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NULL CONTROLLABILITY OF NONLINEAR INFINITE
NEUTRAL SYSTEM

Jerry U. Onwuatu

Sufficient conditions are developed for the null controllability of the nonlinear infinite
neutral system

d

dt
D(t, xt) = L(t, xt) + B(t) u(t) + f(t, xt, u(t)) +

Z 0

−∞
A(θ) x(t + θ) dθ

when the values of the control function lie in an n-dimensional unit cube Cm of Rm. Con-
ditions are placed on f which guarantee that if the linear control base system is proper and
if the uncontrolled linear system is is uniformly asymptotically stable, then the nonlinear
perturbed system is null controllable with constraints.

1. INTRODUCTION

Consider the linear difference-differential equation of neutral type

d
dt

(x(t)−A−1x(t− h)) = A0 x(t) + B0 u(t)

x(t) = φ(t), t ∈ [−h, 0]

in which x is an element in the Euclidean n-space, Rn; A−1, A0 are n× n constant
matrices; B0 is an n×m constant matrix and h > 0. Neutral functional differential
equations, an example of which is given above, are characterized by a delay in
the derivative. Equations of this type have applications in the study of electrical
networks containing lossless transmission lines [2], electrodynamics [5], variational
problems [6] etc. For efficient utilization of power, the stability and control of voltage
and current fluctuations are of fundamental importance for systems planners. Other
authors who have contributed in the study of these systems include Chukwu [4],
Arrow [1, p. 184], Knowles [15, p. 3], Kalecki [13] among others. The stability of
functional differential equations of retarded type with a finite delay h > 0 have been
studied by Hale [11]. These results have been extended to systems with infinite delay
such as

ẋ(t) =
N∑

i=1

Bi x(t− hi) +
∫ 0

−∞
B(θ)x(t + θ) dθ
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by the same author [10].
In [17, p. 31], Stéphán have some results on stability for the neutral system with

infinite delays such as

ẋ(t) =
∫ 0

−∞
[dη(θ)] ẋ(t + θ) +

∫ 0

−∞
[d η0(θ)] x(t + θ)

and

ẋ(t) = C ẋ(t− h) +
∫ 0

−∞
[dη0(θ)] x(t + θ).

This last equation can also be written as

d
dt

D(xt) =
∫ 0

∞
[dη0(θ)] x(t + θ)

where
D(xt) = x(t)− C x(t− h)

and C is an n× n-constant matrix.
With respect to controllability, it is known [12] that if the linear ordinary control

system
ẋ(t) = A(t)x(t) + B(t) u(t) (1)

is proper and if the free system

ẋ(t) = A(t)x(t) (2)

is uniformly asymptotically stable, then (1) is null controllable with constraints. An
analogous result was obtained by Chukwu [3] for the delay system

ẋ(t) = L(t, xt) + B(t) u(t) + f(t, xt, u(t)) (3)

where

L(t, φ) =
∞∑

k=0

Ak(t) φ(−tk) +
∫ 0

−γ

A(t, s)φ(s) ds. (4)

Shinha [18] studied the nonlinear infinite delay system

ẋ(t) = L(t, xt) + B(t)u(t) +
∫ 0

−∞
A(θ) x(t + θ) dθ + f(t, xt, u(t)) (5)

and showed that (5) is Euclidean null controllable if the linear base system

ẋ(t) = L(t, xt) + B(t) u(t) (6)

is proper and the free system

ẋ(t) = L(t, xt) +
∫ 0

−∞
A(θ) x(t + θ) dθ. (7)
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is uniformly asymptotically stable, provided that f satisfies some growth conditions.
Define a function D : R×B → Rn by

