
KY BERNET I K A — V OL UME 2 9 (1 9 9 3) , N UM B ER 4 , PAGE S 3 0 5 – 3 2 4

INEXACT TRUST REGION METHOD FOR
LARGE SPARSE NONLINEAR LEAST SQUARES

Ladislav Lukšan

The main purpose of this paper is to show that linear least squares methods based
on bidiagonalization, namely the LSQR algorithm, can be used for generation of trust
region path. This property is a basis for an inexact trust region method which uses the
LSQR algorithm for direction determination. This method is very efficient for large sparse
nonlinear least squares as it is supported by numerical experiments.

1. INTRODUCTION

Inexact trust region methods are frequently used for general large-scale uncon-
strained minimization where we find the local minimizer x∗ ∈ Rn of the function
f : Rn → R which has continuous second-order derivatives. A typical inexact trust
region method can be represented by the following algorithm.

Algorithm 1.1.

Data: 0 < β1 < β2 < 1 < γ1 < γ2, 0 < ρ1 < ρ2 < 1, 0 < ε2 < 1, 0 < ∆max.

Step 1: Choose an initial point x ∈ Rn and an initial trust region bound 0 < ∆ ≤
∆max. Compute the value f := f(x) of the objective function f : Rn → R
at the point x ∈ Rn.

Step 2: Compute the gradient g := g(x) of the objective function f : Rn → R at
the point x ∈ Rn. If ‖g‖ ≤ ε2 then stop, otherwise determine the matrix B
which is an approximation of the Hessian matrix of the objective function
f : Rn → R at the point x ∈ Rn.

Step 3: Determine the current precision 0 < ω < 1 and compute the vector d ∈ Rn

so that

(a) ‖d‖ ≤ ∆
(b) ‖d‖ < ∆ ⇒ ‖Bd + g‖ ≤ ω‖g‖
(c) Q(d) ≤ − 1

2‖g‖min(‖d‖, ‖g‖/‖B‖)
where

306 L. LUKŠAN

Q(d) =
1
2
dTBd + dTg (1.1)

is a local quadratic approximation of the objective function f : Rn → R.

Step 4: Set x+ := x+d. Compute the value f+ := f(x+) of the objective function
f : Rn → R at the point x+ ∈ Rn and the ratio

ρ =
f+ − f

Q(d)
(1.2)

If ρ < ρ1 then compute the value ∆+ using the quadratic interpolation
and set

∆ := β1‖d‖ if ∆+ < β1‖d‖,
∆ := β2‖d‖ if ∆+ > β2‖d‖,
∆ := ∆+ otherwise.

If ρ1 ≤ ρ ≤ ρ2 then set ∆+ := ∆ and ∆ := min(∆+, γ2‖d‖). If ρ2 < ρ
then set ∆+ := max(∆, γ1‖d‖} and ∆ := min(∆+, γ2‖d‖, ∆max).

Step 5: If ρ ≤ 0 then go to Step 3, otherwise set x := x+, f := f+ and go to
Step 2.

Inexact trust region methods have strong convergence properties (see [6], [7],
[8]). Even if they also work well for indefinite matrices, we confine our attention to
positive semidefinite case which appears in nonlinear least squares.

The most complicated part of Algorithm 1.1 is computation of the vector d ∈ Rn

satisfying the conditions (a), (b), (c). There exist three basic possibilities for positive
semidefinite case. First, the vector d ∈ Rn can be obtained as a solution of the
subproblem

d = arg min
‖d(λ)‖≤∆

Q(d(λ))

which leads to the repeated solution of the equation (B+λI)d(λ)+g = 0 for selected
values of λ. This way gives well-convergent algorithms, especially in connection with
the Newton method, but for large number of variables, it is time consuming.

The second possibility, so-called dog-leg strategy, consists in computation of two
vectors d1 ∈ Rn and d2 ∈ Rn such that gTBgd1 + ‖g‖2g = 0 and Bd2 + g = 0. The
resulting vector d ∈ Rn is then obtained as d = λd1 if ‖d1‖ ≥ ∆, d = d1 +λ(d2−d1)
if ‖d1‖ < ∆ < ‖d2‖, and d = ‖d2‖ if ‖d2‖ ≤ ∆, where the scaling factor λ > 0 is
chosen so that ‖d‖ = ∆. This way is more economical since the equation Bd2+g = 0
can be solved inaccurately (‖Bd2 + g‖ ≤ ω‖g‖) by some iterative method.

The third possibility is very natural. The equation Bd + g = 0 is solved by some
iterative method which generates the vectors di ∈ Rn, i ∈ N, having the following
properties:

Inexact Trust Region Method for Large Sparse Nonlinear Least Squares 307

(A) There exists an index k ∈ N , such that

‖Bdk + g‖ ≤ ω‖g‖ (1.3)

for a given 0 < ω < 1.

(B) The sequence Q(di), 1 ≤ i ≤ k, is decreasing, i. e.

Q(di+1) < Q(di) (1.4)

for 1 ≤ i < k.

(C) The sequence ‖di‖, 1 ≤ i ≤ k, is increasing, i. e.

‖di+1‖ > ‖di‖ (1.5)

for 1 ≤ i < k.

(D) It holds that

Q(λd1) ≤ −1
2
‖g‖ ‖λd1‖ (1.6)

for 0 ≤ λ ≤ 1, and

Q(di) ≤ −1
2
‖g‖2
‖B‖ (1.7)

for 1 ≤ i ≤ k.

The resulting vector d ∈ Rn is then obtained as d = λd1 if ‖d1‖ ≥ ∆, d = di +
λ(di+1 − di) if ‖di‖ < ∆ < ‖di+1‖ for some 1 ≤ i < k, and d = ‖dk‖ if ‖dk‖ ≤ ∆,
where the scaling factor λ > 0 is chosen so that ‖d‖ = ∆.

