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MONOGENICITY OF PROBABILITY MEASURES
BASED ON MEASURABLE SETS INVARIANT
UNDER FINITE GROUPS OF TRANSFORMATIONS

JURGEN HILLE AND DETLEF PLACHKY

Let A denote a o-algebra of subsets of a set 2, G a finite group of (A, .4)-measurable
transformations g : @ — ©, F(G) the set consisting of all w € Q such that g(w) = w, g € G,
is fulfilled, and let B(G,.A) stand for the o-algebra consisting of all sets A € A satisfying
g(A) = A, g € G. Under the assumption f(B) € Al°l, B € B(G, A), for f: Q — Q¢
defined by f(w) = (g1(w), ..., 9/6|(w)), w € Q, {g1,...,9¢/} = G, where |G| stands for
the number of elements of G, Q! for the |G|-fold Cartesian product of €, and A€l for
the |G|-fold direct product of A, it is shown that a probability measure P on A is uniquely
determined among all probability measures on A by its restriction to B(G, A) if and only if
P*(F(G)) = 1 holds true and that F(G) € A is equivalent to the property of A to separate
all points w1, w2 € F(G), w1 # ws, and w € F(G), v’ ¢ F(G), by a countable system of
sets contained in A. The assumption f(B) € Al¢l B e B(G, A), is satisfied, if  is a
Polish space and A the corresponding Borel o-algebra.

1. INTRODUCTION

The main result of this article concerns characterizations of the property of a prob-
ability measure P defined on a o-algebra A of subsets of a set Q to be uniquely
determined among all other probability measures defined on A by its restriction to
some sub-o-algebra B, which consists in this article of all sets A € A satisfying
A = g(A), g € G, where G denotes a finite group of (A, A)-measurable transform-
ations g : 2 — Q. For example the results of the second part of this article might
be applied to the special group of permutations acting on R™ or the finite group
consisting of 2™ elements acting on R™ by changing the sign of the coordinates. In
the first case a probability measure P on B(R™), where B(R") is introduced as the
Borel-o-algebra of R™, is uniquely determined by its restriction to the sub-o-algebra
of B(R™) consisting of all permutation-invariant Borel subsets of R™, if and only
if P(A) =1 is valid, where A stands for the diagonal of R™. In the second case,
a probability measure P on B(R™) is uniquely determined by its restriction to the
sub-o-algebra of B(R™) consisting of all sign-invariant Borel subsets of R", if and
only if P is already the one-point mass at the origin of R™.
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In the sequel the underlying model for the investigation of problems of the pre-
ceding type will be introduced and studied in detail.

The starting point is the following generalization of a result concerning groups of
permutations (cf. [4]) to arbitrary finite groups of transformations.

Lemma 1. Let A denote a g-algebra of subsets of some set €2, G a finite group of
(A, A)-measurable transformations g : @ — Q, B(G,.A) the o-algebra consisting of
all A € A satisfying A = g(A), g € G, and C an algebra of subsets of {2 generating
A. Then B(G, A) is generated by {U,cq 9(C) : C € C}.

Proof. Let D denote the o-algebra generated by {U,cq 9(C) : C € C}. Then
D C B(G, A) holds true, whereas the inclusion B(G,.A) C D will follow from the ob-
servation that M introduced as the set consisting of all A € A such that (J,. 9(A) €
D is fulfilled, is a monotone class, since M already contains the algebra C generat-
ing A. Clearly J,, An € M is valid for any increasing sequence A, € M, n € N,
because of U, (U,cq 9(4n)) = Uyea(U,, 9(4n)). Furthermore, for any decreasing
sequence A, € M, n € N, w € 1, (Uyjeq9 ' (An)) implies that for any n € N
there exists some g, € G satisfying g,(w) € A, i.e. there exists a g € G such that
g(w) € A, for infinite many n € N is fulfilled, since G is finite. Hence, g(w) € ,, 4»
holds true, i.e. the inclusion (), (U,cq g Y4,)) C UgeG(g_l(ﬂn Ay)) has been
shown, whereas the inclusion UgeG(g_l(ﬂneN Ar)) € N,Ugee g 1(A,)) is obvi-
ous. Therefore, (,,(U,cq 9 1(A,)) € D has been proved for any decreasing sequence
A, € M, i.e. M is a monotone class. O

Remarks.

(i) The assertion of Lemma 1 does not hold longer true, in general, for countable
groups of transformations, as the following special case shows:
Let © stand for the set R of real numbers and A for the Borel o-algebra of
R, which might be generated by the algebra C consisting of all finite unions
of pairwise disjoint intervals of the type (a,b], where a,b, a < b, are rational
numbers including —oco and co. Furthermore, G is introduced by the countable
group consisting of all transformations g, : R — R defined by g,(z) = = +
p, © € R, where p is some rational number. Then |, 9,37, (ai,bi]), n €
N U {0}, is equal to R in the case n € N and empty in the case n = 0,
i.e. the c-algebra generated by Up 9p(3°0 (as,b]), a; < by, a;,b; rational,
i=1,...,n, n € NU{0} is equal to {0, R}, whereas B(G, A) # {0, R} holds
true, since the set consisting of all rational numbers belongs to B(G, A).

