
KY BERNET I K A — V OL UME 2 8 ( 1 9 9 2 ) , N UM B ER 4 , PAGE S 3 2 5 – 3 3 2

ON THE ASYMPTOTIC OPTIMUM ALLOCATION IN
ESTIMATING INEQUALITY FROM COMPLETE DATA1

Mara Angeles Gil and Ignacio Mart́ınez

Studies dealing with the quantification of inequality of a population with respect to a given
quantitative attribute, provide us with a large class of measures. Among these, we can distinguish,
because of their properties and operativeness, the ones coinciding with, or being ordinally equivalent
to, the dimensionless “additively decomposable inequality indices”.

As indicated in previous papers, many populations, whose inequality in relation with an at-
tribute is useful to quantify, are too large to be censused but large samples from them can be
drawn and they arise naturally stratified. On the basis of these last two advantages, we will ap-
proach in this paper the optimum allocation in estimating inequality, and a comparison with the
proportional allocation, and with the absence of strata, will be later established.

1. INTRODUCTION

There are several quantitative attributes, many populations vary with respect to.
The inequality of a population with respect to a given quantitative attribute (or
variable) is understood as the population variation when the magnitude of attribute
values are relevant for that variation (that is, they numerically indicate if those
values are close or remote from each other). Three elements may then be taken into
account in inequality measurement: the number of different values the attribute
can take on in the population, the magnitude of those values, and the associated
population distribution. The main practical purpose of inequality measurement is
serving as a criterion (usually dimensionless) to compare populations (countries,
enterprises, years, etc.).

Inequality and its numerical quantification is a topic having many interesting
applications in fields like Economics (income inequality, wealth inequality, etc.; see,
for instance, [9, 16]), Industry (industrial concentration; see, for instance [13]), and
others.

Several inequality measures have been suggested in the literature, some of them
being closely related to measures in Information Theory. Among these last ones,
those coinciding with (or being an increasing function of) additively decomposable
inequality indices are largely accepted. These indices have been quite recently in-
troduced (cf. [4, 7, 8, 9, 15] and [17]) through different axiomatic approaches.

The behaviour of some of the additively decomposable inequality indices in strati-
fied random sampling from complete data has been analyzed in previous studies ([4],
[5], and [10]). Our purpose is now complementing last three studies by approaching
the optimum allocation in estimating inequality in stratified sampling from complete
data. This optimum allocation will be determined on the basis of one of the follow-
ing objectives: either maximizing the precision of estimation or minimizing the size
of the sample.

1The research in this paper was supported in part by DGICYT Grants No. PS89-0169 and No.
PS89-0170. Their financial support is gratefully acknowledged.
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2. ASYMPTOTIC BEHAVIOUR OF ADDITIVELY DECOMPOSABLE IN-
EQUALITY INDICES IN STRATIFIED SAMPLING

Consider a finite uncensused population of N individuals which is divided into r
non-overlapping strata. Assume that each individual value with respect to a given
attribute is positive, x?

1, . . . , x
?
M being the possible different attribute values in the

population (x?
i > 0). Let Nk be the number of individuals in the kth stratum,

Wk = Nk/N , and let pik and pi. respectively denote the probabilities that a randomly
selected individual in the kth stratum and in the whole population has an attribute
value equal to x?

i (i = 1,
. . . , M, k = 1, . . . , r).

Then, if X? denotes a random variable whose distribution in the kth stratum coin-
cides with that of a random variable X?

k taking on values x?
1, . . . , x

?
M with respective

probabilities p1k, . . . , pMk (k = 1, . . . , r), then the inequality in the population with
respect to the given attribute may be quantified by means of the measures below.

Definition 2.1. The measure Iβ (β ∈ IR) associating with X? the value

Iβ(X?) =
M∑

i=1

pi. φβ

(
x?

i

E(X?)

)
=

M∑

i=1

r∑

k=1

pik φβ

(
x?

i

E(X?)

)

(where E(X?) =
∑

i pi. x
?
i =

∑
i

∑
k pik x?

i ), φβ being the real-valued function given
by

φβ(x) =





xβ − 1 if β < 0 or β > 1

− log x if β = 0

1− xβ if 0 < β < 1

x log x if β = 1

is called population additively decomposable income inequality index of order β.

Theil’s inequality index, I1, is very well-known and used in Economics and In-
dustry, and satisfied that I1(X?) = limβ→1 Iβ(X?). On the other hand, I0(X?) =
limβ→0 Iβ(X?), so that the parametrized family of additive decomposable inequality
indices is continuous with respect to the parameter β.

It should be emphasized that another well-known family of inequality indices,
defined by Atkinson [1], and being used for long in Economics, is ordinally equivalent
to the family in Definition 2.1.