Steihaug [8] has proved that all above conditions are satisfied for the conjugate
gradient method. Our main purpose is to prove that these conditions are also sat-
isfied for more complicated iterative methods appearing in least squares solutions.

Consider the nonlinear least squares problem which is a special minimization
problem where the objective function f := Rn → R has the form

f(x) =
1
2

m∑

i=1

f2
i (x) (1.8)

and the functions fi : Rn → R, 1 ≤ i ≤ m, have continuous second-order derivatives.
Denote f = f(x), fi = fi(x), 1 ≤ i ≤ m and g = g(x), gi = gi(x), 1 ≤ i ≤ m, the
values and the gradients of the functions f : Rn → R, fi : Rn → R, 1 ≤ i ≤ m, at
the point x ∈ Rn respectively and set

A = A(x) =




gT
1 (x)
. . .

gT
m(x)


 , b = b(x) = −




f1(x)
. . .

fm(x)


 . (1.9)

Then

f =
1
2
bTb , g = −ATb , (1.10)

308 L. LUKŠAN

and if we denote x+ = x + d as a new vector of variables, we get after linearization

f(x+) =
1
2

m∑

i=1

f2
i (x+) ≈ 1

2
‖Ad− b‖2

Therefore the optimal direction vector d∗ ∈ Rn can be obtained as a solution of the
linearized problem

d∗ = arg min
d∈Rn

‖Ad− b‖ (1.11)

Since the function ‖Ad−b‖ is convex the vector d∗ ∈ Rn is a solution of the problem
(1.11) if and only if

AT(Ad∗ − b) = 0 (1.12)

If we denote B = ATA and if we use (1.10), we get the equation Bd∗ + g = 0 which
is equivalent to (1.12). Therefore it suffices to substitute B = ATA in Algorithm
1.1 to adapt it for nonlinear least squares. Especially the quadratic function (1.1)
takes the form

Q(d) =
1
2
dTATAd− dTATb (1.13)

Using the substitution B = ATA we can transform the conjugate gradient method
to solve the normal equation (1.12). The resulting method is the CGLS algorithm
(see [5] as an example) which is represented by the following iterative process

do = 0, ro = b, (1.14a)

v1 = ATro, γ1 = ‖v1‖2 (1.14b)

p1 = v1 (1.14c)

and

ui = Api, δi = ‖ui‖2 (1.14d)

di = di−1 +
γi

δi
pi, ri = ri−1 − γi

δi
ui (1.14e)

vi+1 = ATri, γi+1 = ‖vi+1‖2 (1.14f)

pi+1 = vi+1 +
γi+1

γi
pi (1.14g)

for i ∈ N . As it was proved by Steihaug [8] for the CG method, the vectors di ∈ Rn,
i ∈ N , obtained by (1.14) satisfy the conditions (A), (B), (C), (D). The inequality

Inexact Trust Region Method for Large Sparse Nonlinear Least Squares 309

(1.3) has the form γk ≤ ω2γ1 since AT(Adk − b) = vk and ‖AT(Adk − b)‖2 = γk by
(1.14f).

The CGLS algorithm is not the best one for linear least squares. Methods based
on bidiagonalization [1], [4], namely the LSQR algorithm proposed in [5], were proved
to be numerically more stable. In the next section we shall study properties of such
methods with regard to conditions (A), (B), (C), (D) which have to be satisfied.

2. BIDIAGONALIZATION AND LINEAR LEAST SQUARES

Consider the problem which consists in finding a vector d∗ ∈ Rn such that

d∗ = arg min
d∈Rn

‖Ad− b‖. (2.1)

Since the function ‖Ad−b‖ is convex, the vector d∗ ∈ Rn is a solution of the problem
(2.1) if and only if

AT(Ad∗ − b) = 0. (2.2)

The problem (2.1) can be solved iteratively using a bidiagonalization procedure
proposed in [1] and [4]. In this case

β1u1 = b, (2.3a)

α1v1 = ATu1, (2.3b)

and

βi+1ui+1 = Avi − αiui, (2.3c)

αi+1vi+1 = ATui+1 − βi+1vi, (2.3d)

for i ∈ N , where the right hand sides are assumed to be nonzero and the coefficients
on the left hand sides are chosen so that the corresponding vectors have unit norms.
If some right hand side becomes zero then we formally set both the coefficient and
the vector on the left hand side equal to zero and we stop the iterative process.
Namely if b = 0 or ATb = 0 we set β1 = 0, u1 = 0 or α1 = 0, v1 = 0 respectively.

It can be easily proved by induction (see [1] and [4]) that for αi > 0, βi > 0,
1 ≤ i ≤ k, the vectors vi ∈ Rn, 1 ≤ i ≤ k, are nonzero and mutually orthogonal and
the vectors ui ∈ Rm, 1 ≤ i ≤ k, have the same property.

The iterative process (2.3) can be written in the matrix form

Ui+1(β1e1) = b, (2.4a)

AVi = Ui+1Bi, (2.4b)

ATUi+1 = ViB
T
i + αi+1vi+1e

T
i+1, (2.4c)

310 L. LUKŠAN

for i ∈ N , where Vi = [v1, . . . , vi] ∈ Rn×i, V T
i Vi = I, Ui+1 = [u1, . . . , ui+1] ∈

Rn×(i+1), and

Bi =




α1, 0, . . . , 0
β2, α2, . . . , 0
0, β2, . . . , 0
...

...
...

...
0, 0, . . . , αi

0, 0, . . . , βi+1




. (2.5)

If αi > 0, βi > 0, 1 ≤ i ≤ k, then the lower bidiagonal matrices Bi ∈ R(i+1)×i,
1 ≤ i ≤ k, have full column rank. If βi+1 > 0 then UT

i+1Ui+1 = I. In the other
case Ui+1 = [Ui, 0], Bi = [LT

i , 0]T, where Li ∈ Ri×i is a nonsingular square lower
bidiagonal matrix, and (2.4) can be rewritten in the form

Ui(β1e1) = b, (2.6a)

AVi = UiLi, (2.6b)

ATUi = ViL
T
i + αi+1vi+1e

T
i+1, (2.6c)

for i ∈ N , where Ui = [u1, . . . , ui] ∈ Rn×i, UT
i Ui = I.