(ii) The special case of Lemma 1, where G is the group acting as permutations on
R™ together with A as the Borel o-algebra of R™ leads to a short proof of the
well-known fact that B(G,.A) is induced by the order statistics T : R” — R”
sending (x1,...,x,) € R™ to the corresponding n-tuple, which is increasingly
ordered, i.e. T71(A) = B(G, A) is valid in this case.

(iii) Let G; denote finite groups of transformations with underlying o-algebras
Aj, j = 1,2, then Lemma 1 implies B(G1 x G2, A1 ® As) = B(G1, A1) ®
B(Ga, As).
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Further applications of Lemma 1 concern a characterization of the atoms of
B(G, A) and the property of B(G,.A) to be countably generated.

Corollary 1. Let A denote a o-algebra of subsets of a set Q, G a finite group of
(A, A)-measurable transformations g : Q@ — €, and B(G, A) the o-algebra consisting
of all the sets A € A satisfying A = g(A4), g € G.

Then the following assertions hold true:
(i) B € B(G,A) is an atom of B(G,.A) if and only if B = J 5 9(A) is valid for
an atom A of A,
(ii) B(G,.A) is countably generated if and only if there exists a countably generated
o-algebra A" C A such that g : @ — Q is (A, A')-measurable, g € G, and
B(G, A') = B(G, A) is valid.

Proof. For the proof of part (i) let A € A denote an atom of A. Then B €
B(G, A) defined by (J,cq 9(A) is an atom of B(G, A), since g(4), g € G, are atoms
of A, too. Therefore, C'Ng(A) is equal to g(A) or empty, g € G, where C € B(G, A)
is some subset of B, i.e. C = UgeHg(A), H C G. Now ¢g(C) = C, g € G, implies
C =Uyeq 9(A4), if H is not empty, which shows that C'= B is valid or C is empty,
i.e. B given by UgeG g(A), where A stands for some atom of A, is indeed an atom
of B(G, A).

For the proof of the converse implication let B € B(G,.A) stand for an atom
of B(G, A). According to Lemma 1 there exists a countable subset C of A such
that B already belongs to the o-algebra B generated by {U,cq9(C) : C € C}.
Let B;, i € I, stand for the atoms of B and A;, j € J, for the atoms of the
o-algebra A’ generated by {g(C) : C € C, g € G}. Theng: Q — Q, g € G,
is (A’, A’)-measurable according to Lemma 1, since one might replace C by the
countable algebra generated by {g(C) : C € C, g € G}. Therefore, B = B(G,A")
holds true and ;¢ ; Aj = U;e; Bi = Q2. According to the above considerations
Ugeq 9(4)), j € J, is an atom of B = B(G, A"). Now U;c;Uyeq 9(4;) = Q and
Uier Bi = Q shows that any B;, i € I, is of the type UgEGg(Aj) for some j € J.
In particular, the atom B € B(G,A) is of the type ,cq 9(A) for a certain set
Ae{A;:jeI}. Now A€ Amust be an atom of A, since, otherwise, B € B(G, A)
would not be an atom of B(G,A), because U,cq9(4") and U cq9(A \ A') are
disjoint and their union coincides with (J, . g(A) for any A" € A satisfying A’ C 4,
e Uyjeg9(A) =0 or Uyeqg(A\ AY) =0 is valid, from which A’ =0 or A" = A
follows.

For the proof of part (ii) let A’ be some countably generated o-algebra contained
in A sucht that g : Q@ — Q is (A, A’)-measurable, g € G, and B(G, A") = B(G, A)
holds true. Then B(G, A')(= B(G, A)) is countably generated according to Lemma 1.

For the proof of the converse implication one might choose B(G, A) for A’. O

Remarks.

(i) Let A be a countably generated o-algebra of subsets of a given set 2. Then
there exists a countably generated sub-o-algebra A; of A and a sub-o-algebra
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(iii)
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Az of A containing A; such that it is not countably generated and that g :
Q — Q, g € G, is both (A;,.4;)-measurable and (As, Az)-measurable; further
B(G, A1) = B(G, Ay) = B(G, A) holds true if and only if the set £ consisting
of all atoms of A not belonging to B(G,.A) is uncountable, which might be
proved as follows:

Starting from the assumption B(G,As) = B(G,.A), where A is countably
generated and where Ay is a sub-c-algebra of A such that g : Q@ — Q is
(Asg, Ag)-measurable, g € G, it is sufficient to show that As is already count-
ably generated, if £ is countable. For this purpose one observes that ANQ§ C
B(G,A) N Q5 = B(G, A2) N Q§ C Az N QF holds true for Qp introduced as
Ugee E. Therefore, AN QG = Ay NQf is valid, from which it follows that A,
is countably generated.

