Gj ,Aj) the σ-algebra con-
sisting of all Gj-invariant sets belonging to Aj , j = 1, 2, and B(G1 ×G2, A1 ⊗A2)
the σ-algebra consisting of all (G1 ×G2)-invariant sets belonging to A1 ⊗A2. Then
B(G1 ×G2, A1 ⊗A2) = B(G1,A1) ⊗ B(G2,A2) is valid and under the assumption
that Aj separates all points ωj , g(ωj), ωj ∈ Ωj , g ∈ Gj , ωj 6= g(ωj), j = 1, 2, the
following assertion holds true: A probability measure P on A1 ⊗ A2 is monogenic
with respect to B(G1×G2, A1⊗A2) if and only if the corresponding marginal prob-
ability measures Pj of P on Aj are monogenic with respect to B(Gj ,Aj), j = 1, 2.

P r o o f . Lemma 1 implies B(G1 × G2, A1 ⊗ A2) = B(G1,A1) ⊗ B(G2,A2)
and monogenicity of the marginal probability measures Pj on Aj with respect to
B(Gj ,Aj), j = 1, 2, of some probability measure P on A1 ⊗ A2, leads, accord-
ing to Theorem 2, to Pj(F (Gj)) = 1, j = 1, 2, from which P (F (G1) × F (G2)) =
P (F (G1) × Ω2) ∩ (Ω1 × F (G2)) = 1 follows, i. e. P (F (G1 × G2)) = 1 holds true
because of F (G1 × G2) = F (G1) × F (G2), i. e. P is monogenic with respect to
B(G1 ×G2, A1 ⊗A2). Conversely, P (F (G1 ×G2)) = 1, which follows by means of
Theorem 2 from monogenicity of P with respect to B(G1 × G2, A1 ⊗ A2), implies
Pj(F (Gj)) = 1, j = 1, 2, i. e. Pj is monogenic with respect to B(Gj ,Aj), j = 1, 2.2

Remarks.

(i) Theorem 2 remains valid for countable groups, since Lemma 2 holds true for
countable groups, too. However, Theorem 2 (and also Theorem 1) is not longer
true for uncountable groups even in the case where Ω is an uncountable Polish
space and A is the σ-algebra of Borel subsets of Ω, which might be seen as
follows: For any analytic subset A0 /∈ A of Ω the equation

⋂
B∈A0

B = A0 is
valid, whereA0 stands for all Borel subsets B ∈ A containing A0 andA denotes
the Borel σ-algebra of Ω (cf. [3], Theorem 8.3.1, and [3], Corollary 8.2.17
together with [8], p. 422 in connection with the existence of A0). Furthermore,
let G denote the group of (A,A)-measurable mappings g : Ω → Ω such that
there exists a set B ∈ A0 with the property g(x) = x, x ∈ B, g(x) 6=
x, x ∈ Ω \ B, where g is a one-to-one transformation of Ω which maps Ω
onto Ω. In particular, g−1 is (A,A)-measurable (cf. [3], Theorem 8.3.2 and
Proposition 8.3.5), F (G) = A0 /∈ A is valid, and B(G,A) = {B ∈ A : B ⊂ A0

or Bc ⊂ A0} holds true, since for c1, c2 ∈ Ω \ A0, c1 6= c2, there exists a
mapping g ∈ G satisfying g(c1) = c2, i. e. Ac

0 ∩ B 6= ∅ for a set B ∈ B(G,A)
implies Ac

0 ∩B = Ac
0. In particular, B(G,A) is not countably generated, since

otherwise for any ω ∈ Ac
0 there would exist an atom C of B(G,A) containing

ω. Now C ∩ Ac
0 6= ∅ implies Cc ⊂ A0, i. e. Ac

0 ⊂ C. Therefore, there exists
an element ω′ ∈ C with the property ω′ ∈ A0 because of Ac

0 6= C. Finally
{ω′} ∈ B(G,A) results in the fact that C \ {ω′} is a proper subset of C, i. e.
C would not be an atom of B(G,A).

