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DISCRIMINABILITY OF ROBUST TEST
UNDER HEAVY CONTAMINATION

Asunción Maria Rubio and Jan Ámos V́ı̌sek1

The paper studies the upper limit of possible contamination level which still allows to
discriminate by a robust (likelihood ratio) test a hypothesis from an alternative. Having
found this limit the test of a hypothesis against an alternative, both being increasingly
contaminated with the increasing number of observations, are considered. The level of
contamination is adjusted so that it allows discrimination with an a priori fixed risk. The
asymptotic distribution of the test statistic is found and the tightness of approximation to
the power of test based on this asymptotic distribution is illustrated by a small numerical
example.

1. INTRODUCTION

The notion of the contamination of data is one of the basic ones in robust statistics.
Although the majority of methods constructed in robust statistics assume, at least
implicitely, some level of contamination and accomodate the whole approach to it
(see e. g. [6] or [7]), the estimation of the contamination level deserves relatively very
small attention (see [12], [14] or [15]). However, having estimated the contamination
level of data, in a similar way as we estimate other characteristics of data, as the
location or the scatter, we may select a procedure with an appropriate “level of
robustness”, avoiding the procedures with (extremely) high breakdown point. It may
allow us to reach directly a good efficiency by relatively simple methods. The benefit
of it, besides others, may be e. g. a decrease of probability of the computational error.

On the other hand the question “How high the contamination level can be still
allowing a reliable estimation?” is (leaving aside its practical impact) very attractive
and the results achieved in study of breakdown point may be viewed as an answer
to it. Similarly for the robust testing one may ask: “How heavy could a contami-
nation be to allow still the discrimination of a hypothesis from an alternative (on
a corresponding significance level and a power of test)?” In the present paper this
question is studied in a framework of the model of contamination with the general
neighbourhoods.

The setup of the paper will be as follows. Let us have a simple hypothesis and
a simple alternative, which are assumed to be fixed (which corresponds to the fact

1The authors has obtained a support from the Department of Education and Science of the
Spanish Government.
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that in many cases they are “given” by (physical) circumstances). Independent ob-
servations, generated either by the hypothesis or by the alternative, are available
but it is assumed that they are contaminated. Then, it is easy to see that there is
an upper bound of the contamination level, and for the contamination level higher
than it the problem of testing has no reasonable solution, because of the nonempty
intersection of the contamination-generated neighbourhoods of the hypothesis and
of the alternative. Hence it is clear that this bound does not depend on the number
of observations. However assuming e. g. the value of (minimal) sum of the error
probabilities as a characterization of test risk, one may expect that with the increas-
ing number of observations a level of contamination, permitting to construct a test
still being able to discriminate the hypothesis from the alternative with an a priori
given risk, would increase, too. Therefore finding the mentioned upper bound of the
admissible contamination we will try to build up a model in which the level of the
contamination would also increase with the increasing number of observations and
moreover the distributions (under the hypothesis and under the alternative) of the
test statistics would converge to asymptotic ones.

The model is proposed in Section 3 and the desired property is established in
Theorem 2. Numerical examples are presented in Section 4. Now, let us give some
notations.

2. NOTATIONS

Let us denote by R the real line and by N the set of all positive integers. Let (Ω,B)
be a measurable space and let M stand for the set of all probability measures on it.
Let P0 and P1 be distinct probability measures. For real numbers εi and δi fulfilling

0 ≤ εi, 0 ≤ δi, 0 < εi + δi < 1, i = 0, 1 (1)

let us define

Pi(εi, δi) = {Q ∈M : Q(B) ≥ (1− εi)Pi(B)− δi for all B ∈ B}

P⊗n
i (εi, δi) =





n⊗

j=1

Qj : Qj ∈ Pi(εi, δi) for j = 1, . . . , n





Hi(εi, δi) =
{
wn : wn ∈ P⊗n

i (εi, δi) for all n ∈ N}

where “
⊗n

j=1” denotes nth convolution.
Let us recall a definition of the least favorable pair (LFP) for (P0,P1). We say

that the pair of probability measures (Q0, Q1) is the least favourable pair for (P0,P1)
if it satisfies

