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TOPOLOGICAL EQUIVALENCE AND TOPOLOGICAL
LINEARIZATION OF CONTROLLED DYNAMICAL
SYSTEMS

Sergej Čelikovský1

The general, differential-equation-independent definition of a continuous-time controlled
dynamical system as well as of the state space transformation and static state feedback are
introduced. This approach makes it possible to consider transformations that are not
smooth and introduce the so-called topological equivalence of controlled dynamical sys-
tems. It is shown that this approach generalizes the usual definitions based on the notion
of the smooth ordinary differential equation with the control parameter. Topological equiv-
alence is then used to introduce and investigate the problem of exact topological feedback
linearization of a given nonlinear system. Sufficient conditions for the topological lineariz-
ability of planar systems are obtained. They particularly show that there do exist smooth
systems that are topologically linearizable, but not smoothly linearizable. Finally, we in-
dicate possible application of the topological linearization to the nonsmooth stabilization.
Illustrative examples are included.

1. INTRODUCTION

The basic object of this paper is a continuous-time controlled dynamical system
(shortly “system” where no confusion arises). Beginning with the Brockett [3], the
extensive attention is paid to various kinds of the exact linearization of nonlinear
systems (cf. [17, 10] for the detailed exposition). The term “exact” is used to dis-
tinguish this approach from the approximate (first order) linearization. The basic
goal here is to find (if they exist) reasonable exact compensations and transform-
ations of a given nonlinear system making its behaviour linear. The area of the
exact linearization is very extensive and various additional attributes may be used
to characterize it. Dependingly on the transformations used it is called state lin-
earization, static state feedback linearization, dynamical feedback linearization, etc.
If the transformations used are globally defined, the corresponding linearization is
called as the global one – see [8] for details. The problem of the exact linearizability
of a given system is a particular case of the equivalence of systems: two systems are
called (state, feedback,. . . ) equivalent if they can be transformed one into another
using the appropriate transformations.

1Supported by the Grant Agency of the Czech Republic through the grant No. 102/94/0053.
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We aim to discuss in this contribution the basic feature of all transformations
presently used in nonlinear control – smoothness. Unfortunately, removing the
smoothness from the definitions of transformations requires principially more gen-
eral definitions of the continuous-time controlled dynamical system as well as of
these transformations, namely, differential-equation-independent definitions of all
these notions are inevitable. We will adapt for this sake the known definition of the
topological equivalence of uncontrolled dynamical systems ([13]) and differential-
equation-independent definition of controlled dynamical systems (see [19, 14, 18]).
Our contribution in this respect consists in specifying functional-spaces norms for
input and state trajectories and also in giving differential-equation-independent defi-
nition of the feedback. As a result we will give the definition of the controlled dy-
namical system, topological equivalence of systems and topological linearization. As
it will be shown, these definitions generalize the usual definitions of smooth system
and its transformations defined via the smooth differential equation parametrized
by the control parameter.

In Section 3 we investigate topological linearizability of planar single-input sys-
tems while in Section 4 we discuss application to the nonsmooth stabilization. Ac-
tually, topological linearization provides practically realizable simple algorithm for
the nonsmooth stabilization – see [7, 9].

Throughout the paper we concentrate ourselves on dynamical systems evolving
in IRn and all definitions will have global character. This is due to the main pur-
pose of this short paper: to introduce, illustrate and underline the key features of
this rather novelty approach to the understanding of controlled dynamics and their
transformations. Local definitions are available with some additional technicalities
as well as the case of a general manifold. For similar reasons we consider only state
space transformations and static state feedbacks.

No t a t i o n s. For any T > 0 we consider Im(T ) as the normed space of all
Lebesgue integrable functions u : [−T, T ] → IRm with the norm1

‖u‖ = max
t∈[−T,T ]

m∑

i=1

∣∣∣∣∣∣

t∫

−T

ui(τ)dτ

∣∣∣∣∣∣
.

Further, Im stands for the space of all functions u : IR → IRm such that u[−T,T ] ∈
Im(T ) for any T > 0, where u[−T,T ] denotes the restriction of u ∈ Im to the
interval [−T, T ]. For any T > 0 we consider An(T ) as the normed space of all
absolutely continuous functions [−T, T ]→IRn with the supremum norm and we define
An analogously as the Im. We consider Sτ , τ ∈ IR, to be a shift operator: Sτ :
Im→Im (or An→An), Sτu = v, v(t) = u(t+ τ), t ∈ IR, and PrT (·), T ∈ IR, to be
a “projection” operator: ∀u ∈ Im(or An) PrT (u) = u[−T,T ] ∈ Im(T ) (or An(T )).