(ii) The model described by (i) admits the following characterization in connec-
tion with the question whether a probability measure P defined on A has the
property to be an extremal point of the set P consisting of all probability
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measures Q defined on A and satisfying Q|B(G,A) = P |B(G,A) : P ∈ P
is an extremal point of P if and only if P̄ (Ac

0 ∩ B) = P̄ (Ac
0)δω(B), B ∈ A,

is valid for some ω ∈ Ac
0, where P̄ stands for the completion of P restricted

to the σ-algebra consisting of the universally measurable subsets of Ω (cf.
[3], Corollary 8.4.3) and where δω denotes the one-point mass at ω, ω ∈ Ω.
This observation follows from the fact that for any B ∈ A there exists a
set B′ ∈ B(G,A) such that IB′ = IB P -a.e. holds true (cf. [7]), from
which either P̄ (Ac

0 ∩ B) = 0 in the case B′ ⊂ A0 or P̄ (Ac
0 ∩ Bc) = 0 in

the case B′c ⊂ A0 follows, i. e. the probability measure Q defined on A by
Q(B) = P̄ (Ac

0 ∩ B)/P̄ (Ac
0), B ∈ A, in the case P̄ (Ac

0) > 0 is equal to δω

for some ω ∈ Ac
0, since A is countably generated and contains all singletons

{ω}, ω ∈ Ω. Hence, P̄ (B ∩ Ac
0) = P̄ (Ac

0)δω(B), B ∈ A, is valid. Further-
more, P̄ (B ∩ A0) = P̄ (B ∩ B0), B ∈ A, where B0 ∈ A satisfies B0 ⊂ A0

and P̄ (A0 \ B0) = 0, shows that the probability measure defined on A by
B → P̄ (B ∩ A0)/P̄ (A0), B ∈ A, is monogenic with respect to B(G,A), from
which the assertion about the characterization of extremal points of P follows.
In particular, P is monogenic with respect to B(G,A) if and only if P̄ (A0) = 1,
i. e. P ∗(A0) = 1 holds true, since monogenicity of P relative to B(G,A) implies
that δω, ω ∈ Ac

0, has the same property in the case P̄ (Ac
0) > 0.

Example 2. Let A denote a countably generated σ-algebra of subsets of a set Ω
containing all singletons {ω}, ω ∈ Ω, and let G stand for the countable group of
(AN,AN)-measurable mappings g : ΩN → ΩN acting as a permutation for a finite
number of coordinates and keeping the remaining coordinates fixed, where ΩN resp.
AN is introduced as the N-fold Cartesian product of Ω resp. N-fold direct product
of A. Then F (G) is equal to the diagonal ∆ of ΩN and a probability measure on
AN of the type

⊗
n∈N Pn, where Pn, n ∈ N, are probability measures defined on A,

is monogenic with respect to B(G,AN) if and only if Pn = P1, n ∈ N, is valid and
P1 coincides with a one-point mass at a certain element ω ∈ Ω. This follows from
Theorem 2 together with Fubini’s theorem.

Example 3. Let A stand for a countably generated σ-algebra of subsets of a set Ω
containing all singletons {ω}, ω ∈ Ω, and let Gj , j = 1, 2, stand for finite groups of
(A,A)-measurable mappings gj : Ω → Ω, gj ∈ Gj , j = 1, 2. Then the corresponding
group G12 of (A,A)-measurable transformations generated by G1 and G2 consists
of all elements of the type h1 ◦ . . . ◦ hn, hj ∈ G1 ∪ G2, j = 1, . . . , n, n ∈ N, which
implies F (G12) = F (G1)∩F (G2). Now Theorem 2 shows that a probability measure
P on A is monogenic with respect to B(G12,A) if and only if P is monogenic with
respect to B(G1,A) and B(G2,A).

(Received March 29, 1995.)
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