Together with the iterative process (2.3) we consider the sequence of vectors
di ∈ Rn, 1 ≤ i ≤ k, such that

di = arg min
d∈R(Vi)

‖Ad− b‖. (2.7)

Lemma 2.1. Consider the iterative process (2.3) with αi > 0, βi > 0, 1 ≤ i ≤ k.
Let di ∈ Rn, 1 ≤ i ≤ k, be the sequence of vectors defined by (2.7). Then, for
1 ≤ i ≤ k,

di = Viyi (2.8a)

where

yi = arg min
y∈Ri

‖Biy − β1e1‖. (2.8b)

If βi+1 = 0 (it can be satisfied only for i = k) then ‖Adi − b‖ = 0.

P r o o f . If d ∈ R(Vi) then necessarily d = Viy for some y ∈ Ri. If βi+1 > 0 then

‖Ad− b‖ = ‖AViy − b‖ = ‖Ui+1(Biy − β1e1)‖ = ‖Biy − β1e1‖,

Inexact Trust Region Method for Large Sparse Nonlinear Least Squares 311

by (2.4a) and (2.4b), since UT
i+1Ui+1 = I, so that (2.7) is equivalent to (2.8b). If

βi+1 = 0 then

‖Ad− b‖ = ‖AViy − b‖ = ‖Ui(Liy − β1e1)‖ = 0,

by (2.6a) and (2.6b), since the lower bidiagonal square matrix Li is nonsingular and,
therefore, there exists a solution yi ∈ Ri of the equation Liy = β1e1. 2

Corollary 2.1. Let the assumptions of Lemma 2.1 be satisfied. Then, for 1 ≤ i ≤
k,

di = Viyi (2.9a)

where

yi = α1β1(BT
i Bi)−1e1. (2.9b)

P r o o f . Since the function ‖Biy − β1e1‖ is convex, the vector yi ∈ Ri is a
solution of the problem (2.8b) if and only if BT

i (Biy− β1e1) = 0. Because the lower
bidiagonal matrices Bi ∈ R(i+1)×i, 1 ≤ i ≤ k, have full column rank, we can write
yi = β1(BT

i Bi)−1BT
i e1 which together with BT

i e1 = α1e1 (see (2.5)) gives (2.9b). 2

Theorem 2.1. Consider the iterative process (2.3) and sequence of vectors (2.7).
Then either d∗ = 0 is a solution of the problem (2.1) or there exists an index k ≤ n
such that d∗ = dk ∈ R(Vk) is a solution of the problem (2.1) and, moreover, αi > 0,
βi > 0 for 1 ≤ i ≤ k.

P r o o f . If either b = 0 or ATb = 0 then d∗ = 0 is a trivial solution of the problem
(2.1). In this case either β1 = 0 or α1 = 0. Suppose now that αi > 0, βi > 0 for
1 ≤ i ≤ k ≤ n. If k = n then R(Vn) = Rn since the vectors vi, 1 ≤ i ≤ n, are
nonzero and mutually orthogonal. Therefore

dn = arg min
d∈R(Vn)

‖Ad− b‖ = arg min
d∈Rn

‖Ad− b‖ = d∗

is a solution of the problem (2.1). If k < n and βk+1 = 0 then ‖Adk − b‖ = 0 by
Lemma 2.1 so that d∗ = dk is a solution of the problem (2.1). If k < n and αk+1 = 0
then ATUk+1 = VkBT

k by (2.4c) so that

AT(Adk − b) = AT(AVkyk − b) = ATUk+1(Bkyk − β1e1) = VkBT
k (Bkyk − β1e1) = 0,

by (2.4a) and (2.4b), since BT
k (Bkyk−β1e1) = 0 by (2.8b), and d∗ = dk is a solution

of the problem (2.1) by (2.2). 2

Theorem 2.1 shows that d∗ = di is a solution of the problem (2.1) whenever αi+1 = 0
or βi+1 = 0. The next lemma gives an important estimation in case αi+1 > 0 and
βi+1 > 0.

312 L. LUKŠAN

Lemma 2.2. Let the assumptions of Lemma 2.1 be satisfied. Then, for 1 ≤ i ≤ k,

‖AT(Adi − b)‖ = αi+1βi+1|vT
i di|. (2.10)

P r o o f . Let αi+1 > 0 and βi+1 > 0. Then using (2.4a) and (2.4c) we get

AT(Adi − b) = AT(AViyi − b) = ATUi+1(Biyi − β1e1) =
= (ViB

T
i + αi+1vi+1e

T
i+1)(βiyi − β1e1) =

= αi+1vi+1e
T
i+1(Biyi − β1e1) = αi+1βi+1vi+1e

T
i yi

since BT
i (Biyi − β1e1) = 0 by (2.8b), eT

i+1Bi = βi+1e
T
i by (2.5), and eT

i+1ei = 0.

But V T
i Vi = I and, therefore, V T

i di = V T
i Viyi = yi so that eT

i yi = eT
i V T

i di =
vT

i di which together with ‖vi+1‖ = 1 gives (2.10). If αi+1 = 0 or βi+1 = 0 then
‖AT(Adi − b)‖ = 0 by Theorem 2.1. 2

Now we shall study properties of the vectors di ∈ Rn, 1 ≤ i ≤ k, defined by (2.7).
We shall use the notation (1.13).