D(t, xt) = x(t)− g(t, xt)

where,

g(t, xt) =
∞∑

n=1

An(t) x (t− wn(t)) +
∫ 0

−γ

A(t, s)x(t + s) ds

and where 0 < wn(t) ≤ γ and An(t) and A(t, s) are n× n matrix functions, and let
B be an n×m matrix. We shall consider the system whose state is given by

d
dt

D(t, xt) = L(t, xt) + B(t)u(t) +
∫ 0

−∞
A(θ) x(t + θ) dθ + f(t, xt, u(t)) (8)

x(t) = φ(t), t ∈ (−∞, 0)

where L(t, φ) is as defined in (4), A(θ) is an n×n continuous matrix and f(t, x, u(t))
is a nonlinear continuous matrix function. The controls of interest, u, are square
integrable with values in the unit cube Cm,

Cm = {u : u ∈ Rm, |uj | ≤ 1, j = 1, . . . , m} .

Here, we develop sufficient computable criteria for the null controllability of system
(8). Our results extend those of [12, 3, 18] to neutral systems with infinite delay.

2. PRELIMINARIES

Let n and m be positive integers, R the real line (−∞,∞). Denote by Rn, the space
of real n-tuples with the Euclidean norm defined by | · |. If J = [t0, t1] is any interval
of R, the usual Lebesgue space of square integrable (equivalence, classes of) functions
from J to Rm will be denoted by L2(J,Rm). Let γ ≥ h ≥ 0 be a given real number
and let B = B([−γ, 0], Rn) be the Banach space of functions which are continuous
on [−γ, 0] with ‖φ‖ = sup−γ≤θ≤0 |φ(s)| φ ∈ B([−γ, 0], Rn). If x is a function from
[t0 − γ,∞) to Rn, let xt, t ∈ [0,∞), be a function from [−γ, 0] to Rn defined by
xt(s) = x(t + s), s ∈ [−γ, 0]. In system (8), assume that D(·, ·); R × B → Rn is
defined by

D(t, xt) = x(t)− g(t, xt)

where

g(t, φ) =
∞∑

n=1

An(t)φ(−wn(t)) +
∫ 0

−γ

A(t, s) φ(s) ds ≡
∫ 0

−γ

dθ H(t, θ) φ(θ)

and where 0 < wn(t) ≤ γ and

∫ 0

−γ

|A(t, s)| ds +
∞∑

n=1

|An(t)| ≤ δ(ε) < ∞
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for all t, where δ(ε) → 0. We also assume in system (8) that

L(t, φ) =
∫ 0

−γ

dθη(t, θ)φ(θ) (9)

where
η(t, 0) = 0 for θ ≥ 0, η(t, θ) = η(t− h) for θ ≤ −h,

η is a measurable n× n matrix-valued function from R2 into Rn2
, of bounded vari-

ation in its second argument with

Var η(t, ·) ≤ m(t); m(·) locally integrable on R.

We assume that there exists a continuous, nonnegative, nondecreasing function
h(s), s ∈ [0, γ] such that h(0) = 0, and

∣∣∣∣
∫ 0

−γ

dθ H(t, θ)φ(θ)
∣∣∣∣ ≤ h(s) ‖φ‖;

so that g is uniformly nonatomic at zero.
A nonautonomous linear homogeneous neutral differential equation is defined to

be
d
dt

D(t, xt) = L(t, xt). (10)

A function x is said to be a solution of (10) if there exists t0 ∈ R, a > 0 such
that x ∈ B ([t0 − γ, t0 + a], Rn) , t ∈ (t0, t0 + a) and x satisfies (10) on [t0, t0 + a].
Given t0 ∈ R, φ ∈ B, we say x(t0, φ) is a solution of (10) with initial value (t0, φ) if
there exists an a > 0 such that x(t0, φ) is a solution of (10) on [t0 − γ, t0 + a] and
xt0(t0, φ) = φ.