Q0({π > t}) = sup {Q′({π > t}) : Q′ ∈ P0(ε0, δ0)} ,
Q1({π > t}) = inf {Q′′({π > t}) : Q′′ ∈ P1(ε1, δ1)}

for all positive t and π ∈ dQ1/dQ0.
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3. RESULTS

Let ε1, δ0 and δ1 be real numbers such that there exists ε ∈ R and Bε ∈ B such that
(1) is fulfilled (with ε0 = ε) and

(1− ε1)P1(Bε) + ε1 + δ1 < (1− ε)P0(Bε)− δ0. (2)

Let E be a set of all such ε ∈ (0, 1) for which (1) and (2) hold and put

ε0 = sup E .

To simplify further notation put

ν1 =
ε1 + δ1
1− ε1

, ω1 =
δ1

1− ε1

and

νε =
ε+ δ0
1− ε

, ωε =
δ0

1− ε

and define for any t > 0 and ∆ ∈ dP1/dP0

ψ0ε(t) = (ν1 + ωεt)
−1 [t · P0(∆ < t) − P1(∆ < t)]

and
ψ1ε(t) = (νεt+ ω1)

−1 [P1(∆ > t) − t · P0(∆ > t)]

Assertion 1. The function ψ0ε(t) is strictly increasing on {t ∈ R, ψ0ε(t) > 0} and
ψ1ε(t) is strictly decreasing on {t ∈ R, ψ1ε(t) > 0}.

P r o o f . The proof is essentially contained in [6] but since it is short we will
present it for the convenience of the reader. Let us assume at first the function

ϕε(t) = P0(∆ < t) − t−1 · P1(∆ < t)).

Let 0 < t1 < t2, t1, t2 ∈ { t ∈ R,ψ0ε(t) > 0} . Since for any ω ∈ {t1 ≤ ∆ < t2} we
have dP0(ω) > t−1

2 · dP1(ω), we obtain also

P0(t1 ≤ ∆ < t2) > t−1
2 · P1(t1 ≤ ∆ < t2) > t−1

2 · P1(∆ < t2)− t−1
1 · P1(∆ < t1)

and hence

ϕε(t2) − ϕε(t1) = P0(t1 ≤ ∆ < t2)− t−1
2 · P1(∆ < t2) + t−1

1 · P1(∆ < t1) > 0.

On the other hand
ψ0ε(t) =

t

ν1 + ωε · t · ϕε(t),

and since t (ν1 + ωε · t)−1 is also increasing on {t > 0} , the proof follows. 2
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Since for t↘ 0 the function ψ0ε(t) ↘ 0 and for t↗∞ it converges to
ω−1

ε = 1−ε
δ0

> 1 (the last inequality follows from (1)), there is a uniquely given
number ∆0ε such that ψ0ε(∆0ε) = 1 or

∆0εP0(∆ < ∆0ε)− P1(∆ < ∆0ε) = ν1 + ωε∆0ε (3)

and similarly for ψ1ε there is also uniquely given ∆1ε so that

P1(∆1ε < ∆)−∆1εP0(∆1ε < ∆) = νε∆1ε + ω1.

Let
∆0 = sup{∆0ε : ε ∈ E}

and
∆1 = inf{∆1ε : ε ∈ E}.

Lemma 1. The set E has a form (0, ε0) and it holds:

1− ε0
1− ε1

P0

(
∆ <

1− ε0
1− ε1

)
− P1

(
∆ <

1− ε0
1− ε1

)
= ν1 +

δ0
1− ε1

, (4)

∆0 = ∆1 =
1− ε0
1− ε1

.

P r o o f . Let ε ∈ E and ε̃ ∈ R, 0 < ε̃ < ε. Then evidently (1) holds for ε̃. Since
for some Bε ∈ B the relation (2) is fulfilled, we have also

(1− ε1)P1(Bε) + ε1 + δ1 < (1− ε̃)P0(Bε)− δ0.