Lemma 2.3. Let the assumptions of Lemma 2.1 be satisfied. Then, for 1 ≤ i ≤ k,

Q(di) = −1
2
α2

1β
2
1eT

1 Cie1 (2.11)

and

‖di‖2 = α2
1β

2
1eT

1 C2
i e1 (2.12)

where

Ci = (BT
i Bi)−1. (2.13)

P r o o f . Using (1.13) and (2.8a) we can write

Q(di) =
1
2
yT

i V T
i ATAViyi − yT

i V T
i ATb

which together with (2.4a), (2.4b) and (2.9b) gives

Q(di) =
1
2
yT

i BT
i UT

i+1Ui+1Biyi − yT
i BT

i UT
i+1b =

1
2
yT

i BT
i Biyi − β1y

T
i BT

i e1 =

=
1
2
α2

1β
2
1eT

1 CiB
T
i BiCie1 − α2

1β
2
1eT

1 Cie1 = −1
2
α2

1β
2
1eT

1 Cie1

since BT
i e1 = α1e1 by (2.5). Similarly we get

‖di‖2 = yT
i V T

i Viyi = yT
i yi = α2

1β
2
1(Cie1)TCie1 = α2

1β
2
1eT

1 C2
i e1

since V T
i Vi = I and the matrix (2.13) is symmetric. 2

Inexact Trust Region Method for Large Sparse Nonlinear Least Squares 313

Lemma 2.4. Let the assumptions of Lemma 2.1 be satisfied. Then, for 1 ≤ i < k,

Ci+1 =
[

Ci + α2
i+1β

2
i+1γi+1Cieie

T
i Ci, −αi+1βi+1γi+1Ciei

−αi+1βi+1γi+1e
T
i Ci, γi+1

]
(2.14)

where

γi+1 =
1

α2
i+1 + β2

i+2 − α2
i+1β

2
i+1e

T
i Cie

> 0 (2.15)

P r o o f . Using (2.5) we can write

BT
i Bi =




α1, β2, 0, . . . , 0, 0
0, α2, β3, . . . , 0, 0
...

...
...

...
...

0, 0, 0, . . . , αi, βi+1







α1, 0, . . . , 0
β2, α2, . . . , 0
0, β3, . . . , 0
...

...
...

0, 0, . . . , αi

0, 0, . . . , βi+1




=

=




α2
1 + β2

2 , α2β2, 0, . . . , 0
α2β2, α2

2 + β2
3 , α3β3, . . . , 0

0, α3β3, α2
3 + β2

4 , . . . , 0
...

...
...

...
0, 0, 0, . . . , α2

i + β2
i+1




Therefore

BT
i+1Bi+1 =

[
BT

i Bi, αi+1βi+1ei

αi+1βi+1e
T
i , α2

i+1 + β2
i+2

]
(2.16)

Since the matrix BT
i+1Bi+1 is nonsingular, it suffices to prove that BT

i+1Bi+1Ci+1 = I
for matrices (2.14) and (2.16), which leads to straightforward computations. 2

Lemma 2.5. Let the assumptions of Lemma 2.1 be satisfied. Then, for 1 ≤ i ≤ k,

eT
1 C2

i eie
T
1 Ciei > 0 (2.17)

P r o o f . (By induction): Since both matrices C1 and C2
1 are positive definite we

have eT
1 C1e1 > 0 and eT

1 C2
1e1 > 0 so that eT

1 C2
1e1e

T
1 C1e1 > 0. Suppose that (2.17)

holds for some i < k. Then, using (2.14), we get

eT
1 Ci+1ei+1 = −αi+1βi+1γi+1e

T
1 Ciei

314 L. LUKŠAN

and

eT
1 C2

i+1ei+1 = −eT
1 (Ci + α2

i+1β
2
i+1γi+1Cieie

T
i Ci)(αi+1βi+1γi+1Ciei)−

−eT
1 (αi+1βi+1γ

2
i+1Ciei) =

= −αi+1βi+1γi+1(eT
1 C2

i ei + α2
i+1β

2
i+1γi+1e

T
1 Cieie

T
i C2

i ei +

+γi+1e
T
1 Ciei).

Therefore

eT
1 C2

i+1ei+1e
T
1 Ci+1ei+1 = α2

i+1β
2
i+1γ

2
i+1(e

T
1 C2

i eie
T
1 Ciei + γi+1(eT

1 Ciei)2 +

+α2
i+1β

2
i+1γi+1(eT

1 Ciei)2eT
i C2

i ei).

But eT
1 C2

i eie
T
1 Ciei > 0 by inductive assumption, γi+1 > 0 from positive definiteness

of the matrix Ci+1, and eT
i C2

i ei > 0 from positive definiteness of the matrix C2
i .

This together with αi+1 > 0 and βi+1 > 0 gives eT
1 C2

i+1ei+1e
T
1 Ci+1ei+1 > 0. 2

Theorem 2.2. Consider the iterative process (2.3) and the sequence of vectors
(2.7). Let k be the index from Theorem 2.1. Then, for 1 ≤ i < k,

Q(di+1) < Q(di) (2.18)

and

‖di+1‖ > ‖di‖. (2.19)

P r o o f . Using (2.14) we get

eT
1 Ci+1e1 = eT

1 (Ci + α2
i+1β

2
i+1γi+1Cieie

T
i Ci)e1 =

= eT
1 Cie1 + α2

i+1β
2
i+1γi+1(eT

1 Ciei)2 > eT
1 Cie1

since αi+1 > 0, βi+1 > 0 by the assumption, γi+1 > 0 from positive definiteness of
the matrix Ci+1, and (eT