Our objective is to study the controllability of the perturbed system with infinite
delay described by

d
dt

D(t, xt) = L(t, xt) + C(t) u(t) +
∫ 0

−∞
A(θ)x(t + θ) dθ + f(t, xt, u(t)) (11)

through its linear base control system

d
dt

D(t, xt) = L(t, xt) + C(t)u(t) (12)

and its free system

d
dt

D(t, xt) = L(t, xt) +
∫ 0

−∞
A(θ) x(t + θ) dθ. (13)

Here C is a continuous n×m matrix function, each Ak is a continuous n×n matrix
function for 0 ≤ hk ≤ γ, A(θ) is an n×n matrix whose elements are square integrable
on (−∞, 0). D, L, f satisfy enough smoothness conditions to ensure that a solution
of (11) exists through each (t0, ∅) in I × B, is unique, depends continuously on
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(t0, ∅) and can be continued to the right as the trajectory remains in a bounded
set in I × B. Sufficient conditions to ensure these properties are developed in [9].
If T (t, t0) : B → B, t ≥ t0 is defined by T (t, t0)φ = xt(t0, φ), where x(t0, φ)
is the solution of (10), then a variation of constant formulae for system (12) is
given in Hale [11]. Indeed, there exist an n × n matrix function X(t, s) defined
for 0 ≤ s ≤ γ, t ∈ [0,∞], continuous in s from the right, of bounded variation in
s, X(t, s) = 0, t′ < s ≤ t + γ, such that the solution x(t0, φ) of (12) is given by

x(t, t0, φ, u) = T (t, t0) φ(0) +
∫ t

t0

X(t, s)C(s) u(s) ds, t ≥ 0. (14)

The corresponding solution of (11) is given by

x(t, t0, φ, u, f) = T (t, t0)φ(0) +
∫ t

t0

X(t, s)C(s)u(s) ds + (15)

+
∫ t

t0

X(t, s)
∫ 0

−∞
A(θ) x(t + θ) dθds +

∫ t

t0

X(t, s) f(s, xs, u(s)) ds.

Observe that the uniqueness of solutions of (10) imply that

T (t2, t1)T (t1, t0) = T (t2, t0), t1, t2 ≥ t0 ≥ 0.

If we let

X0(s) =

{
0, −γ ≤ s < 0

I, s = 0

then T (t, t0)X0(s) = X(t + s, t0) = Xt(·, t0)(s). Therefore, T (t, t0) I = X(t, t0).
In (15), introduce the notation Y (t, s) = X(t, s) C(s), t ≥ s ≥ t0 and define the
controllability matrix of (12) at time t by

W (t0, t) =
∫ t

t0

Y (t, s)Y ∗(t, s) ds

where the ∗ denotes the matrix transpose.

Definition 1. (Proper system)
The system (12) is said to be proper on an interval [t0, t1] if C∗Y (t, s) = 0 a. e.;
s ∈ [t0, t1) implies C = 0, C ∈ Rn. If (12) is proper on each interval [t0, t1], t1 ≥ t0,
we say (12) is proper in Rn.

Definition 2. (Complete controllability)
The system (12) is completely controllable on J = [t0, t1] if for every function φ and
every x1 ∈ Rn there exists an admissible control function u such that a solution of
system (12) satisfies x(t1) = x1.
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Definition 3. (Null controllability)
The system (11) is said to be null controllable on [t0, t1] if for each φ∈B([−γ, 0], Rn)
there exists a t1 ≥ t0, u ∈ L2([t0, t1], P ), P a compact convex subset of Rm, such that
the solution x(t, t0, φ, u, f) of (11) satisfies xt0(t0, φ, u, f) = φ and x(t1, t0, φ, u, f) =
0.

Following Gabasov and Kirrilova [7] we introduce the determining equations for
a simple case of (12), namely

d
dt

(x(t)−A−1x(t− h)) = A0 x(t) + A1 x(t− h) + B u(t) (15a)

where A−1, A0, A1 are constant n×n matrices and B is an n×m constant matrix.

Qk(s) = A0 Qk−1(s)+A1 Qk−1(s−h)+A−1 Qk(s−h), k = 0, 1, 2, . . . ; s=0, h, 2h, . . .

Q0(0) = I, the identity matrix; Q0(s) = 0, s < 0; and define

Qn(t1) = {Qk(s) B, k = 0, 1, . . . , n− 1, s ∈ [0, t1]} .

