
KY BERNET I K A — V OL UME 2 8 (1 9 9 2) , N UM B E R 3 , P AGES 1 8 1 – 1 9 0

EXPONENTIALLY DISCOUNTED ESTIMATES AND
OSCILLATIONS IN LINEAR CONTROLLED SYSTEMS

Monika Laušmanová

Slow unmodelled oscillations of a system are regarded as a parameter and estimated by the
discounted least squares method. The estimate is used to eliminate the oscillations. Properties of
the procedure are presented for vanishing discount factor. The application is shown on the example
of a computer controlled system.

1. INTRODUCTION

Exponential discounting of information in estimating the parameters of a system is
often used in adaptive control (cf. [2]). The present paper deals with a method to
eliminate periodical oscillations in linear systems. This method consists in using
estimates with small discount factor λ, i. e. the oscillations are assumed to be slow.
This makes it possible to analyze the procedure by means of asymptotic expressions
as λ → 0+. Application and interpretation of the results are shown on the example
of a second order system with computer control (see Fig. 1), which is calculated in
detail. The formulation of the problem in this paper is related to the results in [3],
[4].
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We consider a stochastic linear controlled system, which is modelled by the following
differential equation

dXt = fXtdt + b(αt)dt + Utdt + dWt, t ∈ (−∞,∞), (1)

where
b(αt) = b0 + α1

t b1 + · · ·+ αp
t bp = b0 + bαt,

and
αt =

(
α1

t , . . . , α
p
t

)′
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is the p-dimensional vector of parameters. Xt is the n-dimensional state vector and
Ut is the m-dimensional control signal. Let f be a stable (n×n)-matrix, b0, b1, . . . , bp

be n-dimensional linearly independent vectors, b be the (n×p)-matrix, the columns of
which are formed by bi, i = 1, . . . , p. W = {Wt, t ∈ (−∞,∞)} is the n-dimensional
Wiener process with incremental variance matrix h, i. e.

dWt dW ′
t = h dt.

Further, in Remark 1 it is stated that in the case treated here the existence of a
solution of (1) for t ∈ (−∞,∞) can be assumed.

The term b(αt) represents undesirable oscillations, αt is assumed to be unknown.
These oscillations are to be decreased by the control signal.

2. DISTRIBUTION OF ESTIMATE

The quantity αt is estimated as a constant α, since the oscillations are assumed to
be slow. The estimate α∗T is obtained from the observations of Xt, t ∈ (−∞, T ),
by the least squares method with exponential discounting. Slow changes of α are
matched by the discounting.

Let λ be the discount factor, λ > 0. Small discount factor improves the accuracy
of the estimate, but reduces its sensibility to parameter changes.

The following expression is minimized
∫ T

−∞
eλt

[(
Ẋt − f Xt − b(α)− Ut

)′
`
(
Ẋt − f Xt − b(α)− Ut

)
− Ẋ ′

t `Ẋt

]
dt, (2)

where ` is a positively semidefinite symmetric matrix. In (2) the undefined term∫ T

−∞ Ẋ ′
t `Ẋt dt is cancelled and the other terms with Ẋt have Ẋtdt which is rewritten

as dXt. Equating the gradient of (2) with respect to α to zero we obtain the relation

∫ T

−∞
eλt Q dt α∗T =

∫ T

−∞
eλtL (dXt − fXt dt− b0 dt− Ut dt) . (3)

Q and L are constant matrices,

Q = b′ ` b, L = b′ `.

From (1) we obtain

Q

∫ T/λ

−∞
eλt

(
α∗T/λ − αt

)
dt = Q

∫ T/λ

−∞
eλtL dWt.

Since αt is assumed to represent slow oscillations we write

αt = a(λ t),

where a(y), y ∈ (−∞,∞), is a piecewise continuous periodic function and λ is the
discount factor treated as a small parameter. Using the substitution y = λ t we
obtain after rearrangements

1√
λ

(
α∗T/λ −

∫ T

−∞
e(y−T )a(y)dy

)
=
√

λQ−1

∫ T/λ

−∞
eλ(t−T/λ)LdWt. (4)

Denote by ā(T ) the integral on the left-hand side of (4). The distribution of

YT =
1√
λ

(
α∗T/λ − ā(T )

)

is seen from (4) to be independent of the control signal Ut. It is independent of
the discount factor λ, as well. Namely, calculating the covariance function of the
integral on the right-hand side of (4) we obtain the following proposition.
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Proposition 1. The process {Yt} is Gaussian with zero mean and covariance
function

E Yt Y ′
s =

1
2
e−|t−s|Q−1 Lh L′Q−1.