Further, the standard notation from differential geometry will be used, e. g.
smooth vector field f is the smooth map from the manifold M into its tangent
bundle T (M) such that ∀x f(x) ∈ Tx(M); V (M) is the Lie algebra of the smooth

1We left to the reader checking all axioms of the norm (when identifying a. e. equal functions).
See [4, 5, 6] for interesting properties and applications of this norm.
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vector fields on a smooth manifold, [f, g] and adfg, f, g ∈ V (M), stand for the Lie
bracket and adjoint operator, respectively. Finally, Lie(L) stands for the Lie algebra
generated by the L ⊂ V (M).

2. TOPOLOGICAL EQUIVALENCE OF CONTROLLED SYSTEMS

Throughout the paper we consider time-invariant, continuous-time controlled dy-
namical systems without outputs; such a system will be further referred to as the
controlled dynamical system, or simply system. Usually, such a system is described
via ordinary differential equation with control parameter. Following freely ideas
from (uncontrolled) dynamical systems theory (cf. [13]), as well as the ideas from
control theory foundations (cf. [14], [19], [18]), more general description is possible.

Definition 1. A controlled dynamical system is the quadruple
∑

= (Ω, X,X ,Φ)
given by: i) the space of input functions Ω = Im; ii) the state space X = IRn; iii) the
space of the state trajectories X = An; iv) the controlled dynamics, i. e. the map
Φ : X × Ω→X , such that ∀T > 0, ∀x0 ∈ X it holds
a) σ(0) = x0 and Sτσ = Φ(σ(τ), Sτu) where σ = Φ(x0, u), u ∈ Ω, τ ∈ IR,
b) PrT (σ1) = PrT (σ2) if PrT (u1) = PrT (u2), where σi = Φ(x0, ui), i = 1, 2,
c) ΦT : X ×Im(T )→An(T ),ΦT (x0, u) = PrT ◦Φ(x0, Pr−1

T u[−T,T ]) is a continuous
map for all T > 0 .

Remark 1. The maps ΦT , T > 0, in iv) c) of the previous definition are well
defined; in spite of the fact that Pr−1

T (u[−T,T ]) is a set, property iv) b) guarantees
that all elements of this set are mapped into the same element of An(T ).

Remark 2. Property iv) a) justifies the terms state and state trajectory, i. e. it
guarantees that the future of the state trajectory depends only on the present state
and on the future input. Property iv) b) express the nonanticipativity of the system:
the past of the state trajectory does not depent on the future input.

Definition 2. The controlled dynamical system in the sense of Definition 1
∑

=
(Ω, X,X ,Φ) will be called smooth if Φ(x0, u) ∈ C∞(IR, X) ∀u ∈ C∞(IR, IRm), x0 ∈
X, and σ(t) depends ∀ t ∈ IR on x0 ∈ X in C∞ manner, where σ = Φ(x0, u), ∀u ∈
C∞(IR, IRm).

Example 1. The system given by

Φ(x0, u) =
(
x

1/3
0 +

∫ t

0

u(τ)dτ
)3

, m = 1, n = 1,

produce for any smooth input the smooth state trajectory. Nevertheless, it is not
the smooth system in the sense of Definition 2 since the dependence on x0 is not
smooth.



144 S. ČELIKOVSKÝ

Theorem 1.
∑

= (Ω, X,X ,Φ) is the smooth dynamical system iff it is described
by the smooth differential equation on X; i. e. there exists C∞ vector field f :
X × IRm→T (X), f(x, u) ∈ Tx(X), x ∈ X, such that for σ = Φ(x0, u) it holds

d
dt
σ(t) = f(σ(t), u(t)), σ(0) = x0, (2.1)

Moreover, the vector field f̂(x, r) = (f(x, u(r)), 1)T ∈ V (X × IR) is complete for any
smooth u(r).

Remark 3. Due to the smoothness of u(t), t ∈ IR, one can avoid the time depen-
dence in (2.1) by introducing in the well-known fashion the differential equation on
X × IR and the completeness of the vector field f̂(x, r) ∈ V (X × IR) follows directly
from the global character of Definition 1. The local version of this definition that
removes the requirement of the completenes from Theorem 1 is available without
any principial obstacles and is omitted only for the sake of simplicity.