So ε̃ ∈ E , too. Moreover, let t > 0. Then ωε̃ · t < ωε · t and hence ψ0ε(t) < ψ0ε̃(t)
which implies

∆0ε̃ < ∆0ε. (5)

Let us assume that ψ0ε( 1−ε
1−ε1

) ≤ 1. Then

(1− ε)P0

(
∆ <

1− ε

1− ε1

)
− δ0 ≤ (1− ε1)P1

(
∆ <

1− ε

1− ε1

)
+ ε1 + δ1. (6)

Let B ∈ B and let us consider the set C =
{

∆ ≤ 1−ε
1−ε1

}
∩Bc where the superindex

“c” stands for the complement. Due to the fact that at any point ω ∈ C we have
(1− ε1) dP1(ω) ≤ (1− ε) dP0(ω) we obtain

(1− ε1)P1(C) ≤ (1− ε)P0(C)

and hence (using (6))

(1− ε)P0

({
∆ <

1− ε

1− ε1

}
∩B

)
− δ0 ≤ (1− ε1)P1

({
∆ <

1− ε

1− ε1

}
∩B

)
+ ε1 + δ1.

(7)
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Since similarly for any ω ∈
{

∆ > 1−ε
1−ε1

}
we have

(1− ε)P0

({
∆ >

1− ε

1− ε1

}
∩B

)
< (1− ε1)P1

({
∆ >

1− ε

1− ε1

}
∩B

)
,

taking into account (7) we obtain for any B ∈ B
(1− ε)P0 (B) − δ0 ≤ (1− ε1)P1 (B) + ε1 + δ1

but it is in a contradiction with the assumption that ε ∈ E (see (2)). So we have
found that ψ0ε( 1−ε

1−ε1
) > 1 and then from the Assertion 1 follows that ∆0ε <

1−ε
1−ε1

for any ε ∈ E . Let us assume that ∆0 < 1−ε0
1−ε1

and for any ε ∈ E denote by Cε

the set {ω ∈ Ω; ∆ < ∆0ε}. Consider a monotone sequence {εn}∞n=1 ↗ ε0. From the
continuity of probability measure in a nondecreasing sequence {Cεn}∞n=1 (see (5))
we obtain

ψ0ε0(∆0) = 1. (8)

But then from the assumption that ∆0 <
1−ε0
1−ε1

we obtain

ψ0ε0

(
1− ε0
1− ε1

)
> 1.

Let us define ψ̃(ε) = ψ0ε

(
1−ε
1−ε1

)
. Then we have ψ̃(ε0) > 1 which implies that there

exists ε∗ ∈ R, ε∗ > ε0 and ψ̃(ε∗) > 1, i. e.

1− ε∗

1− ε1
P0

(
∆ <

1− ε∗

1− ε1

)
− P1

(
∆ <

1− ε∗

1− ε1

)
> ν1 + ωε∗

1− ε∗

1− ε1
.

Putting Bε∗ =
{

∆ < 1−ε∗
1−ε1

}
one obtains

(1− ε∗)P0(Bε∗)− δ0 > (1− ε1)P1(Bε∗) + ε1 + δ1,

i. e. (2) holds for ε∗. Moreover

0 < ε1 + δ1 + (1− ε1)P1(Bε∗) < (1− ε∗)P0(Bε∗)− δ0 ≤ 1− (ε∗ + δ0).

i. e. (1) is fulfilled for ε∗, too. So we have found that the assumption ∆0 <
1−ε0
1−ε1

implies existence of ε∗ > ε0, ε
∗ ∈ E and therefore ∆0 = 1−ε0

1−ε1
. Similarly it is possible

to show that ∆1 = 1−ε0
1−ε1

. 2

Remark 1. The assertion of Lemma 1 may be written also as

∆0P0(∆ < ∆0)− P1(∆ < ∆0) = ν1 + ω0∆0

from which follows
P0(∆ < ∆0)− ω0 > 0.