1 Ciei)2 > 0 by Lemma 2.5. This together with (2.11) gives
Q(di+1) < Q(di). Similarly using (2.14) we get

eT
1 C2

i+1e1 = eT
1 (Ci + α2

i+1β
2
i+1γi+1Cieie

T
i Ci)2e1 + (αi+1βi+1γi+1e

T
1 Ciei)2 =

= eT
1 C2

i e1 + 2α2
i+1β

2
i+1γi+1e

T
1 C2

i eie
T
1 Ciei +

+α4
i+1β

4
i+1γ

2
i+1(e

T
1 Ciei)2eT

i C2
i ei + α2

i+1β
2
i+1γ

2
i+1(e

T
1 Ciei)2 >

> eT
1 C2

i e1

since αi+1 > 0, βi+1 > 0 by the assumption, γi+1 > 0 from positive definiteness
of the matrix Ci+1, eT

i C2
i ei > 0 from positive definiteness of the matrix C2

i , and
(eT

1 Ciei)2 > 0, eT
1 C2

i eie
T
1 Ciei > 0 by Lemma 2.5. This together with (2.12) gives

‖di+1‖2 > ‖di‖2. 2

Inexact Trust Region Method for Large Sparse Nonlinear Least Squares 315

Theorem 2.3. Let the assumptions of Theorem 2.2 be satisfied. Then

Q(λd1) ≤ −1
2
‖ATb‖ ‖λd1‖, (2.20)

for 0 ≤ λ ≤ 1, and

Q(di) ≤ −1
2
‖ATb‖2
‖ATA‖ , (2.21)

for 1 ≤ i ≤ k.

P r o o f . The equalities (2.11) and (2.12) imply

Q(d1) = −1
2
α2

1β
2
1eT

1 C1e1 = −1
2
α2

1β
2
1

√
eT
1 C2

1e1 = −1
2
‖ATb‖ ‖d1‖

since from (2.3a) and (2.3b) ATb = α1β1v1 follows, which together with ‖v1‖ = 1
gives ‖ATb‖ = α1β1. But the function (1.13) is convex and Q(0) = 0 so that (2.20)
holds for 0 ≤ λ ≤ 1. Furthermore using (2.3c) we can write

β2
2 = (Av1 − α1u1)T(Av1 − α1u1) = vT

1 ATAv1 − α2
1

since ‖u1‖ = 1 and vT
1 ATu1 = α1‖v1‖2 = α1 (see (2.3b)). Therefore

α2
1 + β2

2 = vT
1 ATAv1 ≤ ‖ATA‖ ‖v1‖2 = ‖ATA‖.

Now, if we use (2.11) and (2.15), we get

Q(d1) = −1
2
α2

1β
2
1eT

1 C1e1 = −1
2

α2
1β

2
1

α2
1 + β2

2

≤ −1
2
‖ATb‖2
‖ATA‖

which together with (2.18) gives (2.21). 2

We have proved that the vectors di ∈ Rn, 1 ≤ i ≤ k, defined by (2.7) satisfy the
conditions (A), (B), (C), (D) stated in Section 1. This fact will be used in the next
section for construction of an inexact trust region algorithm. It remains to derive
simple recurrence relations for the vectors di ∈ Rn, 1 ≤ i ≤ k.

The most widely used iterative method for linear least squares is the LSQR algo-
rithm proposed in [5]. This algorithm uses orthogonal matrices Qi, 1 ≤ i ≤ k, such
that

QiBi =
[

Ri

0

]
, Qi(β1e1) =

[
hi

ηi+1

]
(2.22)

where

Ri =




ρ1, σ2, 0, . . . , 0
0, ρ2, σ3, . . . , 0
...

...
...

...
0, 0, 0, . . . , ρi


 , hi =




η1

η2

...
ηi


 (2.23)

316 L. LUKŠAN

At the same time Qi, 1 ≤ i ≤ k, are products of Givens plane rotations and Ri ∈
Ri×i, 1 ≤ i ≤ k, are regular square upper bidiagonal matrices. The iterative process
for computing elements of both the matrices Ri, 1 ≤ i ≤ k, and the vectors hi,
1 ≤ i ≤ k, has the form

ρ1 = α1, η1 = β1 (2.24a)

and

ρi =
√

ρ2
i + β2

i+1, ci =
ρi

ρi
, si =

βi+1

ρi
, (2.24b)

ρi+1 = ciαi+1, σi+1 = siαi+1, (2.24c)

ηi = ciηi, , ηi+1 = −siηi (2.24d)

for 1 ≤ i ≤ k (see [5] for detailed description).
The values ρi > 0 and ηi, 1 ≤ i ≤ k, can be used in estimation (2.10).

Lemma 2.6. Let the assumptions of Lemma 2.1 be satisfied and let ρi > 0 and
ηi, 1 ≤ i ≤ k, are the values generated by (2.24). Then, for 1 ≤ i ≤ k,

‖AT(Adi − b)‖ = αi+1βi+1
|ηi|
ρi

(2.25)

P r o o f . Using (2.8) and (2.22) we can write

di = Viyi (2.26a)

where

Riyi = hi (2.26b)

Then

vT
i di = vT

i ViR
−1
i hi = eT

i R−1
i hi =

1
ρi

eT
i hi =

ηi

ρi

which together with (2.10) gives (2.25). 2

Recurrence relations for the vectors di ∈ Rn, 1 ≤ i ≤ k, can be derived from
(2.26). We do not give this derivation here because it is fully contained in [5]. The
resulting formulas have the form

do = 0, (2.27a)

p1 = v1, (2.27b)

Inexact Trust Region Method for Large Sparse Nonlinear Least Squares 317

and

di = di−1 +
ηi

ρi
pi, (2.27c)

pi+1 = vi+1 − σi+1

ρi
pi, (2.27d)

for 1 ≤ i ≤ k. Note that, in contrast with the CGSL method (1.14), the coefficients
ηi/ρi, 1 ≤ i ≤ k, in (2.27c) are not all positive (they alternate signs).

3. INEXACT TRUST REGION METHOD FOR NONLINEAR LEAST SQUARES

Now we are in a position to describe complete inexact trust region method which is
a combination of Algorithm 1.1 together with the LSQR algorithm investigated in
Section 2.

Algorithm 3.1.