P r o o f o f T h e o r em 1. It is an easy exercise to show that (2.1) defines smooth
controlled dynamical system in the sense of Definitions 1, 2. Conversely, consider
σ = Φ(x0, u) and σ̇(τ). It follows from iv) a) – b) (see Def. 1) that σ̇(τ) depends only
on the current state σ(τ) ∈ X and on the values of input u and its derivatives at time
τ . Actually, the dependence on derivatives is excluded by i) and iii) of Definition 1,
so we have arrived to the desired form (2.1). Smoothness of the right hand side of
(2.1) follows directly from Definition 2, while completeness is a consequence of the
global character of Definition 1. 2

Remark 4. It is interesting to underline that without considering the norms of
the input trajectories space as the Im norm and absolutely continuous state space
trajectories it would not be possible to exclude input derivatives from the right
hand side of (2.1) (remind in this context the known discussion Kalman versus
Zadeh–Desoer in [14, 19]). This can be illustrated by the following example: σ(t) =
Φ(x0, u) = u(t) + x0 − u(0), where u̇(t) = σ̇(t). All requirements of Definition 1 are
valid here except i) and iii).

Notice also that for u ∈ Im a weaker understanding of (2.1) in the sense of almost
everywhere is necessary. We omit here standart details from function and measure
theory.

The more general definitions of the state and feedback equivalence of the con-
trolled dynamical systems are also available.

Definition 3. Controlled dynamical systems
∑

i = (Ω, Xi,Xi,Φi), i = 1, 2, are
called topologically state equivalent if there exist homeomorphism H : X2→X1,
H(X2) = X1, such that H ◦ Φ2(x2

0, u) = Φ1(H(x2
0), u) for any u ∈ Ω, x2

0 ∈ X2,
where H : X2→X1 is the homeomorphism naturally induced by H : X2→X1, i. e.
H(σ)(t) = H(σ(t)), ∀ t ∈ IR.
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Definition 4. Controlled dynamical systems
∑

i = (Ω, X,X ,Φi), i = 1, 2, are
called topologically static state feedback equivalent if there exists map F : X×Ω→Ω
such that

i) Φ2(x0, ·) = Φ1(x0, F (x0, ·)) ∀x0 ∈ X and F (σ(τ), Sτu) = SτF (x0, u), where
τ ∈ IR, σ = Φ2(x0, u), u ∈ Ω;

ii) ∀T > 0, x0 ∈ X : PrT (F (x0, u1)) = PrT (F (x0, u2)) if PrT (u1) = PrT (u2) ;

iii) FT (·, ·) = PrT ◦ F (·, Pr−1
T (·)), FT : X × Im(T )→Im(T ) is a continuous map

and FT (x0, ·) : Im(T )→Im(T ) is a homeomorphism for any T > 0, x0 ∈ X.

Definition 3*. Smooth systems
∑

i = (Ω, Xi,Xi,Φi), i = 1, 2, are called smoothly
state equivalent if there exists diffeomorphism D : X2→X1, D(X2) = X1, such that
D◦Φ2(x2

0, u) = Φ1(D(x2
0), u), u ∈ Ω, x0 ∈ X2. Here D : X2→X1 is naturally induced

by D and maps smooth trajectories onto smooth trajectories.

Definition 4*. Smooth systems
∑

i = (Ω, X,X ,Φi), i = 1, 2, are called smoothly
static state feedback equivalent if they are topologically static state feedback equiv-
alent in the sense of Definition 4, the map F : X×Ω→Ω maps any smooth and only
smooth function into the smooth function and for any u ∈ Ω, T + 0, v(T ) depends
smoothly on x0, where v = F (x0, u).

Definition 5. (Smooth) controlled dynamical systems
∑

i = (Ω, Xi,Xi,Φi), i =
1, 2, are called topologically (smoothly) state and static state feedback equivalent if
there exists

∑
3 that is topologically (smoothly) state equivalent to

∑
1 and static

state feedback equivalent to
∑

2 .

The following theorem is stated without proof which is rather straightforward.