Now we aim to derive the differential equation for the estimate α∗t . To eliminate
the oscillations represented in (1) by b(αt) the control signal

Ut = − (b0 + b α∗t ) (5)

is introduced. The true value of αt is replaced by its estimate α∗t . (1) is rewritten
as

dXt = f Xt dt + b (αt − α∗t ) dt + dWt. (6)

Remark 1. The periodicity of a(y) and the stability of f can be used to establish
the existence of a weak solution of (6) on the interval (−∞,∞).

From (3) it follows

eλT

λ
α∗T =

∫ T

−∞
eλt Q−1 L (dXt − fXt dt + bα∗t dt) . (7)

Differentiating (7) and using the relation Q−1 Lb = I one obtains

d α∗t = λ Q−1 L (dXt − fXt dt) = λQ−1 L (b(αt − α∗t )dt + dWt) . (8)

3. MEAN AND VARIANCE OF STATE VECTOR

The efficiency of the control (5) can be often expressed adequately by means of the
average of a quadratic form X ′

t r Xt, where r is a suitable positively semidefinite
matrix. To investigate the criterion first the asymptotic expansion of the mean and
of the variance matrix of XT/λ will be obtained in this section.

The solution of (6) can be represented in the form

Xt =
∫ t

−∞
e(t−s)f b (αs − α∗s) ds +

∫ t

−∞
e(t−s)fdWs.

Let a(y) be continuously differentiable. Denote

AT =
∫ T

−∞
e(T−y)f/λb (a(y)− ā(y)) dy/λ,

Φ(T, λ) =
∫ T

−∞
e−yf/λe−ydy/λ =

∫ T/λ

−∞
e−yfe−yλdy.

Then

XT/λ = AT + eTf/λ

∫ T/λ

−∞

[
(Φ(λs, λ)− Φ(T, λ)) λQ−1Lesλ + e−sf

]
dWs.

Let λ → 0+. Using relations

eTf/λ Φ(λs, λ) = −e(T/λ−s)fe−sλf−1 + O(λ),
eTf/λ Φ(T, λ) = −e−T f−1 + O(λ),

we obtain after rearrangements the following expansion

XT/λ = AT − λ

∫ T/λ

−∞
f−1 e(T/λ−s)f Q−1L dWs + (9)

+
√

λ

∫ T/λ

−∞
f−1eλ(s−T/λ)

√
λQ−1LdWs +

∫ T/λ

−∞
e(Tλ−s)f dWs + O(λ2),
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where O(λk) denotes a term λkR with ER2 < ∞. Using the periodicity and the
differentiability of a(y) it is proved that

AT = −f−1 b (a(T )− a(T )) + λf−2 b (a′(T )− a′(T )) + O(λ2).

Thus XT/λ has normal distribution with the mean

EXT/λ = AT = AT
0 + λAT

1 + O(λ2), (10)
where

AT
0 = −f−1 b (a(T )− a(T )) ,

AT
1 = f−2 b (a′(T )− a′(T )) = f−2b(a′T − a(T ) + a(T )). (11)

The last but one term in (9) has the same distribution as the state vector Xt in the
case of no oscillations. Hence its variance matrix S satisfies

fS + Sf ′ + h = 0.

After calculating the covariance matrices of the separate terms in (9) one obtains
the variance matrix of XT/λ as

var XT/λ = (12)

=S+λ

[
−f−2hL′Q−1−Q−1Lhf−2′+

1
2
f−1Q−1LhL′Q−1f−1′−f−1D−D′f−1′

]
+O(λ2),

where D is the solution of
fD + Df ′ + hL′Q−1 = 0.

The variance matrix of the state vector XT/λ does not depend on oscillations.

4. PERFORMANCE OF CRITERION

Introduce the criterion
C =

1
τ

∫ τ

0

EX ′
T/λrXT/λdT,

where r is a positively semidefinite matrix and τ is the period of the function a(y)
representing the oscillations. Then (10), (12) imply

EX ′
T/λrXT/λ =

(
AT

0 + λAT
1

)′
r
(
AT

0 + λAT
1

)
+ trace (r(S + λS1)) + O(λ2), (13)

where S1 denotes the expression in square brackets in (12).
In what follows we shall investigate the asymptotic behaviour of the criterion as

λ → 0+ in the case that
a(y) = sin 2πωy.

From (11), (13) performing the calculations it follows

C = ω

∫ 1/ω

0

EX ′
T/λr XT/λdT =

1
2

(F ′1rF1 + F ′2rF2) + trace (r(S + λS1)) + O(λ2),

(14)
where

F1 =
2πω

1 + (2πω)2
(−f−1b + λ(2πω)2f−2b

)
,

F2 =
(2πω)2

1 + (2πω)2
(−f−1b + λf−2b

)
.