Data: 0 < β1 < β2 < 1 < γ1 < γ2, 0 < ρ1 < ρ2 < 1, 0 < ε1 < ε2 < 1, 0 < τ1 < 1,
0 < ωmax < 1, 0 < ∆max, k1 ∈ N , `1 ∈ N

Step 1: Choose an initial point x ∈ Rn. Compute the values fi := fi(x) of the
functions fi : Rn → R, 1 ≤ i ≤ m, at the point x ∈ Rn. Determine the
vector b ∈ Rm using (1.9). Compute the value f := f(x) of the objective
function f : Rn → R by (1.10). Set ∆ := 0 and τ := (τ1)1/n. Set k := 1.

Step 2: Compute the gradients gi := gi(x) of the functions fi : Rn → R, 1 ≤ i ≤
m, at the point x ∈ Rn. Determine the matrix A ∈ Rm×n using (1.9).
Compute the gradient g := g(x) of the objective function f : Rn → R by
(1.10). If either f ≤ ε1 or ‖g‖ ≤ ε2 then stop, otherwise set ` := 1.

Step 3: If ∆ = 0 then set ∆ := min(‖g‖3/‖Ag‖2, 4f/‖g‖, ∆max). Set ω :=
min(

√
‖g‖, τk, ωmax). Compute the vector d ∈ Rn by the following sub-

algorithm:
Step 3.1: Set d := 0. Compute β := ‖b‖ and u := b/β. Compute α := ‖g‖/β

and v := −g/‖g‖. Set ρ := α, η := β and p := v. Set i := 1.
Step 3.2: Compute β := ‖Av − αu‖. If β = 0 then go to Step 3.3, otherwise

set u := (Av− αu)/β. Compute α := ‖ATu− βv‖. If α = 0 then go
to Step 3.3, otherwise set v := (ATu− βv)/α.

Step 3.3: Compute ρ :=
√

ρ2 + β2, c = ρ/ρ, s = β/ρ and η = cη. If ‖d +
(η/ρ)p‖ > ∆ then determine 0 < λ < 1 so that ‖d + λ(η/ρ)p‖ = ∆,
set d := d+λ(η/ρ)p and go to Step 4. Otherwise set d := d+(η/ρ)p.

Step 3.4: If either i = n + 3 or αβ|η|/ρ ≤ ω‖g‖ then go to Step 4, otherwise
compute ρ := cα, σ := sα, η := −sη and set p := v − (σ/ρ)p. Set
i := i + 1 and go to Step 3.2.

318 L. LUKŠAN

Step 4: Set x+ := x + d. Compute the values f+
i := fi(x+) of the functions

fi : Rn → R, 1 ≤ i ≤ m, at the point x+ ∈ Rn. Determine the vector
b+ ∈ Rm using (1.9). Compute the value f+ := f(x+) of the objective
function f : Rn → R by (1.10). Compute the value Q(d) by (1.13)
and set ρ := (f+ − f)/Q(d). When ρ < ρ1 then compute α := (f+ −
f)/dTg, β := 1/(2(1 − α)) and set ∆ := β1‖d‖ if β < β1, ∆ := β‖d‖
if β1 ≤ β ≤ β2, ∆ := β2‖d‖ if β2 < β. When ρ1 ≤ ρ ≤ ρ2 then set
∆ := min(∆, γ2‖d‖). When ρ2 < ρ then compute ∆ := max(∆, γ1‖d‖)
and set ∆ := min(∆, γ2‖d‖, ∆max).

Step 5: If ρ ≤ 0 and ` ≥ `1 then stop (too many reductions). If ρ ≤ 0 and ` < `1
then set ` := ` + 1 and go to Step 3. If ρ > 0 and k ≥ k1 then stop (too
many iterations). If ρ > 0 and k < k1 then set x := x+, b := b+, f ; = f+,
set k := k + 1 and go to Step 2.

The maximum number of iterations k1 ∈ N serves as an alternative termination
criterion in the case when the convergence is too slow. The maximum number of
reductions `1 ∈ N serves as a safeguard against possible infinite cycle which can
arise for large residual problems when present round-off errors do not allow us to
obtain a solution with the required gradient norm (‖g‖ ≤ ε2).

We suppose, in the subsequent considerations, that all computations were per-
formed accurately and that k1 = `1 = ∞. Furthermore we denote

g(x) =
m∑

i=1

fi(x)gi(x) (3.1)

and

G(x) =
m∑

i=1

gi(x)gT
i (x) +

m∑

i=1

fi(x)Gi(x) (3.2)

the gradient and the Hessian matrix of the objective function (1.8) respectively.

Theorem 3.1. Let the functions fi : Rn → R, 1 ≤ i ≤ m, have continuous
second-order derivatives and let there exist constants C1 > 0, C2 > 0, C3 > 0 so
that |fi(x)| ≤ C1, ‖gi(x)‖ ≤ C2, ‖Gi(x)‖ ≤ C3, 1 ≤ i ≤ n, for all x ∈ Rn. Let
xk ∈ Rn, k ∈ N , be the sequence generated by the Algorithm 3.1. Then

lim inf
k→∞

‖g(xk)‖ = 0 (3.3)

P r o o f . From (1.9) we have

‖AT(x)A(x)‖ ≤
m∑

i=1

‖gi(x)gT
i (x)‖ =

m∑

i=1

‖gi(x)‖2 ≤ mC2
2

Inexact Trust Region Method for Large Sparse Nonlinear Least Squares 319

and (3.2) implies

‖G(x)‖ ≤ ‖AT(x)A(x)‖ +

∥∥∥∥∥
m∑

i=1

fi(x)Gi(x)

∥∥∥∥∥ ≤

≤ mC2
2 +

m∑

i=1

|fi(x)| ‖Gi(x)‖ ≤ m(C2
2 + C1C3)

Therefore both matrices B(x) = AT(x)A(x) and G(x) are bounded from above so
that (3.3) holds (see [6], [7], [8]). 2

Theorem 3.2. Let the assumptions of Theorem 3.1 be satisfied with

lim
k→∞

xk = x∗ (3.4)

Let the matrix A(x∗) has full column rank and

m∑

i=1

fi(x∗)Gi(x∗) = 0 (3.5)

Then the rate of convergence of the sequence xk ∈ Rn, k ∈ N is superlinear.