We will need this inequality several times in the sequal.

For any ε ∈ (0, ε0) write ε = ε(τ) = ε0 − τ (for some τ ∈ (0, ε0) ).
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Lemma 2. Let us write

∆0ε = ∆0 − τR0(τ) and ∆1ε = ∆0 + τR1(τ).

Then
lim
τ↘0

R0(τ) =
ω0

(1− ε1)[P0(∆ < ∆0)− ω0]

and
lim
τ↘0

R1(τ) =
1 + ν0

(1− ε1) [P0(∆0 < ∆) + ν0]
.

P r o o f . It follows from (5) that the mapping ∆0ε : E → (0,∆0) is nondecreasing,
and since ∆0 = sup {∆0ε : ε ∈ E} we have

lim
τ↘0

∆0ε(τ) = ∆0.

Let ε ∈ E . Substracting (3) from an analogous relation written for ε0 (and ∆0,
naturally— see (4)) one obtains

∆0 (P0 (∆<∆0)−P0 (∆<∆0ε))+ (∆0−∆0ε)P0(∆<∆0ε)−P1(∆0ε ≤∆<∆0)
= (ω0 − ωε)∆0 + ωε(∆0 −∆0ε),

i. e.

∆0P0(∆0ε ≤ ∆ < ∆0)− P1(∆0ε ≤ ∆ < ∆0) (9)
= (ω0 − ωε)∆0 + (∆0 −∆0ε)(ωε − P0(∆ < ∆0ε)).

From (3) follows that
P0(∆ < ∆0ε)− ωε > 0 (10)

because of ν1 > 0 (and hence also ∆0ε > 0— see also Remark 1). A straightforward
computation gives

P1(∆0ε ≤ ∆ < ∆0) ≤ ∆0P0(∆0ε ≤ ∆ < ∆0) (11)

which together with (9) results in

(∆0 −∆0ε)(ωε − P0(∆ < ∆0ε)) ≥ (ωε − ω0)∆0

and finally (see (10))

∆0 −∆0ε ≤ [P0(∆ < ∆0ε)− ωε]
−1 · τ · δ0

(1− ε0 + τ)(1− ε1)
.

In the same way as (11) one may derive

∆0εP0(∆0ε ≤ ∆ < ∆0) ≤ P1(∆0ε ≤ ∆ < ∆0)

which together with (4) gives

(∆0 −∆0ε)ωε − P0(∆ < ∆0ε) ≤ (∆0 −∆0ε)P0(∆0ε ≤ ∆ < ∆0)− (ω0 − ωε)∆0,
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i. e.
(∆0 −∆0ε)(ωε − P0(∆ < ∆0)) ≤ (ωε − ω0)∆0. (12)

Taking into account Remark 1 and the inequality ω0 = δ0
1−ε0

≥ δ0
1−ε0+τ = ωε we get

P0(∆ < ∆0)− ωε > 0. (13)

Now from (12) and (13) we obtain

∆0 −∆0ε ≥
[
P0(∆ < ∆0) − ωε

]−1 · τ · δ0
(1− ε0 + τ)(1− ε1)

and the proof of the first assertion follows from the monotone convergence of ∆0ε to
∆0 and continuity of the probability. A proof of the second assertion of Lemma 2 is
similar. 2

Now for a fix ε1 and for any ε ∈ E we may find LFP (Q0ε, Q1ε) for P0(ε, δ0),P1(ε1, δ1),
the likelihood ratio of which is given by

q1ε

q0ε
=

1− ε1
1− ε

median {∆0ε,∆,∆1ε} (14)

where densities q0ε and q1ε may be taken with respect to P0 + P1 or Q0ε +Q1ε, see
[9]. Keep in mind that although ε1 and δ1 are fix (and hence also P1(ε1) is fix), q1ε

depends on ε—see (6.4) of [9]. From the relation (6.4) of [9] and from Lemma 1 it
also follows that there is a probability measure Q0 such that

lim
ε↗ε0

‖Q0ε −Q0‖ = 0 and lim
ε↗ε0

‖Q1ε −Q0‖ = 0.