For the proof of the other implication let As stand for the o-algebra generated
by A; and the atoms of A, where A; coincides with B(G, A). It will be shown
that A, is not countably generated, if £ is uncountable. The assumption
on As to be countably generated results in an existence of a countable set
{C,, : n € N} of atoms of A such that, for any A € A,, there exists a set B € A;
satisfying AAB C |J;2, Cy. Therefore, any Cy € €\ {9(Cp) : n € N,g € G}
satisfies CoABy C Uzozl C,, for some By € Aj, which leads to Cy C By because
of CoNC, =0, n € N. Finally, Cy # go(Cp) is valid for some gy € G, which
results in go(Co) N Cy = 0, i.e. go(Co) € BoNC§ C U,—, Cy, holds true
because of go(Co) C go(Bo) = By. Hence, there exists a set C,, satisfying
g0o(Co) = Cpy, i.€. one arrives at the contradiction Cy = gy 1(C’no).

Let A stand for a o-algebra of subsets of a set €2, G for a group not necessarily
finite, of (A, A)-measurable transformations g : @ — Q, and let P stand
for the set consisting of all G-invariant probability measures P on A, i.e.
P = P9, g €@, isvalid. Then it is well-known (cf. [1], p. 38—39) that the
extremal points of P might be characterized by the property of G-ergodicity,
i.e. P € P is G-ergodic if and only if P restricted to the o-algebra Ap
consisting of all sets A € A satisfying P(AAg(A)) = 0, g € G, is already
{0,1}-valued. In case G is finite, the property of P € P to be G-ergodic is
equivalent to the property of P € P that its restriction to B(G, A) is {0,1}-
valued. Under the additional assumption that A is countably generated, any
P € P is G-ergodic, according to Corollary 1, if and only if there exist an
atom A € A and g, € G, k = 1,...,n, such that gx(A), k = 1,...,n, are
pairwise disjoint and P(gx(A4)) = 1, k =1,...,n, holds true. This result is
not longer valid for infinite groups of transformations, as a special case shows
in which the underlying set € is a compact, metrizable group G with A as the
corresponding Borel o-algebra. In this case P only contains the normalized
Haar measure, if G is chosen for the corresponding group of (A, A)-measurable
transformations g : Q — .

The conclusion that the property of A to be countably generated implies that
B(G, A) is also countably generated might also be drawn from the observation
that ﬁ >_gec Lga), where |G| stands for numbers of elements of G, is for any
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A € A aregular, proper version of the conditional distribution P(A|B(G, A)),
where P is an arbitrary G-invariant probability measure on A (cf. [2]).

(iv) Let A; denote o-algebras of subsets of some set ;, j =1,...,n (n > 2). Then
the atoms of the n-fold direct product A; ®...® A, might be characterized by
the property to be of the type Ay x ... x A,,, where each A; € A; is an atom
of A;, j =1,...,n. Clearly, sets of this type are atoms of A; ®...® A,. The
converse direction might be proved with the aid of the observation that any
countably generated o-algebra has atoms such that their union coincides with
the underlying set. In particular, let G denote the symmetric group of order n
acting as (A", A™)-measurable permutations g : Q" — Q" where Q" stands for
the n-fold Cartesian product of the set Q2 and A" for the n-fold direct product
of the o-algebra A of subsets of . In this case, the atoms of B(G, A™) are of
the type Uwewn Aray X ... X Ag(n), where A; € A, j =1,...,n, are atoms
of A and =, is the symmetric group of order n consisting of all permutations
m:{l,...,n} —{1,...,n}.

The conclusion of part (iii) of the preceding remark, namely that B(G,.A) is
countably generated for finite groups of (A, A)-measurable transformations g :  —
Q, if A is countably generated, is not in general valid for countable groups as the
following example shows:

Example 1. Let 2 stand for the unit circle {exp iz : € R} with the corresponding
o-algebra A and let P stand for the Haar measure of this compact group €2 with
P(Q) = 1. Furthermore, let G be introduced as the countable group of (A, .A)-
measurable transformations g, : @ — Q defined by g,(e'®) = e@tr) 2z eR, peQ,
where Q stands for the set of rational numbers. It will be shown that P restricted to
B(G, A) is {0, 1}-valued under the assumption that B(G,.A) is countably generated,
which results in the contradiction that P({expi(x+Q)}) = 1 must be valid for some
atom expi(z+Q), = € R, of B(G, A). It remains to prove that one arrives, from the
assumption on B(G,.A) to be countably generated, at a {0, 1}-valued restriction of
P to B(G, .A), which might be seen as follows: For any set exp(iB) € B(G, .A), where
B is a Borel subset of R, the equation exp(iB) Nexpi(B + p) = exp(iB), p € Q,
yields P(exp(iB) Nexpi(B + p)) = P(exp(iB)), p € Q, from which P(exp(iB) N
expi(B + x)) = P(exp(iB)), = € R, follows, since the function defined by z —
P(exp(iB) Nexpi(B + z)), = € R, is continuous (cf. [6], p. 191). Therefore, for
any z € R and all sets e'® € B(G,.A), where B is a Borel subset of R, there exists
a P-zero set N, such that Ie., iy (expiy) - Iexp i(B+a)(€XDP 1Y) = lexp(ip) (expiy) for
expiy ¢ N, and y € R holds true, if B(G,A) is countably generated, since one
might start from a countable algebra generating B(G,.A) and apply a monotone
class argument. Now e'® € B(G, A), where B is a Borel subset of R, implies that
' B=2) ¢ B(G,A), + € R, which implies Texp(iB) (exp iy) - Iexpi(B+a)(expiy) =
Iexp(im) (expiy) for all expiy ¢ Ny with y € R and all x € R, from which one derives
the equation Iepip)(expiy)Plexpi(y — B)) = Iexpin)(expiy), expiy ¢ No with
y € R. Finally P(exp(iB)) > 0 yields the existence of a value expiy € expiB
satisfying expiy ¢ No with y € R, i.e. P(expi(y — B)) = P(exp(—iB)) = 1 and,
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therefore, P(exp(iB)) = 1 is valid, since P(exp(iB)) > 0 implies P(exp(—iB)) > 0,
i.e. B might be replaced by —B.

2. MAIN RESULTS

In the sequel the property of a probability measure P on the o-algebra A to be
monogenic with respect to the o-algebra B(G, .A) consisting of all G-invariant sets
belonging to A, i.e. A € B(G,A) if and only if A = g(4), g € G, holds true, will
be characterized by properties of approximation, where P is called monogenic with
respect to B(G, A) if and only if P is uniquely determined among all probability
measures on A by its restriction P|B(G,.A) to B(G, A).

Lemma 2. Let A denote a o-algebra of subsets of a set 2, G a finite group of
(A, A)-measurable transformations g : Q2 — €, and B(G,A) the o-algebra of all
G-invariant sets belonging to A. Then a probability measure P on 4 is monogenic
with respect to B(G, A) if and only if P((U,cq 9(A4)) \ (MNyeq 9(A4))) = 0 holds true
for any A € A.

Proof. Clearly, if P has this property of approximation, then P is monogenic
with respect to B(G, A), since (,c5 9(A4) C A C U, e 9(A) and (g 9(A4),
Ujeq 9(A) € B(G, A), A€ A, is valid.

“For the proof of the converse implication one might start from the observation
that P defined by ﬁ > gec P? (|G| number of elements of &) is a probability
measure on A, whose restriction P|B(G,.A) to B(G,.A) coincides with P|B(G, A).
Therefore, the property of P to be monogenic with respect to B(G, . A) implies that
P is already G-invariant, i.e. P = P, g € G, holds true. Furthermore, P is an
extremal point of the convex set consisting of all probability measures on A whose
restriction to B(G, A) coincides with P|B(G, A). Hence, for any A € A, there exists
a B € B(G, A) satisfying P(AAB) = 0, where A stands for the symmetric difference
(cf. [7]). This property of approximation fulfilled by P together with the property of
P to be G-invariant results in P(AA(U,cq 9(4))) =0 and P(AA(,cq 9(A4))) =0
from which P((U,cq 9(4)) \ (MNyeq 9(4))) = 0 follows. O

The remaining part of this article is devoted to the problem of simplifying the
monogenicity criterion of Lemma 2. In this connection the set F(G) consisting of
all w € Q which are kept fixed under all g € G, i.e. w = g(w), g € G, holds true,
plays an essential role.

Lemma 3. Let A" denote the n-fold direct product of the o-algebra A of subsets of
some set {2 and let G denote the finite group of (A", A™)-measurable transformations
g : Q" — Q" Q" being the n-fold Cartesian product of €2, associated with some
subgroups of the symmetric group =, of all permutations of {1,...,n}. Then a
probability measure P on A"™ is monogenic with respect to B(G,.A™) if and only if
P*(F(G)) =1 holds true, where P* stands for the outer probability measure of P.
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Proof. Clearly, P*(F(G)) =1 is according to Lemma 2 sufficient for the prop-
erty of P to be monogenic with respect to B(G, A™), since (U, 9(A)\(N,eq 9(4)) C
(F(G))° is valid for all A € A™.