P r o o f . We have to prove that

lim
k→∞

ωk = 0 (3.6)

and

lim
k→∞

‖(G(xk)−AT(xk)A(xk))dk‖
‖dk‖ = 0 (3.7)

since these conditions are sufficient for the superlinear rate of convergence if the
matrix G(x∗) is positive definite (see [6], [7], [8]). But ωk → 0 since 0 < ωk ≤ ‖g(xk)‖
in Step 3 of Algorithm 3.1 and g(xk) → 0 by (3.3) and (3.4). From (3.2) we get

‖(G(xk)−AT(xk)A(xk))dk‖
‖dk‖ ≤

∥∥∥∥∥
m∑

i=1

fi(xk)Gi(xk)

∥∥∥∥∥
and continuity assumptions imply

lim
k→∞

m∑

i=1

fi(xk)G(xk) =
m∑

i=1

fi(x∗)Gi(x∗)

which together with (3.5) gives (3.7). The matrix G(x∗) is positive definite since

G(x∗) =
m∑

i=1

gi(x∗)gT
i (x∗) +

m∑

i=1

fi(x∗)Gi(x∗) = AT(x∗)A(x∗)

by (3.2) and (3.5) and since the matrix A(x∗) has full column rank. 2

320 L. LUKŠAN

4. COMPUTATIONAL EXPERIMENTS

In this section we present results of a comparative study of three trust region methods
for nonlinear least squares: the exact trust region method with the double dog-leg
step (DDLS) subalgorithm proposed in [3], the inexact trust region method with
the CGLS subalgorithm described in Section 1 and the inexact trust region method
with the LSQR subalgorithm studied in Section 2. All these trust region methods
were realized by algorithms which differ from Algorithm 3.1 only in Steps 3.1–3.4
(Algorithm 3.1 uses the LSQR subalgorithm).

Algorithm 3.1 contains several parameters. We have used the values β1 = 0.05,
β2 = 0.75, γ1 = 2, γ2 = 106, ρ1 = 0.1, ρ2 = 0.9, ε1 = 10−16, ε2 = 10−8, τ1 = 10−3,
ωmax = 0.4, ∆max = 103, k1 = 500, l1 = 20 in all numerical experiments.

All test results were obtained by means of the 9 problems given in the Appendix.
All these problems were considered with 100 variables. Therefore a sparse ma-
trix technology was used (for instance the DDLS subalgorithm contained a sparse
Choleski factorization procedure). Summary results for all problems are given in Ta-
ble 1. Rows of this table correspond to individual problems and columns correspond
to selected algorithms (DDLS, CGLS, LSQR). The results are presented in the form
IT-IF-IG (P) where IT is number of iterations IF is number of different points at
which the values fi(x), 1 ≤ i ≤ m, were computed, IG is number of different points
at which the gradients gi(x), 1 ≤ i ≤ m, were computed and (P) is the logarithm of
the obtained gradient norm.

Numerical results contained in Table 1 show that the LSQR algorithm is most effi-
cient, measured by both numbers of iterations and numbers of functions evaluations,
in comparison with other tested algorithms.

Table 1.

n=100 DDLS CGLS LSQR

1 218-221-219 (-11) 135-150-136 (-8) 117-121-118 (-11)
2 166-180-167 (-8) 152-188-153 (-11) 111-131-112 (-7)
3 13-14-14 (-8) 17-18-18 (-8) 14-15-15 (-8)
4 29-60-30 (-7) 199-230-200 (-7) 81-109-82 (-6)
5 5-6-6 (-14) 9-10-10 (-10) 6-7-7 (-8)
6 5-6-6 (-10) 10-11-11 (-10) 8-9-9 (-13)
7 25-61-26 (-4) 38-69-39 (-4) 38-72-39 (-4)
8 15-17-16 (-8) 15-16-16 (-8) 15-16-16 (-8)
9 69-108-70 (-6) 53-80-54 (-6) 50-71-51 (-6)

10 405-458-406 (-6) 26-61-27 (-7) 28-66-29 (-7)

P
950-1131-960 654-833-664 468-617-478

Inexact Trust Region Method for Large Sparse Nonlinear Least Squares 321

APPENDIX

Our test problems consist in searching local minimum of the objective function

F (x) =
1
2

m∑

k=1

fk(x)

from the starting point x̄. We suppose n is even. We use functions div (integer
division) and mod (remainder after integer division).

Problem 1. Chained Rosenbrock function.
m = 2(n− 1), i = div(k + 1, 2)

fk(x) = 10(x2
i − xi+1), k − odd

fk(x) = xi − 1, k − even

x̄` = −1.2, `− odd
x̄` = 1.0, `− even

Problem 2. Chained Wood function.

m = 3(n− 2), i = 2 div(k + 5, 6)− 1

fk(x) = 10(x2
i − xi+1), mod(k, 6) = 1

fk(x) = xi − 1, mod(k, 6) = 2

fk(x) =
√

90 (x2
i+2 − xi+3), mod(k, 6) = 3

fk(x) = xi+2 − 1, mod(k, 6) = 4

fk(x) =
√

10 (xi+1 + xi+3 − 2), mod(k, 6) = 5

fk(x) = (xi+1 − xi+3)/
√

10, mod(k, 6) = 0

x̄` = −3, `− odd , ` ≤ 4
x̄` = −2, `− odd , ` > 4
x̄` = −1, `− even, ` ≥ 4
x̄` = 0, `− even, ` < 4

Problem 3. Chained Powell singular function.