Recalling that for any ε ∈ (0, ε0) we have written ε = ε0(τ) = ε0 − τ for some
τ ∈ (0, ε0), put for h > 0 τn = h.n−

1
2 and εn = max {0, ε0 − τn}.

Assertion 2. If ‖Pn − P ′n‖ → 0 as n → ∞, then the sequences {Pn}∞n=1 and
{P ′n}∞n=1 are mutually contiguous.

For the proof see [10], Lemma 2.1 of Chapter 1. 2

Theorem 1. Sequences of probability measures
{
Q⊗n

jεn

}∞
n=1

, j = 0, 1 are (mutu-
ally) contiguous.

P r o o f . The proof follows immediately from Assertion 2 due to

lim
ε↗ε0

‖Q0ε −Q1ε‖ = 0. 2

Keeping the notation of [10] let us write Λε0,h,n for the logarithm of the likelihood
ratio dQ⊗n

1εn
/dQ⊗n

0εn
. Then we have

Λε0,h,n(x) =
n∑

i=1

log
[

1− ε1
1− ε0 + τn

median {∆0εn ,∆(xi),∆1εn}
]
. (15)
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Let us find a function ϕ(−τn,τn)(x) such that

Λε0,h,n(x) = 2
n∑

i=1

logϕ(−τn,τn)(xi), (16)

i. e.

ϕ(−τn, τn)(xi) =
[

1− ε1
1− ε0 + τn

median{∆0εn
, ∆(xi), ∆1εn

}
] 1

2

.

Let us evaluate ϕ′(0) = limτ↘0
1
τ

{
ϕ(−τ,τ)(x)− ϕ(0,0)(x)

}
for a fix x. Let

x ∈ {∆ < ∆0}. Then there is a τ̃ = τ̃(x) > 0 such that for all τ ∈ (0, τ̃)

ϕ(−τ,τ) =
(

1− ε1
1− ε0 + τ

∆0ε

) 1
2

and hence

ϕ′(0) = lim
τ↘0

1
τ

{(
1− ε1

1− ε0 + τ
∆0ε

) 1
2

−
(

1− ε1
1− ε0

∆0

) 1
2
}

(17)

= lim
τ↘0

1
τ

{(
1− ε1

1− ε0 + τ
∆0ε

) 1
2

−
(

1− ε1
1− ε0

∆0ε

) 1
2
}

+ lim
τ↘0

1
τ

{(
1− ε1
1− ε0

) 1
2 (

∆
1
2
0ε −∆

1
2
0

)}

(keep in mind that ε = ε(τ)). Now we easy find that the first limit is equal to

− (1−ε1)
1
2

2(1−ε0)
3
2 ∆

1
2
0

= − 1
2 (1−ε0). Making use of Lemma 2 we also easy compute the value

of the second limit, namely − ω0
2(1−ε0)[P (∆<∆0)−ω0]

that finally gives

ϕ′(0) =
P0(∆ < ∆0)

2(1− ε0)[ω0 − P0(∆ < ∆0)]

for any x ∈ {∆ < ∆0}. Similarly for any x ∈ {∆0 < ∆} we find

ϕ′(0) =
P0(∆ < ∆0)

2(1− ε0) [P0(∆0 < ∆) + ν0]

and moreover, due to the fact that for the case when τ > τ̃ we have
ϕ(−τ,τ)(x) ∈

(
1−ε1
1−ε ∆0ε,

1−ε1
1−ε ∆1ε

)
(see (14)), convergence

1
τ

{
ϕ(−τ,τ)(x)− ϕ(0,0)(x)

} −→τ↘0 ϕ
′(0)

is uniform. Since all consideration were made under the assumption that the domi-
nating measure is a probability, we have

ϕ̇(0) = ϕ′(0) a. s. [Q0]
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where ϕ̇(0) denotes the derivative of ϕ(−τ,τ)(x) with respect to τ in the quadratic
mean. Finally, defining Γ = 4 · EQ0 ϕ̇

2 we may compute that

Γ =
{
(1− ε0)2[P0(∆ < ∆0)− ω0][P0(∆0 < ∆) + ν0]

}−1 · P 2
0 (∆ < ∆0).