We have

Proposition 1. The system (15a) is proper on the interval [0, t1] if and only if
rank Qn(t1) = n.

P r o o f . To prove this, we use the relation C∗Y (t, s) = 0 a. s. s ∈ [0, t1], C ∈ Rn

implies C = 0, instead of the relative controllability definition of Gabasov and
Kirrilova and then proceed as in [7, pp. 53–60]. 2

The following proposition on the controllability of system (12) is similar to cor-
responding results for linear control systems of various types including some with
delays and some without. The proof can be obtained from Hermes and LaSalle [12,
p. 92].

Proposition 2. The following are equivalent

(i) W (t0, t1) is nonsingular,

(ii) System (12) is completely controllable on [t0, t1], t1 > t0,

(iii) System (12) is proper on [t0, t1], t1 > t0.

The next proposition is the result of Gahl [8, Thm. 2] on the complete controlla-
bility (and hence properness) of system (12).

Proposition 3. Consider the system

d
dt

(x(t)−A x(t− 1)) = B x(t− 1) + C x(t) + D u(t) + H u(t− h). (15b)

If rank [D,CD] = n, then the system (15b) is completely controllable.
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3. MAIN RESULT

Theorem 1. Assume for system (11) that

(i) the constraint set IU is an arbitrary compact subset of Rn,

(ii) the system (13) is uniformly asymptotically stable so that the solution of (13)
satisfies ‖x(t, t0, φ, 0, 0)‖ ≤ M e−a(t−t0)‖φ‖ for some a > 0, M > 0,

(iii) the linear control system (12) is proper in Rn,

(iv) the continuous function f satisfies |f(t, x(·), u(·))| ≤ exp(−bt)π(x(·), u(·)), for
all (t, x(·, u(·)) ∈ [t0,∞)×B × L2, where

∞∫

t0

π(x(·), u(·)) ds ≤ k < ∞ and b− a ≥ 0,

then system (11) is Euclidean null controllable.

P r o o f . By (iii), W−1 exists for each t1 > t0. Suppose the pair of functions x, u
form a solution pair to the set of integral equations

u(t) = −Y ∗(t1, t) W−1(t0, t1)
[
T (t, t0) φ0 +

∫ t

t0

X(t, s)
∫ 0

−∞
A(θ)x(t + θ) dθds

+
∫ t

t0

X(t1, s) f(s, xs, u(s)) ds

]
. (16)

For some suitably chosen t1 ≥ t ≥ t0

x(t) = T (t, t0)φ(0) +
∫ t

t0

Y (t, s) u(s) ds +
∫ t

t0

X(t, s)
(∫ 0

−∞
A(θ)x(t + θ) dθ

)
ds

+
∫ t

t0

X(t, s) f (s, x(·), u(·)) ds (17)

x(t) = φ(t), t ∈ [t0 − γ, t0].

Then u is square integrable on [t0, t1] and x is a solution of (11) corresponding to u
with initial state x(t0) = φ. Also,

x(t1) = T (t1, t0)φ(0)−
∫ t1

t0

Y (t1, s)Y ∗(t1, s)W−1(t0, t1) [T (t1, t0)φ(0)+

+
∫ t1

t0

X(t1, s)
(∫ 0

−∞
A(θ)x(t + θ) dθ + f(s, x(s), u(s))

)
) ds

]
+

+
∫ t1

t0

X(t, s)
∫ 0

−∞
A(θ)x(t + θ) dθds +

∫ t1

t0

X(t, s) f(s, xs, u(s)) ds = 0.
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We now show that u : [t0, t1] → IU is in the arbitrary compact constraint subset of
Rm, that is |u| ≤ a1, for some constant a1 > 0. By (ii), |Y ∗(t1, t0)W−1(t0, t1| ≤ k1

for some k1 > 0, and |T (t1, t0)φ(0)| ≤ k2 exp(−a(t1 − t0)) for some k2 > 0. Hence,

|u(t)| ≤ k1 [k2 exp(−a(t1 − t0))]
∫ t1

t0

k3 exp [−a(t1 − s) exp(−bs)π(x(·, u(·)) ds] .