m = 2(n− 2), i = 2 div(k + 3, 4)− 1

fk(x) = xi + 10xi+1, mod(k, 4) = 1

fk(x) =
√

5 (xi+2 − xi+3), mod(k, 4) = 2

fk(x) = (xi+1 − 2xi+2)2, mod(k, 4) = 3

fk(x) =
√

10 (xi − xi+3)2, mod(k, 4) = 0

322 L. LUKŠAN

x̄` = 3, mod(`, 4) = 1
x̄` = −1, mod(`, 4) = 2
x̄` = 0, mod(`, 4) = 3
x̄` = 1, mod(`, 4) = 0

Problem 4. Chained Cragg and Levy function.

m = 5(n− 2)/2, i = 2 div(k + 4, 5)− 1

fk(x) = (exp(xi)− xi+1)2, mod(k, 5) = 1

fk(x) = 10(xi+1 − xi+2)3, mod(k, 5) = 2

fk(x) = sin2(xi+2−xi+3)
cos2(xi+2−xi+3)

, mod(k, 5) = 3

fk(x) = x4
i , mod(k, 5) = 4

fk(x) = xi+3 − 1, mod(k, 5) = 0

x̄` = 1, ` = 1
x̄` = 2, ` > 1

Problem 5. Generalized Broyden tridiagonal function.

m = n, x0 = 0, xn+1 = 0

fk(x) = (3− 2xk) xk + 1− xk−1 − xk+1

x̄` = −1, ` ≥ 1

Problem 6. Generalized Broyden banded function.

m = n, k1 = max(1, k − 5), k2 = min(n, k + 1)

fk(x) = (2 + 5x2
k)xk + 1 +

k2∑

j=k1

xj(1 + xj)

x̄` = −1, ` ≥ 1

Problem 7. Extended Freudenstein and Roth function.

m = 2(n− 1), i = div(k + 1, 2)
fk(x) = xi + xi+1((5− xi+1)xi+1 − 2)− 13 , k − odd
fk(x) = xi + xi+1((1 + xi+1)xi+1 − 14)− 29, k − even

x̄` = 0.5, ` < n

x̄` = −2, ` = n

Inexact Trust Region Method for Large Sparse Nonlinear Least Squares 323

Problem 8. Wright and Holt zero residual problem (n is multiple of 4).

m = 5n, i = mod(k, n/2) + 1, j = i + n/2

a = 1, k ≤ m/2

a = 2, k > m/2

b = 5− div(k, m/4)

c = mod(k, 5) + 1

fk(x) = (xa
i − xb

j)
c

x̄` = sin2(`)

Problem 9. Toint quadratic merging problem.

m = 3(n− 2), i = 2 div(k + 5, 6)− 1

fk(x) = xi + 3xi+1(xi+2 − 1) + x2
i+3 − 1, mod(k, 6) = 1

fk(x) = (xi + xi+1)2 + (xi+2 − 1)2 − xi+3 − 3, mod(k, 6) = 2

fk(x) = xixi+1 − xi+2xi+3, mod(k, 6) = 3

fk(x) = 2xixi+2 + xi+1xi+3 − 3, mod(k, 6) = 4

fk(x) = (xi + xi+1 + xi+2 + xi+3)2 + (xi − 1)2, mod(k, 6) = 5

fk(x) = xixi+1xi+2xi+3 + (xi+3 − 1)2 − 1, mod(k, 6) = 0

x̄` = 5, ` ≥ 1

Problem 10.

m = 2n− 1, i = div(k + 1, 2)

fk(x) = 4− exp(xi)− exp(xi+1), mod(k, 2) = 1, i = 1

fk(x) = 8− exp(3xi−1)− exp(3xi)

+ 4− exp(xi)− exp(xi+1), mod(k, 2) = 1, 1 < i < n

fk(x) = 8− exp(3xi−1)− exp(3xi), mod(k, 2) = 1, i = n

fk(x) = 6− exp(2xi)− exp(2xi+1), mod(k, 2) = 0

x̄` = 0.2, ` ≥ 1

(Received January 12, 1993.)

324 L. LUKŠAN

REFE REN CES

[1] G. Golub and W. Kahan: Calculating the singular values and pseudo-inverse of a
matrix. SIAM J. Numer. Anal. 2 (1965), 205–224.

[2] J. J. Moré, B. S. Garbow and K.E. Hillström: Testing unconstrained optimization soft-
ware. ACM Trans. Math. Software 7 (1981), 17–41.

[3] J. E. Dennis and H.H.W. Mei: An Unconstrained Optimization Algorithm which Uses
Function and Gradient Vlues. Report No. TR-75-246. Dept. of Computer Sci., Cornell
University 1975.

[4] C.C. Paige: Bidiagonalization of matrices and solution of linear equations. SIAM J.
Numer. Anal. 11 (1974), 197–209.

[5] C.C. Paige and M.A. Saunders: LSQR: An algorithm for sparse linear equations and
sparse least squares. ACM Trans. Math. Software 8 (1982), 43–71.

[6] M. J.D. Powell: Convergence properties of a class of minimization algoritms. In: Non-
linear Programming 2 (O. L. Mangasarian, R. R. Meyer and S.M. Robinson, eds.),
Academic Press, London 1975.

[7] G.A. Shultz, R.B. Schnabel and R.H. Byrd: A family of trust-region-based algorithms
for unconstrained minimization with strong global convergence properties. SIAM J.
Numer. Anal. 22 (1985), 47–67.

[8] T. Steihaug: The conjugate gradient method and trust regions in large-scale optimiza-
tion. SIAM J. Numer. Anal. 20 (1983), 626–637.

Ing. Ladislav Lukšan, DrSc., Ústav informatiky a výpočetńı techniky AV ČR (Institute

of Computer Science – Academy of Sciences of the Czech Republic), Pod vodárenskou

věž́ı 2, 182 07 Praha 8. Czech Republic.

	 INTRODUCTION
	 BIDIAGONALIZATION AND LINEAR LEAST SQUARES
	 INEXACT TRUST REGION METHOD FOR NONLINEAR LEAST SQUARES
	 COMPUTATIONAL EXPERIMENTS