Theorem 2. Smooth dynamical systems systems
∑

1,
∑

2 described by the differ-
ential equations ∑

1 : ẋ = f(x, u), x ∈ X, u ∈ IRm,

∑
2 : ẏ = g(y, v), y ∈ Y, v ∈ IRm,

are smoothly state and static feedback equivalent iff there exists diffeomorphism
D : Y→X, D(Y ) = X and the smooth map α : Y × IRm→IRm, α(y, ·) : IRm→IRm

being one-to-one for any y ∈ Y, such that

Dyg(y, v) = f(D(y), α(y, v)). (2.2)

Remark 5. Notice that the transformation (2.2) gives an implicit and point-
wise expression of the feedback map F from Definition 4, namely F (y0, v)(t) =
α(y(t), v(t)), where y(t) is the solution of ẏ = g(y, v) with y(0) = y0. This is possi-
ble due to the second part of i) of Definition 4: in fact, F is defined there implicitly
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as a solution of a certain functional equality. Up to our knowledge this is the original
and unique definition of the feedback for continuous-time systems that does not need
the notion of the ordinary differential equation.

Remark 6. Analogously as in the case of Definition 1 it is necessary to underline
the global character of Definitions 3–5 resulting into the global character of Theo-
rem 2. With some additional technicalities their local versions would be available.

Both Theorem 1 and 2 illustrate that the introduced more general definitions of
controlled dynamical systems and their equivalence are not only the generalization
of the (2.1) and (2.2), but even more: the only thing that is weakened in these
definitions is the smoothness. This fact seems to justify such an approach.

3. STATE AND FEEDBACK TOPOLOGICAL LINEARIZATION OF NON-
LINEAR SYSTEMS

The main result gives a sufficient condition for the state and feedback topological
linearization of planar single-input systems. Despite the fact that we are omitting
throughout the paper local definitions, we formulate also local version of this result.
As indicated earlier, local versions of all definitions are easily available: in this case all
mappings should be restricted to small time intervals containig zero and depending
on initial state. For the local version a comparision with the known smooth results
is more apparent (see Remarks 7, 8).

Theorem 3. The smooth system

ẋ1 = f(x1, x2) , ẋ2 = u, (3.1)

f(0) = 0, is locally (globally) state and static state feedback topologically lineariz-
able at 0 ∈ IR2 (on IR2) if (x1, x2)T→(x1, f(x1, x2))T is a local (global) homeomor-
phism at 0 ∈ IR2 (of IR2 onto itself).

P r o o f. Let us denote ξ = H(x1, x2) = (x1, f(x1, x2))T the homeomorphism be-
tween neighbourhoods of the origin (global homeomorphism of IRn) and letH−1(ξ1, ξ2) =
(ξ1, ψ(ξ1, ξ2))T. Consider integral equivalent of (3.1)

x1 = x0
1 +

∫ t

0

f(x1, x2) ds, x2 = x0
2 +

∫ t

0

u(s) ds (3.1∗)

The above homeormorphism takes (3.1∗) into the form

ξ1 = ξ01 +

t∫

0

ξ2 ds, ξ2 = f(ξ1, ψ(ξ01 , ξ
0
2) +

t∫

0

u(s) ds). (3.2∗)
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For sufficiently small |ξ01 |, |ξ02 |, and T > 0 (∀ ξ01,2, T ∈ IR in the global case) we have
that the map F : I1(T )× V0→I1(T ), u = F (ξ0, v), given by

t∫

0

u(s) ds = ψ


ξ01 +

t∫

0


ξ02 +

τ∫

0

v(α) dα


 dτ, ξ02 +

t∫

0

v(α) dα


−ψ(ξ01 , ξ

0
2), |t| ≤ T,

(3.3)
is the feedback in the sense of Definition 4 and its application to (3.2∗) leads in a
straightforward way to the following linear system

ξ1 = ξ01 +

t∫

0

ξ2ds, ξ2 = ξ02 +

t∫

0

v(α) dα. 2

Remark 7. Let us consider the smooth (but nonanalytic) system (1) with f(x1, x2)
= x1 + sign(x2) exp(−|1/x2|). By Theorem 3 this system is locally topologically
linearizable and therefore it is also small time locally controllable. On the other
hand, note that dim Lie (

{
(f, 0)T, (0, 1)T)

}
(0) = 1!