Thus
|u(t)| ≤ k1 [k2 exp(−a(t1 − t0))] + k k3 exp(−at1) (18)

since b − a ≥ 0 and s ≥ t0 ≥ 0. Hence, by taking t1 sufficiently large, we have
|u(t)| ≤ a1, t ∈ [t0, t1], showing that u is an admissible control. We now prove the
existence of a solution pair of the integral equations (16) and (17).

Let B be the Banach space of all function (x, u): [t0−h, t1]×[t0−h, t1] → Rn×Rm

where x ∈ B([t0 − h, t1], Rn); u ∈ L2(t0 − h, t1], Rm) with the norm defined by
‖(x, u)‖ = ‖x‖2 + ‖u‖2, where

‖x‖2 =
{∫ t1

t0−h

|x(s)|2 ds

} 1
2

; ‖u‖2 =
{∫ t1

t0−h

|u(s)|2 ds

} 1
2

.

Define the operator T : B → B by T (x, u) = (y, v), where

v(t) = −Y ∗(t1, t) W−1(t0, t1)
[
T (t1, t2) φ(0) +

∫ t

t0

∫ 0

−γ

X(t, s) A(θ)x(t + θ) dθds+

+
∫ t1

t0

X(t, s) f(s, xs, u(s)) ds

]
for t ∈ J = [t0, t1] (19)

and v(t) = w(t) for t ∈ [t0 − γ, t0].

y(t) = T (t, t0) φ(0) +
∫ t

t0

Y (t, s) v(s) ds +
∫ t

t0

∫ 0

−γ

X(t, s)A(θ)x(t + θ) dθds +

+
∫ t

t0

X(t, s) f(s, xs, u(s)) ds for t ∈ J (20)

and y(t) = φ(t) for t ∈ [t0 − γ, t0].
We have already shown that |v(t)| ≤ a1, t ∈ J and also v : [t0 − h, t0] → IU , we
have v(t) ≤ a1. Hence, ‖v(t)‖2 ≤ a1(t1 + h− t0)

1
2 = b0. Again

|y(t)| ≤ k2 exp [−a(t− t0)] + k4

∫ t

t0

|v(s)| ds + k k3 exp(−at1)

k4 = sup |Y (t, s)|. Since a > 0, t ≥ t0 ≥ 0, we deduce that

|y(t) ≤ k2 + k4 a(t1 − t0) + k k3 = b1, t ∈ J

and |y(t)| ≤ sup |φ(t)| = d, t ∈ [t0 − γ, t0].
Hence, if λ = max[b1, d], then ‖y‖2 ≤ λ(t1+h−t0)

1
2 = b2 < ∞. Let r = max{b0, b2}.
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Then if we let Q(r) = {(x, u) ∈ B : ‖x‖2 ≤ r, ‖u‖2 ≤ r}, we have thus shown that
T : Q(r) → Q(r). Since Q(r) is closed, bounded and convex, by Riesz theorem [14,
p. 297], it is relatively compact under the transformation T . Hence, the Schauder’s
fixed point theorem implies that T has a fixed point. Hence, system (11) is Euclidean
null controllable.

4. STABILITY RESULTS

Consider the n-dimensional neutral functional differential equation

ẋ(t) = C ẋ(t− r) +
∫ 0

−∞
[dη(θ)] x(t + θ) (21)

where the discrete delay r is positive;

∫ 0

−∞
e−wθ[dη0(θ)] < +∞, j, k = 1, . . . , n

for some scalar w > 0; and c is a constant n× n matrix. Let ρ1 ≥ · · · ≥ ρr ≥ 0 and
σ1 ≥ · · · ≥ σs = 0 denote the non-negative real zeros of R and S respectively, where

R(w) = Re D(iw); S(w) = Im D(iw)

and

D(λ) = det(λI − λe−λrC −
∫ 0

−∞
eλθ dη0(θ))

is the characteristic function of equation (21).