For the proof of the converse implication one might introduce the following equiv-
alence relation on {1,...,n} defined by ¢ ~ j for i,j € {1,...,n} if and only if there
exists some v € I' such that ¢ = «(j) is valid, where I stands for the subgroup of
the symmetric group =, associated with G. Let [i1],...,[ix], ©1 < ... < i, ij €
{1,...,n}, j =1,...,k, denote the corresponding equivalence classes. It will now
be shown that F(G) C U, _;(Am1X...xApp) for A, j € A, j=1,...,n, meN,
implies > °_ | P(Am1 % ... X Ay, ) > 1, from which the assertion P*(F(G, A)) =1
follows. For this purpose one should take into consideration that Lemma 2 leads to
the following equations up to some P-zero set:

IAm,1 X ... XIA

= 1IN, o 9(AmaxxAm.n)

= Iﬂgec(ﬂx‘..xQxﬂjE[ill Am,j XQX"'XQanE[iQ] A, xQx...xQ...xﬂjE[ik] A, i XQAX...xQ)»

where [i1]U...U[ix] = {1,...,n} is valid. Finally, let 7 denote the projection of Q™
onto QU1 } introduced as the k-fold Cartesian product of . Then P(Ap1X...%
Apn) = P’T(ﬂje[m A jx ... % ﬂje[ik] A, ;) is implied by the preceding equations.
Now F(G) C Uy _i(Am1 X ... X App), together with F(G) = {(w1,...,wy) €
O w = wj, 4,5 € [iy], v € {1,...,k}}, yields the inclusion Qtit-ix}
U:j:l(ﬂje[il] Apj X ... X ﬂje[ik] A, ;). from which Y°0° | P(Ap1 X ..o X Ay ) =
Pom=1 PT(Njepin Amag XX Njepin) Amog) = Pr(Qtini}) = 1 follows, i.e. mono-

m=1

genicity of P with respect to B(G,.A™) implies P*(F(G)) = 1. O
Remarks.

(i) If G is associated with the symmetric groups 7,, then F(G) is equal to the
diagonal A of Q™. It is known that A € A" is equivalent to the property of
A to separate points w € £ by a countable system of sets belonging to A. A
short proof of this characterization of A € A™ might be based on the fact that
the atoms of A™ are of the type A; X...x A,, where A; € A, j=1,...,n, are
atoms of A (cf. part (iv) of the remark following Corollary 1). The assumption
A e A" implies A € Aj, where Ay is a countably generated sub-c-algebra of
A. Therefore, A is equal to the union of atoms of Ajj of the type A; x...x A,
where A; € Ay, j =1,...,n, are atoms of Ao, i.e. A;, j =1,...,n, must be
singletons. Hence, any countable generator C of Ag separates points w € €.
The converse implication follows easily from the fact that A¢ is the union of
sets of the type QX ... X QX AX QX ... x QX A X QX ...xQ, where A runs
through some countable subsets of 4, which might be assumed to be closed
with respect to complements. The property of A to separate points w € 2
by a countable system of sets belonging to A implies that the cardinality of
the underlying set €2 exceeds the cardinality of the set R of real numbers. In
particular, m; — 7o is not (A ® A, A)-measurable, where m; : Q@ x Q, j =1,2,
are the projections associated with the Banach space €2, if the cardinality of
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Q exceeds the cardinality of R and A is the corresponding Borel o-algebra (cf.
[5]).

(ii) The case P*(A) = 1 together with P,(A) = 0 is possible, where P, stands for
the inner probability measure of P as the following special case shows: Let Q2
be an uncountable set, let A be the o-algebra of subsets of {2 generated by all
singletons {w}, w € Q,i.e. A={ACQ: Aor A°is a countable subset of 2},
and let P stand for the probability measure on A defined by P(A) = 0, if A
is a countable subset of Q, resp. P(A) = 1, if A° is a countable subset of (.
Then it is not difficult to see that (P ® P)*(A) =1 and (P ® P).(A) =0 is
valid.

In the sequel Lemma 3 will be extended to arbitrary finite groups of transform-
ations. The special case of a finite group G of transformations g : @ —  with
F(G) ¢ {0,Q} together with the o-algebra A consisting of the sets 0, Q, F(G), and
(F(@))¢, i.e. B(G,A) = A is valid, shows that some additional assumption must be
introduced, which is given in the following

Theorem 1. Let A denote a o-algebra of subsets of a set 2, G a finite group
of (A, A)-measurable transformations g : @ — Q, B(G,.A) the o-algebra consist-
ing of all G-invariant sets belonging to A, F(G) the set consisting of all w € Q
satisfying g(w) = w, g € G, f : Q — QIS where |G| stands for the number of
elements of G, the mapping defined by f(w) = (91(w),...,9/q(w)), w € Q, G =
{91, 9101} Q€1 the G-fold Cartesian product of ©, and Al¢! the |G|-fold direct
product of A. Under the assumption f(B) € Al¢l, B € B(G,A), the following
assertions hold true:
(i) A probability measure P on A is monogenic with respect to B(G, A) if and only
it P*(F(G)) =1 is valid, where P* stands for the outer probability measure
of P.