Approximation with an error of first order in λ is given as

C =
1
2

(2πω)2

1 + (2πω)2
b′f−1′rf−1b + trace (rS) + O(λ). (15)
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5. EXAMPLE

Consider the system the block diagram of which is in Figure 1. To the output of the
system with transfer function

H(s) =
f2

s2 + f1s + f2
,

where f1 = 1/a2, f2 = a1/a2, sinusoidal oscillations are added. To reduce the
oscillations the control u is added to the input. It results that

y = H(s) (x + u) + sin ϕt,

which is equivalent to

y′′ + f1y
′ + f2y = f2(x + u) + α(t), (16)

where
α(t) = f2 sin ϕt + ϕf1 cos ϕt− ϕ2 sinϕt. (17)

α(t) is assumed to be unknown. Since the oscillations are slow, α(t) is estimated as
a constant by the least squares method with exponential discounting. The estimate
α∗T at time T is obtained by minimizing the expression

∫ T

−∞
eλt (y′′ + f1y

′ + f2y − f2(x + u)− α)2 dt.

Equating the derivative with respect to α to zero yields

eλT

λ
α∗T =

∫ T

−∞
eλt (y′′ + f1y

′ + f2y − f2(x + u)) dt. (18)

Differentiating (18) and setting to eliminate the oscillations

ut = −α∗t / f2 (19)

one obtains
dα∗t = λ (y′′ + f1y

′ + f2y − f2x) dt. (20)

This equation corresponds to (8). The Laplace transform of (20) has the following
form

sα∗ = λ
(
s2 + f1s + f2

)
y − λf2x. (21)

Let us now take the viewpoint of computer control. Namely, let us assume that
the input and the output are measured in discrete times with sampling interval ∆ and
let the control signal be a constant uk in the interval [k∆, (k+1)∆). Backward Euler
approximation is applied to (21), i. e. the passage to the z-transform is performed
by substituting s = (z − 1) / ∆z. Then after rearrangements one obtains

α∗k = α∗k−1 +
(

λ

∆
+ λf1 + λ∆f2

)
yk−

(
2λ

∆
+ λf1

)
yk−1 +

λ

∆
yk−2−λ∆f2xk, (22)

where xk, yk denote the values of the input and of the output at time k∆. Let

p0 = −
(

λ
∆f2

+ λ f1
f2

+ λ∆
)

, p1 = 2λ
∆f2

+ λ f1
f2

,

p2 = −λ / ∆f2, q0 = λ∆.

(19), (22) yield the recursive relation for the control signal

uk = uk−1 + p0yk + p1yk−1 + p2yk−2 + q0xk. (23)
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In what follows the criterion under the control (23) will be investigated. The
input is assumed to be colored noise, i. e.

dXt = −cXtdt + dW 3
t , c > 0. (24)

In addition the white noise W 2 is introduced into equation (16). The stochastic state
model for X =

(
X1, X2, X3

)′ is constructed by setting X1 = y, X2 = y′, X3 = x.
Then from (16), (24) it follows

dXt =




0 1 0
−f2, −f1, f2

0 0 −c


 Xtdt +




0
f2

0


 Utdt +




0
1
0


 α(t) dt + dWt

= f Xt dt + g Ut dt + b α(t) dt + dWt,

(25)

where Wt =
(
0, W 2

t , W 3
t

)′ is the Wiener process with incremental variance matrix
h,

dWt dW ′
t = h dt =




0, 0, 0
0, h2, 0
0, 0, h3


 dt, h2 > 0, h3 > 0. (26)

The control is defined by Ut = uk for interval t ∈ [k∆, (k + 1)∆), where uk is given
by (23) in recursive form.

To evaluate the precision of formulas (14), (23) we calculate the value of the
criterion

C =
ϕ

2π

∫ 2π/ϕ

0

E
(
X1

t −X3
t

)2
dt. (27)

This criterion expresses the mean quadratic difference between the input and the
output. In this case the matrix r in (14) has the form

r =




1 0 −1
0 0 0
−1 0 1


 . (28)

Next we aim to construct the discrete recursive model for Xk∆. The solution of
(25) is

Xt+∆ = e∆tXt +
∫ ∆

0

e(∆−s)fg dsUt + (29)

+
∫ ∆

0

e(∆−s)fbα(t + s) ds +
∫ ∆

0

e(∆−s)fdWt+s.

Denote exp(∆f) by A = (aij)i,j=1,2,3 and the first integral on the right-hand side of
(29) by B = (b1, b2, b3)′. Then B fulfils the following equation

f B = Ag − g.

The second integral in (29) is equal to the term

D1 cosϕt + D2 sin ϕt,

where
D1 = f1ϕAY + (f2 − ϕ2)AZ,

D2 = (f2 − ϕ2)AY − f1ϕ AZ,

and it holds (
f + ϕ2f−1

)
AY = −b cosϕ∆ + ϕf−1b sin ϕ∆ + Ab

(
f + ϕ2f−1

)
AZ = −ϕf−1b cosϕ∆− b sin ϕ∆ + ϕf−1Ab.