To introduce additive decomposable indices in [4, 7, 8, 9, 15], and [17], authors
first consider a set of desirable properties for inequality measures, having an in-
tuitive interpretation in real-life problems (mainly in those concerning income or
wealth inequality, or industrial concentration). In this way, some of those desirable
properties are: minimum inequality arises when all individuals in the population
have the same attribute value (normalization); inequality only depends on ratios of
each pair of attribute values (dimensionless or mean independence); inequality will
decrease if a transfer from a high attribute value to a low one, preserving relation
order between the two values, is accomplished (Pigou–Dalton principle of transfers);
small changes in attribute values entail small changes on inequality (continuity); an
exchange of attribute values among individuals in the population does not influence
inequality (symmetry); inequality in a population may be expressed as the sum of
inequality among groups determined by a partition of the population, and a kind of
average inequality within groups (additive decomposability).

Indices in Definition 2.1 can be axiomatically characterized by means of the fol-
lowing properties: normalization, mean independence, continuity, symmetry and
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additive decomposability, along with some few additional assumptions on the deriva-
tiveness of indices with respect to the vector of attribute values.

The structure of the average in the additive decomposability property (which will
depend on β), determines the corresponding additive decomposable index and means
the essential difference among indices in the family. On the other hand, the effect
of the parameter β in that family is that of weighting of the degree of “inequality
aversion” (see [1]).

In previous papers ([5, 6, 11] and [12]), we have remarked the importance of the
index I−1 in estimating population inequality when only small samples from it are
available. However, we are now going to consider situations in which large samples
can be drawn from the population.

Assume that a stratified sample of size n is drawn at random from the population
independently from different strata. We first suppose that the sample is chosen by
a specified allocation {ωk}, k = 1, . . . , r, so that a sample of size nk is drawn at
random (with or without replacement) from the kth stratum, where nk/n = ωk. Let
fik and fi. respectively denote the relative frequencies of individuals in the sample
from the kth stratum and in the sample from the whole population with attribute
value equal to x?

i (i = 1, . . . , M, k = 1, . . . , r).
If X? denotes a random variable whose distribution in the kth stratum coincides

with that of a random variable X?
k taking on values x?

1, . . . , x
?
M with respective

probabilities f1k, . . . , fMk, we have that

Theorem 2.1. In the stratified random sampling, the estimator given by

Iβ
n (X?) =

M∑

i=1

r∑

k=1

Wk

ωk
fik φβ

(
x?

i

E(X?)

)

where

E(X?) =
M∑

i=1

r∑

k=1

Wk

ωk
fik x?

i

is asymptotically unbiased (as nk →∞ for all k) to estimate Iβ(X?).
In addition, the statistic n

1
2

[
Iβ
n (X?)− Iβ(X?)

]
is asymptotically normally dis-

tributed (as nk →∞, for all k) with mean zero and variance equal to

(τs)2 =
r∑

k=1

W 2
k

ωk





M∑

i=1

pik

Wk
(Vi)2 −

[
M∑

i=1

pik

Wk
Vi

]2




where for each β ∈ IR,

Vi = φβ

(
x?

i

E(X?)

)
− x?

i

E(X?)

M∑

j=1

pj.

x?
j

E(X?)
φ′β

(
x?

j

E(X?)

)

(φ′β being the first order derivative function of φβ), whenever (τ s)2 > 0.

P r o o f . Indeed, according to some well-known results in large sample theory
(see, [2, 3], and [14]), for all β ∈ IR, we have that

Iβ
n (X?)− Iβ(X?) =

M∑

i=1

r∑

k=1

Vi

(
Wk

ωk
fik − pik

)
+ Rn

where Rn is the corresponding Lagrange remainder term for the first order expansion.
Consequently, the expectation of Iβ

n (Xn)− Iβ(X∗) converges to 0 as nk →∞ for
all k, whence Iβ

n (X?) is asymptotically unbiased to estimate Iβ(X?).
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On the other hand, under the sampling we have considered, one can guarantee
(see, [2, 3], and [14]) that the statistic

(nk)
1
2

M∑

i=1

Vi

[
fik

ωk
− pik

Wk

]

is asymptotically distributed (as nk →∞ for all k) as a N
(
0, (Tk)

1
2

)
, where

Tk = tV
∑

(k)V and

V =




V1

...
Vk


 ,

∑
(k) = diagonal

{
p1k

Wk
, . . . ,

pMk

Wk

}
−P (k) tP (k), P (k) =




p1k

Wk

...
pMk

Wk


 .

Therefore, and because of the independence among subsamples from different
strata, the asymptotic distribution of the statistic n

1
2

[
Iβ
n (X?)− Iβ(X?)

]
(as nk →

∞, for all k) is N(0, τ s), where

(τs)2 =
r∑

k=1

W 2
k

ωk
Tk =

r∑

k=1

W 2
k

ωk





M∑

i=1

pik

Wk
(Vi)2 −

[
M∑

i=1

pik

Wk

]2




whenever τs > 0. 2

3. APPROACHING THE OPTIMUM ALLOCATION

Theorem 2.1 will allow us to asymptotically approach the optimum allocation to
estimate Iβ(X?) on the basis of Iβ

n (X?). Thus, under the assumption that large
samples are available, we can get next results.