(ii) F(G) € A holds true if and only if there exists a countable system contained
in A which separates all points wy,ws € F(G), w1 # ws, and w € F(G), w' ¢
F(G).

Proof. The finite group G = {g1,...,g|q|} induces a subgroup S¢ of the sym-
metric group 7| of permutations of {1,...,|G[} according to m,(1,...,|G|) =
(9r(1)>---»9x(c)))> Where 7 stands for the permutation of {1,...,|G|} associated
with ¢ € G by (919,--.,91¢19) = (9=1)>---+9r(ap)- In particular, (A x

. X A\G\) = ﬂgEGg(A) S B(G,A) is valid for A4 = ... = A\G| =Aec A
according to Lemma 1, from which B(G,A) = f~1(C) follows, where C stands
for the o-algebra of subsets of QIG| generated by all sets of the type A; x ... x
Ag), A1 = ... = Ajgg = A € A This observation shows that monogenicity
of the probability measure P¥ on AlG| with respect to B(Sg, Al¢!), where P/
stands for the probability measure on A/l induced by the probability measure
P on A and the (A, Al¢l)-measurable mapping f, implies that P is monogenic
with respect to B(G,.A). This follows, according to Lemma 2, from the equation
Pf(Al X ... X A|G\ \mﬂ'EScAﬂ'(l) X ... X ATI'(lGD) =0, Aj cA j= 1,...,‘G|,
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since the special case A; = Q, j =2,...,|G| and 41 = g1(A4), A € A, results in
P(A\ f%(B1 x...x Bjg))) =0, Bj=A, j=1,...,|G], if one takes into consider-
ation that the subgroup of 7|g| associated with S¢ acts transitively on {1,...,|G|}.

For the converse implication, namely that monogenicity of P with respect to
B(G, A) implies that P/ is monogenic with respect to B(Sq, Al¢!) one might start
from the equation P(A\ B) =0, A€ A, B =(),c59(A), according to Lemma 2.
Now, f(B) € Al€l is valid by assumption, from which Pf(A; x ... x A\ f(B)) =
0 follows for A; € A, j = 1,...,|G|, where B stands for (1,c;9(C) and C for
NIl g7 (A)) = F1 (AL x ... x Ajg)) € A. Finally, f(B) € B(Sg, Al9!), which is
implied by B € B(G, A), shows that P/ is monogenic with respect to B(Sg, Al¢!) if
and only if P is monogenic with respect to B(G, A).

Now everything is prepared for the proof of part (i) of Theorem 1. For this
purpose let P stand for a probability measure on A being monogenic with respect to
B(G, A). Then P is monogenic with respect to B(Sg, Al¢l), i.e. (P/)*(F(Sg)) =
holds true according to Lemma 3. Now f~'(F(Sg)) = F(G) together with the
assumption f(B) € A€, B € B(G, A), leads to P*(F(G)) = 1, since the coverings
of F(G) entering into the definition of P*(F(G)) might have been chosen to belong
to B(G,A). Clearly, the property of P to fulfill the last equation P*(F(G)) = 1
implies, with regard to Lemma 2, that P is monogenic with respect to B(G,.A)
because of J,cq 9(A4) \ Nyeq 9(A) C (F(G))°, A € A, i.e. part (i) of Theorem 1
has been proved.

The proof of part (i) of Theorem 1 might be based on the observation that the
subgroup of 7|g| associated with S¢ acts transitively on {1,...,|G|}, from which
F(Sq) = {(w1,...,wig|) 1w1 = ... = wjg| = w, w € Q} follows. Now the assump-
tion f(B) € Al¢l, B € B(G,.A) together with the condition F(G) € A results in
f)NF(Sg) = f(F(Q)) € Al Therefore, f(F(G)) € Al€l for a certain count-
ably generated sub-o-algebra A of A holds true. Now the atoms of A€l are of
the type Ay x ... x Ajg|, where A; € A j=1,..., |G|, are atoms of A (cf. part
(iv) of the remark following Corollary 1), and the union of all atoms of AlG! coin-
cides with QIS!. Hence, the atoms of AlS! whose union coincides with f(F(QG)),
are of the type Ay x ... x Ajg|, where A; € A, j = 1,...,|G|, are singletons of
the type {w}, w € F(G), i.e. any countable system of sets generating A separates
all points wy,ws € F(G), w1 # wy and w € F(G), ' ¢ F(G). Conversely, the
existence of a countable system C C A with this property of separation results in
f(Q) N F(Sg) € A€l because the complement of f(Q) N F(Sg) = f(F(G)) consists
of the union of the sets of the type A; x ... x Ajg;, 4; =C €C, Ay, =C°, j,k €
{1,.. |G|}, j#k, Ai=Q, i€ {1,...,|G|} \ {J, k}, since one might assume with-
out loss of generality that C is already closed with respect to complements. Finally,
f(F(@)) € A€l together with f~'(f(F(G))) = F(G) yields F(G) € A, i.e. part
(ii) of Theorem 1 has been proved. O

Remarks.