Remark 8. It is well known (cf. e. g. [17] ) that the system ẋ = f̂(x)+ug(x), x ∈
IRn, u ∈ IR, is locally smoothly state and static state feedback linearizable iff g, adf̂g

are linearly independent at 0 ∈ IR2. For the system in the form (3.1) this is equivalent
to fx2(0, 0) 6= 0 and in this case ξ = (x1, f(x1, x2))T, v = fx2u + fx1f, are the
linearizing diffeomorphism and the usual nonlinear feedback. In case fx2(0, 0) = 0,
the mapping ξ = (x1, f(x1, x2))T may be only homeomorphism, while feedback is
even not well defined in the usual sense at (0, 0)T and therefore the system (1)
may be only topologically linearizable. In other words, the class of topologically
linearizable smooth systems is wider than the class of smoothly linearizable smooth
systems. In this connection it is reasonable to underline that the nonsmoothness of
the linearizing transformations is not caused by the nonsmoothness of the original
nonlinear system.

4. EXAMPLE: APPLICATION TO THE NONSMOOTH STABILIZATION

To illustrate the previous approach more clearly as well as to show that the topo-
logical feedback is the reasonable notion let us consider the known Aeyel’s, example
(see [2], [12], [15]), namely, consider the following globally controllable (see [1]) but
smoothly nonstabilizable system:

ẋ1 = x1 + x3
2, ẋ2 = u. (4.1)

In spite of the fact that (4.1) is not smoothly linearizable (adi
fg(0) = 0, i ≥ 1) we

have by Theorem 3 that it is topologically linearizable. Moreover, the system (4.1)
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can be linearized globally. Let us consider integral form of (4.1)

x1(t) = x1(0) +

t∫

0

(x1(τ) + x3
2(τ)) dτ, x2(t) = x2(0) +

t∫

0

u(τ) dτ. (4.1∗)

Global homeomorphism ξ = (x1, x
3
2)

T and the feedback given by

t∫

0

u(τ) dτ = 3

√√√√√ξ02 +

t∫

0

v(τ) dτ − 3

√
ξ02 , t > 0, (4.2∗)

takes (4.1∗) into the linear form

ξ1(t) = ξ01 +

t∫

0

(ξ2(τ) + ξ2(τ)) dτ, ξ2(t) = ξ02 +

t∫

0

v(τ) dτ. (4.3)

Note that differentiation of (4.2∗) gives the expression

u = v/3x2
2 (4.2)

that is not well defined at (0, 0)T. The system (4.3) can be stabilized using linear
feedback v = −aξ1 − bξ2, a > b > 1, and the corresponding stabilizing feedback for
(4.1∗) would lead to the stable system

x1(t) = x1(0) +

t∫

0

(x1(α) + x3
2(α)) dα

x2(t) =


x3

2(0) +

t∫

0

(−ax1(α)− bx3
2(α)) dα




1/3

. (4.4∗)

The transformation of (4.1∗) leading to (4.4∗) seems to be reasonable and simply
physically realizable (e. g. for electrical circuits), at least by block diagrams. On
the other hand differentiation of (4.4∗) leads to the asymptotically stable differential
equation with the discontinuous and unbounded right-hand side

ẋ1 = x1 + x3
2, ẋ2 = −a x1

3x2
2

− b

3
x2, (4.4)

whose solutions are well defined in the sense of almost everywhere. This is of course
not so nice solution of the stabilization problem as that of [15] but due to its integral
form (4.1∗) – (4.4∗) it may be of practical interest.

In [7] a simple practical application of the stabilizer (4.4) is presented: the right
hand side is “cutted” (i. e. whenever |x2| is too small it is replaced by a suitable
nonzero constant) to prevent singularity create unboundedness on the right hand



Topological Equivalence and Topological Linearization of Controlled Dynamical Systems 149

side. Such approach corresponds well to the engineering common sense approach
(see [16], p. 52 – “Backlash example”) and was successfully tested by numerical sim-
ulations. Our topological linearization serves therefore as a theoretical justification
of this practically based approach, since the continuity of the topological feedback
with respect to the Im-norm guarantees that a “small cutting” may cause small
changes in behaviour of the closed loop system only.

5. CONCLUDING REMARKS

An attempt was made to enlarge the class of linearizable nonlinear systems using
the differential-equation-independent definiton of the controlled dynamical system
as well as the topological (nosmooth) generalizations of the state and feedback trans-
formations.

In spite of the relative success of this approach the principal question arises what
should be the method for treating this problem when all known results concerning
smooth or analytic linearization are formulated by the language of smooth vector
fields, Lie derivations etc. It seems to be appropriate to use for this task integral
equations, possibly together with the Volterra series and/or Fliess functional expan-
sions representation of the controlled dynamical systems. Finally, the example in the
Section 4 indicates the way based on using smooth transformations with “negligible”
singularities.

(Received September 27, 1993.)
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