Definition. Let C be an n× n constant matrix. The coefficient Ck (k = 1, . . . , n)
in the polynomial

det(λI + C) =
n∑

k=0

Ck λn−k

is called the kth scalar invariant of C; e. g.

C0 = 1, C1 = Tr C, . . . , Cn = det C.

Proposition 1. The characteristic function of (21) is stable if

n∑

k=1

|ck| < 1,

and the following conditions hold
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n = 2m

S(ρk) 6= 0, k = 1, . . . , r (22)
r∑

k=1

(−1)ksgn S(ρk) = (−1)m m (22a)

or
n = 2m + 1

R(σk) 6= 0; k = 1, . . . , s− 1 (23a)

R(0) > 0 (23b)
s−1∑
k=1

(−1)ksgn R(σk) + 1
2 ((−1)s + (−1)m) + (−1)m m = 0 (23c)

where m is an integer.

Remark 1. This is Theorem 2.25 of [17].

Remark 2. Consider the following scalar neutral functional differential equation

m∑

j=0

aj
dj

dtj
x(t) = b

dn

dtn
x(t− r) +

n−1∑

i=0

∫ 0

−∞
x(θ) dη1(θ) (24)

where x ∈ R, γ > 0, η > 0, an = 1, the scalar η` (` = 0, `, . . . , n− 1) are functions
of bounded variation which satisfy the condition

∫ 0

−∞
e−wθ|d ηjk(θ)| < ∞ (25)

j = 1, . . . , n; for some w > 0.
If we transform equation (24) into an n-dimensional system of first order neutral

functional differential equation (21), then the matrix C in equation (21) has the
form

C =




0 · · · 0
...
0 · · · b




which means that the eigenvalues of C are 0 with multiplicity (n−1), and b. Because
of this and the fact that exponential stability is implied by conditions (22) or (23)
and

n∑

k=1

|ck| = |Tr C| = |b| < 1,

we infer that the zero solution of system (24) is exponentially asymptotically stable
if and only if the conditions of Proposition 1 holds.
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5. EXAMPLE

Consider the system

d
dt

(x(t)−A−1 x(t− h)) = (26)

= A0 x(t) + A1 x(t− h) + B u(t) + e−at Sin (x(t) + x(t− h)) cos u

where Ai, i = 0,±1 are constant matrices given by

A−1 =
(

0 1
4

1
4 0

)
, A0 =

( −3 1
3 −4

)
, A1 =

(
0 3

4
0 − 1

4

)
, B =

(
0
1

)
,

f =
(

0
e−at sin (x(t) + x(t− h)) cos u(t)

)
, a > 0.

The author [16] has shown that the free system

d
dt

(x(t)−A−1 x(t− h)) = A0 x(t) + A1 x(t− h), . . . (27)

where Ai is given as above, is uniformly asymptotically stable. We now show that
the linear base system

d
dt

(x(t)−A−1x(t− h)) = A0 x(t) + A1 x(t− h) + B u(t) (28)

is proper. By Proposition 3, we show that rank [B, A0B] = n. But rank [B, A0B] =

rank
(

0 1
1 −4

)
= rank

(
0 1
1 0

)
= 2 = n. Therefore the system (23) is proper.

Moreover,

|f(t, x(t), x(t− h), u(t))| = ∣∣e−at sin(x(t) + x(t− h)) cos u(t)
∣∣ ≤ e−at · 1.

Hence by Theorem 1, system (21) is null controllable.

6. CONCLUSION

Sufficient conditions for the controllability of perturbed nonlinear systems with infi-
nite delays have been derived. These conditions are given with respect to the stability
of the free linear base system and the controllability of the linear controllable base
system, with the assumption that the perturbation f satisfies some smoothness and
growth conditions. Computable criteria for all these are reported and an example is
given. These results extended known results in the literature.

(Received June 21, 1991.)
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