(i) The condition f(B) € Al B € B(G, A), is fulfilled, if  is a Polish space
and A the correspondingBorel o-algebra (cf. [3], p. 276).
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(ii) The o-algebra generated by all sets of the type A; x ... x Ajg|, 41 = ... =
Ajq) = A € A, which occurs in the proof of Theorem 1, has been characterized
in [4].

In the final part of this article a further rather simple condition will be introduced,
which yields simultaneously F(G) € A and the characterization of monogenicity of
a probability measure P on A with respect to B(G,.A) by P(F(G)) = 1.

Theorem 2. Let A denote a g-algebra of subsets of a set 2, G a finite group of
(A, A)-measurable transformations g : Q@ — Q, B(G, .A) the o-algebra consisting of
all G-invariant sets belonging to A, and F(G) the set {w € Q : g(w) = w, g € G}.
Under the assumption that A separates all points w, g(w), w € Q, g € G, w # g(w),
by a countable system of sets belonging to A, the following assertions hold true:

(i) F(G) € A,

(ii) a probability measure P on A is monogenic with respect to B(G,.A) if and
only if P(F(G)) =1 is valid.

Proof. Let C C A stand for a countable system such that for w € 2, g € G, w #
g(w), there exists a C' € C satisfying w € C, g(w) ¢ C or w ¢ C, g(w) € C. Then
Ucee((Uyeq 900N \ (Nyeq 9(C))) = (F(G))® holds true, from which P(F(G)) =
1 follows, if P is monogenic with respect to B(G,.A), since this property implies
according to Lemma 2 the equation P((U,cq 9(C)) \ (N,eq 9(C))) = 0. Clearly,
P(F(G)) =1 yields, by Lemma 2 being applied, that P is monogenic with respect
to B(G, A). O

Remarks.

(i) The property of A to separate points w, g(w), w € Q, g € G, w # g(w),
by a countable system of sets belonging to A is shared by all countably gen-
erated o-algebras A of subsets of Q satisfying {w} € A, w € Q, since such
o-algebras separates all points wy,ws € 0, wy # wa, by a countable system of
sets belonging to the corresponding o-algebra.

(ii) In case G is associated with the symmetric group ~, of all permutations 7 of
{1,...,n} acting (A", A™)-measurably on 2", the property of A" to separate
points w,g(w), w € Q" g € G, w # g(w), by a countable system of sets
belonging to A", is equivalent to the property of A to separate all points
wy,wy € £, w1 # we, by a countable system of sets belonging to A. This
follows from the observation that any o-algebra generated by some system C
of sets belonging to this o-algebra and separating a given set of points by
some countable system of sets belonging to this o-algebra, already separates
this given set of points by a countable system of sets belonging to C.

An application of Theorem 2 and Lemma 1 results in
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Corollary 2. Let .4; denote o-algebras of subsets of some set €2;, G; finite groups
of (A;, A;)-measurable transformations g : Q@ — Q, B(G;, A;) the o-algebra con-
sisting of all Gj-invariant sets belonging to A;, j = 1,2, and B(G1 x G2, A1 ® Az)
the o-algebra consisting of all (G x Gs)-invariant sets belonging to A; ® As. Then
B(Gy x Ga, A1 ® A3) = B(G1, A1) @ B(G2, As) is valid and under the assumption
that A; separates all points w;, g(w;), w; € Q;, g € G;, wj # g(w;), j = 1,2, the
following assertion holds true: A probability measure P on A; ® Ay is monogenic
with respect to B(G1 X Ga, A1 ® Ay) if and only if the corresponding marginal prob-
ability measures P; of P on A, are monogenic with respect to B(G;, 4,), j =1,2.

Proof. Lemma 1 implies B(Gy x Ga, A1 @ A3) = B(G1, A1) @ B(Ga, As)
and monogenicity of the marginal probability measures P; on A; with respect to
B(G;,Aj), 7 = 1,2, of some probability measure P on A; ® As, leads, accord-
ing to Theorem 2, to P;(F(G;)) =1, j = 1,2, from which P(F(G1) x F(G2)) =
P(F(G1) x Q2) N (21 x F(G2)) = 1 follows, i.e. P(F(Gy1 x G2)) = 1 holds true
because of F(G1 x G3) = F(G1) x F(G3), i.e. P is monogenic with respect to
B(G1 x G2, A1 ® Ay). Conversely, P(F (G x G2)) = 1, which follows by means of
Theorem 2 from monogenicity of P with respect to B(G1 x G2, A; ® As), implies
P;(F(Gj)) =1, j =1,2, i.e. P; is monogenic with respect to B(G;, A;), j =1,2.0

Remarks.