Denote by L[Y|P ] the distribution of a random variable Y under a probability mea-
sure P and by N(µ, σ2) the normal distribution with the mean µ and the variance
σ2. Finally let us put

Dn = 2n−
1
2

n∑

j=1

ϕ̇j(0) (18)

where ϕ̇j(0) denotes value of ϕ̇(0) (or ϕ′(0), it is the same) at the point xj .

Theorem 2. It holds

L [
Dn |Q⊗n

jεn

] −→ N((−1)j+1h · Γ,Γ)

and

L [
Λε0,h,n |Q⊗n

jεn

] −→ N

(
(−1)j+1

2
h2Γ, h2Γ

)
. (19)

The proof follows directly from Theorems 4.6, 4.5 and 4.3 of Chapter 2 of [10].
(In fact, specifying Theorems 4.3, 4.5 and 4.6 for our setup, i. e. for the setup in
which we assume except of a system of the shifting alternatives also a system of the
shifting hypotheses, we obtain Theorem 2.)

4. NUMERICAL EXAMPLES AND DISCUSSION

The numerical studies performed in [6] have proved the reliability of approximations,
based on Edgeworth expansion, to error probabilities of the robust likelihood-ratio
test based on Λε0,h,n (defined in (15)). So we may use them to create an idea about
two questions:

i) How does convergence described in Theorem 2 work?
ii) In which situations the result given in Theorem 2 is useful for an approximation
to error probabilities of the robust test?

Both answers are presented in the form of tables. Let us explain a setup and the
values gathered in them. P0 and P1 were assumed to be N(0, 1) and N(µ, 1), re-
spectively.

The Tables 1a, 1b and 1c offer a possibility to make an idea about the convergence
in (19), i. e. ε0 and h are fixed. Their values together with other parameters are
referred on the upper margin of the tables. An approximation obtained from (19) is
denoted by α∗.

The setup of Table 1a, 1b and 1c was selected so that it shows how convergence
given in (19) works. However this setup is not appropriate for building up an idea
of a practical possibility to use (19) as an approximation to size or power of test.
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Table 1a.
µ = .5 ε1 = .070 ε0 = .097 δ0 = δ1 = .025

h = .027 Γ = 3.520 α∗ = .4899

n 10 20 30 40 50

EDG.APPROX. .488824 .488882 .488903 .488914 .488920

n 60 70 80 90 100

EDG.APPROX. .488925 .488928 .488931 .488932 .488934

n 110 120 130 140 150

EDG.APPROX. .488935 .488936 .488937 .488938 .488938

Table 1b.
µ = .75 ε1 = .080 ε0 = .219 δ0 = δ1 = .025

h = .139 Γ = 2.684 α∗ = .4546

n 10 20 30 40 50

EDG.APPROX. .454125 .454460 .454585 .454653 .454697

n 60 70 80 90 100

EDG.APPROX. .454728 .454751 .454769 .454783 .454795

n 110 120 130 140 150

EDG.APPROX. .454805 .454814 .454822 .454828 .454834

Table 1c.
µ = 1.0 ε1 = .100 ε0 = .343 δ0 = δ1 = .025

h = .243 Γ = 2.359 α∗ = .4260

n 10 20 30 40 50

EDG.APPROX. .421214 .421853 .422093 .422224 .422307

n 60 70 80 90 100

EDG.APPROX. .422366 .422410 .422445 .422473 .422496

n 110 120 130 140 150

EDG.APPROX. .422515 .422532 .422546 .422559 .422570

Hence the Tables 2a, 2b and 2c collect the values of the approximation, yielded by
(19), and the Edgeworth one for a situation when ε is assumed to be fixed (value
of which we have estimated (or guessed) from the character of given data) and the
parameter h of the asymptotic setting of Section 3 is taken h = h(n) so that for
every n ∈ N we have

ε = ε0 − h(n)/
√
n,

i. e.
h(n) =

√
n(ε0 − ε).