(30)
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The stochastic integral in (29)

Et =
∫ ∆

0

e(∆−s)f dWs+t

has zero mean and the variance matrix H satisfying

f H + H f ′ = Ah A′ − h, (31)

where h is given by (26).
Using the calculated quantities we obtain from (29) the discrete system

Xk+1 = AXk + B uk + D1 cos ϕk∆ + D2 sin ϕk∆ + Ek. (32)

Xk, Ek stand for Xk∆, Ek∆.
To obtain the value of criterion (27) the extended discrete model for

Xk = (yk, y′k, xk, yk−1, yk−2, uk−1)
′ is introduced. Relations (23), (32) imply that

Xk+1 = FXk + D1 cos ϕk∆ + D2 sin ϕk∆ + Ek, (33)
where

F =




a11 + b1p0, a12, a13 + b1q0, b1p1, b1p2, b1

a21 + b2p0, a22, a23 + b2q0, b2p1, b2p2, b2

a31 + b3p0, a32, a33 + b3q0, b3p1, b3p2, b3

1 0 0 0 0 0
0 0 0 1 0 0
p0 0 q0 p1 p2 1




,

Di = (Di, 0, 0, 0)′, i = 1, 2.

{Ek} = {(Ek, 0, 0, 0)′} is the random noise with variance matrix H.
First the mean and the variance matrix of Xk will be calculated. From (33) it

follows

Xk =
∞∑

j=0

Fj (D1 cos ϕ(k − j)∆ + D2 sin ϕ(k − j)∆) +
∞∑

j=0

Fj Ek−j , (34)

and hence after rearrangements

EXk = cos ϕk
(
1J1 −2 J2

)
+ sin ϕk

(
2J1 +1 J2

)
,

where J′i =
(
1J′i,

2J′i
)
, i = 1, 2, satisfies the following equation

(
I−

(
F cos ϕ, −F sinϕ
F sin ϕ, F cosϕ

))
Ji =

(
Di

0

)
. (35)

From (34)
V = E (Xk − EXk) (Xk − EXk)′ =

∞∑

j=0

Fj HF′j

which implies that V fulfils
FVF′ + H = V . (36)

The criterion (27) has for discrete time system (32) the following equivalent

C =
ϕ∆
2π

2π/ϕ∆∑

k=1

E X ′
k r Xk =

ϕ∆
2π

2π/ϕ∆∑

k=1

EX′
k RXk

with obvious definition of R. The quantity 2π /ϕ∆ is assumed to be an integer.
The value of C is obtained from

C =
ϕ∆
2π

2π/ϕ∆∑

k=1

EX′
k REXk + trace (VR)
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by solving the linear equations (30), (31), (35), (36).
Using the denotations

V = (vij)i,j=1,...,6,

J′i =
(
1J′i,

2J′i
)

=
(
J1

i , . . . , J6
i , J7

i , . . . , J12
i

)
, i = 1, 2,

we get for r as in (28)

C =
1
2

[(
J1

1 − J7
2 − J3

1 + J9
2

)2
+

(
J7

1 + J1
2 − J9

1 − J3
2

)2
]

+ v11 − 2v13 + v33. (37)

We return to the approximation of (37) as it is presented in Section 4. Set in (17)

ϕ = 2πωλ.

The asymptotic expansion of the criterion as λ → 0+ has the same form as (14)
with

F1 =
2πω

1 + (2πω)2
[−f2f

−1b + λ(2πω)2
(−f1f

−1b + f2f
−2b

)]
,

F2 =
(2πω)2

1 + (2πω)2
[−f2f

−1b− λ
(
f1f

−1b + f2f
−2b

)]
.

Since a(t) = f2 sin 2πωλt + O(λ), an approximation of C with an error of first order
in λ follows from (15),

C =
1
2

(2πω)2

1 + (2πω)2
+

1
2

(
f2
1 + f2 + cf1

cf2
1 + f1f2 + c2f1

h3 +
1

f1f2
h2

)
+ O(λ). (38)

Numerical results

For the constants a1 = 4, a2 = 0.01 the values of (37) in dependence on λ, ω, ∆ are
compared with (38) in the following table

(37) λ = 0.05 λ = 0.1
ω = 0.5 ω = 0.1 ω = 0.5 ω = 0.1

∆ = 0.5 0.5623 0.2471 0.5656 0.2479
∆ = 0.1 0.5587 0.2462 0.5586 0.2460

(38) 0.5588 0.2463 0.5588 0.2463

It holds trace (r S) = 0.1048. This is the value of C if there are no oscillations. The
unreduced oscillations increase the quadratic difference between the input and the
output by sin2 ϕt, hence in average by 0.5. Therefore in this case C = 0.6048.

(Received July 9, 1991.)

REF EREN CES
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