(i) Theorem 2 remains valid for countable groups, since Lemma 2 holds true for
countable groups, too. However, Theorem 2 (and also Theorem 1) is not longer
true for uncountable groups even in the case where € is an uncountable Polish
space and A is the o-algebra of Borel subsets of 2, which might be seen as
follows: For any analytic subset Ag ¢ A of 2 the equation (gc 4, B = Ao is
valid, where Ajg stands for all Borel subsets B € A containing Ay and A denotes
the Borel o-algebra of Q (cf. [3], Theorem 8.3.1, and [3], Corollary 8.2.17
together with [8], p. 422 in connection with the existence of Ag). Furthermore,
let G denote the group of (A,.4)-measurable mappings g : 2 — 2 such that
there exists a set B € Ay with the property g(x) = z, « € B, g(z) #
x, x € @\ B, where g is a one-to-one transformation of € which maps 2
onto €. In particular, g=! is (A, A)-measurable (cf. [3], Theorem 8.3.2 and
Proposition 8.3.5), FI(G) = Ag ¢ A is valid, and B(G, A) ={B € A: B C A
or B¢ C Ap} holds true, since for ¢1,co € Q\ Ao, ¢1 # co, there exists a
mapping g € G satisfying g(c1) = cq, i.e. A5 N B # () for a set B € B(G,.A)
implies A5 N B = A§. In particular, B(G, .A) is not countably generated, since
otherwise for any w € A§ there would exist an atom C' of B(G, .A) containing
w. Now C'N A§ # 0 implies C¢ C Ay, i.e. A5 C C. Therefore, there exists
an element ' € C with the property w’' € Ag because of A5 # C. Finally
{w'} € B(G, A) results in the fact that C'\ {w'} is a proper subset of C, i.e.
C would not be an atom of B(G, A).

(ii) The model described by (i) admits the following characterization in connec-
tion with the question whether a probability measure P defined on A has the
property to be an extremal point of the set P consisting of all probability
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measures ) defined on A and satisfying Q|B(G,A) = P|B(G,A) : P € P
is an extremal point of P if and only if P(A§N B) = P(A§)0.(B), B € A,
is valid for some w € A, where P stands for the completion of P restricted
to the o-algebra consisting of the universally measurable subsets of Q (cf.
[3], Corollary 8.4.3) and where ¢,, denotes the one-point mass at w, w € €.
This observation follows from the fact that for any B € A there exists a
set B’ € B(G,A) such that Ipr = Ig P-a.e. holds true (cf. [7]), from
which either P(A§ N B) = 0 in the case B’ C Ay or P(A§ N B°) = 0 in
the case B'® C Ay follows, i.e. the probability measure @) defined on A by
Q(B) = P(ASN B)/P(AS), B € A, in the case P(A§) > 0 is equal to 4,
for some w € A§, since A is countably generated and contains all singletons
{w}, w € Q. Hence, P(BN A§) = P(AS)é.,(B), B € A, is valid. Further-
more, P(BN Ay) = P(BN By), B € A, where By € A satisfies By C Ay
and P(Ag \ Byg) = 0, shows that the probability measure defined on A by
B — P(BnN Ay)/P(Ag), B € A, is monogenic with respect to B(G,.A), from
which the assertion about the characterization of extremal points of P follows.
In particular, P is monogenic with respect to B(G,.A) if and only if P(Ag) = 1,
i.e. P*(Ap) = 1 holds true, since monogenicity of P relative to B(G,.A) implies
that d,,, w € AS, has the same property in the case P(A§) > 0.

Example 2. Let A denote a countably generated o-algebra of subsets of a set €2
containing all singletons {w}, w € Q, and let G stand for the countable group of
(AN, AN)-measurable mappings g : QY — QN acting as a permutation for a finite
number of coordinates and keeping the remaining coordinates fixed, where QY resp.
AN is introduced as the N-fold Cartesian product of € resp. N-fold direct product
of A. Then F(G) is equal to the diagonal A of QY and a probability measure on
AN of the type X,en P, where P, n € N, are probability measures defined on A,
is monogenic with respect to B(G,AY) if and only if P, = P;, n € N, is valid and
P, coincides with a one-point mass at a certain element w € Q. This follows from
Theorem 2 together with Fubini’s theorem.

Example 3. Let A stand for a countably generated o-algebra of subsets of a set €2
containing all singletons {w}, w € Q, and let G;, j = 1,2, stand for finite groups of
(A, A)-measurable mappings g; : @ — §, g; € G, j = 1,2. Then the corresponding
group Gi2 of (A, A)-measurable transformations generated by G and G2 consists
of all elements of the type hyo...0hy,, h; € G1UG>2, j=1,...,n, n €N, which
implies F'(G12) = F(G1)NF(Gz). Now Theorem 2 shows that a probability measure
P on A is monogenic with respect to B(G12,.A) if and only if P is monogenic with

respect to B(G1, A) and B(Gs, A).

(Received March 29, 1995.)
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