It may seem strange that we have considered in the previous section the parameter
h to be fixed and now we select h = h(n). But it is quite consistent. In the
previous section we have for some fixed h derived some asymptotic result. Now we
try to use this result for a given situation in which we assume that bulk of data is
distributed either according to probability model P0 or according to P1, but they are
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contaminated with fixed contamination level. Naturally, we have some fixed number
of observations. After estimating values of parameters describing contamination level
(namely ε0, ε1, δ0 and δ1), we have to select h so that “shrinking setup includes”
our concrete case (or in other words, asymptotic setup “runs” through our fixed
case). Then we do the same for other sample size (but the same ε0, ε1, δ0 and δ1)
and hence the parameter h changes because in fact we approximate corresponding
error probabilities in a different asymptotic model (i. e. for every column in the next
tables we have to have different asymptotic model). In the examples described by the
following tables ε’s are the same as in the Tables 1a, 1b and 1c. They corresponds
to (the upper bound of) the usual level of contamination, (see [5]). Their values
together with the other parameters are given again on the upper margin of the
tables and α∗ again denotes the approximation evaluated from (19) as above.

Table 2a.
µ = .5 ε1 = .070 ε0 = .097 δ0 = δ1 = .025

n 10 20 30 40 50
α∗ .4849 .4787 .4740 .4699 4664

EDG.APPROX .4644 .4499 .4388 .4295 .4213

Table 2b.
µ = .75 ε1 = .080 ε0 = .219 δ0 = δ1 = .025

n 10 20 30 40 50
α∗ .4415 .4175 .3993 .3842 3710

EDG.APPROX .3945 .2982 .2586 .2274 .2017

Table 2c.
µ = 1.0 ε1 = .100 ε0 = .348 δ0 = δ1 = .025

n 10 20 30 40 50
α∗ .4033 .3646 .3358 3123 .2921

EDG.APPROX .2552 .1767 .1281 .0951 .0716

Remark 2. It follows from the Tables 1a, 1b and 1c the Edgeworth approximations
of error probabilities are very stable which is in the accordance with Theorem 2. The
differences among α∗ and the values given in the Tables 1a, 1b and 1c are due to the
fact that the approximation to the standard normal distribution (used for evaluation
of P0(∆ < ∆0) and P1(∆<∆0)) is not very tight. (A polynomial approximation
from [1] with accuracy 10−5 which is usually sufficiently good was used.) However
one finds out that the small deviations in approximation cause really not negligible
changes in solution of (4). Maybe, a normalization of the Edgeworth expansion
could bring a little better accuracy (see [2], [3] or [11]).

On the other hand a practical application of the results of Theorem 2 is possible
only for a rather “small” size of sample (as Table 2a, 2b and 2c show) and for a
heavy contamination i. e. for contamination not very far from the maximal possible
one. At the first glance it may seem strange why with increasing n the accuracy
of the approximations decreases. The explanation is simple and follows from (18).
In other words, due to the fact that our Q0εn and Q1εn are fixed, namely equal to



388 A.M. RUBIO AND J. Á. VÍŠEK

Q0ε and Q1ε, the summands in (16) are the same, independently of n. However the
asymptotic model, in which we embed our situation, assumes that they are equal
to ϕ̇j(0) (see (18) ). Asymptotic distributions of such two sums of independent and
identically distributed random variables are naturally disjoint. Hence the increasing
inaccuracy. This is the reason why models with shrinking neighbourhoods while
for the theoretical purposes very appealing and clarifying limiting situations, are of
limited importance for practical applications. It does not mean that they should
not be used at all. They can be used in situations when size of sample just crosses
boundary above which the discrimination (under heavy contamination) is already
possible with a given risk.

(Received April 16, 1992.)
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Universidad de Extremadura, 10071 Cáceres. Spain.
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