Theorem 3.1. In the stratified random sampling, the asymptotic variance of
Iβ
n (X?) is minimized for a fixed total size of sample, n, if

nk =
Wk(Tk)

1
2

∑r
`=1 W`(T`)

1
2

n

where

Tk =





M∑

i=1

pik

Wk
(Vi)2 −

[
M∑

i=1

pik

Wk
Vi

]2




whenever there is at least one k ∈ {1, . . . , r} such that Tk > 0. The minimum
asymptotic variance is then given by

[
(τs)2/n

]
min

=

[
r∑

k=1

Wk(Tk)
1
2

]2

/ n.

In addition, the whole sample size n is minimized for fixed asymptotic variance
V0 > 0 if

nk =
Wk(Tk)

1
2

V0

r∑

`=1

W`(T`)
1
2

and, the minimum total size of the sample is given by

nmin =

[
r∑

k=1

Wk(Tk)
1
2

]2

/ V0.
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P r o o f . Indeed, for all β ∈ IR, to minimize (τs)2/n subject to the constraint∑
k nk

= n, we use Lagrange multipliers method, from which we get the system of equations




λ− W 2
k

ω2
k

Tk = 0, k = 1, . . . , r

r∑
k=1

ωk = 1

and, hence, the optimum allocation is given by

ωk =
Wk(Tk)

1
2

r∑
`=1

W`(T`)
1
2

(whenever there is at least one k ∈ {1, . . . , r} such that Tk > 0). The value for the
optimum asymptotic variance can be immediately deduced.

In a similar way, to minimize n subject to the constraint (τs)2/n = V0, we again
make use of Lagrange multipliers method, from which we get now the system of
equations 




1− λ
W 2

k

n2
k

Tk = 0, k = 1, . . . , r

r∑
k=1

W 2
k

nk
Tk = V0

and, hence, the optimum allocation is given by

nk =
Wk(Tk)

1
2

V0

r∑

`=1

W`(T`)
1
2

(whenever there is at least one k ∈ {1, . . . , r} such that Tk > 0). The value for the
optimum whole sample size can be immediately deduced. 2

The value Tk in Theorem 3.1 involves unknown population values, that could be
replaced by the asymptotically unbiased estimator Tk defined on the basis of a pilot
sample (drawn according to a specified allocation given by {ω0

k}, k = 1, . . . , r, and
with relative frequencies f0

ik for the class xi in the kth stratum) by

Tk =





M∑

i=1

f0
ik

ω0
k

(V0
i )

2 −
[

M∑

i=1

f0
ik

ω0
k

V0
i

]2




where

V0
i = φβ

(
x?

i

E(X?)

)
− x?

i

E(X?)

M∑

j=1

r∑

k=1

f0
ik

Wk

ω0
k

x?
j

E(X?)
φ′β

(
x?

j

E(X?)

)

and

E(X?) =
M∑

i=1

r∑

k=1

Wk

ω0
k

f0
ikx?

i .

On the other hand, the optimum allocation will be in both cases approached by
means of the greatest integer part of the solutions in Theorem 3.1.

It should be emphasized that Theorem 3.1 suggests for both purposes, maximizing
precision or minimizing sample size, choosing the sample size in each stratum so that
the larger the stratum is, or the higher the stratum variance of the random variable
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V (defined as coinciding in the kth stratum with a random variable Vk taking
on values Vi with probability pik/Wk, i = 1, . . . ,M), the larger the corresponding
“optimum” sample size.

We are finally going to confirm advantages of stratified random sampling with
optimum allocation. Thus, if Vran, Vprop and Vopt respectively denote the generic
asymptotic variance of Iβ

n in the simple random sampling, stratified random sam-
pling with proportional allocation, and stratified random sampling with optimum
allocation, we then obtain that

Theorem 3.2. For fixed total size of the sample, n, we have

Vran ≥ Vprop ≥ Vopt.

In addition, Vran = Vprop iff
∑

i pikVi/Wk does not depend on k, and Vprop = Vopt

iff Tk does not depend on k.

P r o o f . Indeed,

Vran − Vprop =
r∑

k=1

Wk

[
M∑

i=1

pik

Wk
Vi −

r∑

`=1

M∑

i=1

pik Vi

]2

and

Vprop − Vopt =
r∑

k=1

Wk

[
(Tk)

1
2 −

r∑

`=1

W` (T`)
1
2

]2

.

Conditions for equalities Vran = Vprop and Vprop = Vopt, can be easily derived. 2

4. CONCLUDING REMARKS

A study similar to that in the present paper can be developed in connection with
population diversity (that can be understood as the population variation with re-
spect to a qualitative attribute, or a quantitative one, the magnitude of whose values
is irrelevant for that variation), on the basis of some previous studies (cf. [10]).

On the other hand, when the asymptotic variance in Theorem 2.1 equals zero, we
could then extend Zvárová’s results [18] and follow ideas in this note.

(Received April 9, 1991.)
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