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CONTINUOUS-TIME INPUT-OUTPUT DECOUPLING
FOR SAMPLED-DATA SYSTEMS

OSVALDO M. GRASSELLI AND LAURA MENINI

The problem of obtaining a continuous-time (i. e., ripple-free) input-output decoupled
control system for a continuous-time linear time-invariant plant, by means of a purely
discrete-time compensator, is stated and solved in the case of a unity feedback control sys-
tem. Such a control system is hybrid, since the plant is continuous-time and the compen-
sator is discrete-time. A necessary and sufficient condition for the existence of a solution
of such a problem is given, which reduces the mentioned hybrid control problem to an
equivalent purely continuous-time decoupling problem. A simple necessary and sufficient
condition for the existence of a solution of such a continuous-time decoupling problem is
given for square plants (with and without the additional requirement of the asymptotic
stability of the over-all control system), together with a parameterisation of all the decou-
pling controllers. Moreover, for square plants, it is shown that, whenever the hybrid control
problem admits a solution, any solution of the corresponding decoupling problem for the
discrete-time model of the given continuous-time system is also a solution of the hybrid
control problem.

1. INTRODUCTION

The problem of input-output decoupling is one of the most widely investigated for
purely continuous-time or purely discrete-time MIMO control systems [3, 4, 6, 10,
11, 12, 15, 16], since it is a very natural control objective (and, in addition, it
can be a useful tool for other requirements, e.g. robustness [5]). In this paper,
the problem of input-output decoupling is dealt with for sampled-data systems,
which are considered in their hybrid nature (both discrete-time and continuous-
time). Therefore, the intersample behaviour is explicitly taken into account, in
order to avoid undesirable ripple between sampling instants, which may become
unacceptable if the sampling rates are small, or if unbounded exogenous signals are
involved, since the amplitudes of such a ripple are modulated by the nonzero scalar
exogenous signal [13]. Such an approach is now becoming classical in the study
of sampled-data systems [8, 9, 14, 17], but, to the best of the authors’ knowledge,
has never been applied to the input-output decoupling problem. The mentioned
contributions [8, 9, 14, 17] recognise that a continuous-time subcompensator may
be needed in order to achieve continuous-time asymptotic tracking and regulation;
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Fig. 1. The hybrid control system S.

in this paper it will be shown that this applies also when a continuous-time input-
output decoupling is required. Here a unity feedback control scheme is assumed,
as in several contributions on input-output decoupling for purely continuous-time
plants [10, 12, 15]: a motivation of this choice is that unity feedback might be
required in order to achieve further control objectives like, for example, asymptotic
tracking, thus involving the presence of an internal model of the exogenous signals
in the forward path of the feedback control system.

2. PROBLEM FORMULATION

In this section the problem of the continuous-time input-output decoupling will be
formally stated for both the hybrid open-loop control system S in Figure 1 and the
closed-loop system X obtained from S under a unity feedback (see Figure 3), since
the continuous-time input-output decoupling holds for ¥ if and only if it holds for
S (see the subsequent Proposition 2), as it happens for purely continuous-time or
purely discrete-time systems.

The hybrid control system S is constituted by the following components:

— the continuous-time linear time-invariant plant P, to be controlled, having
z(t) € R"" as state at time ¢ € IR, and the strictly proper rational matrix
P(s) as transfer matrix between the input u(t) € IR” and the output y(t) € RY,
q < p; system P is described, in state space form, by the equations:

z(t) = Ax(t) + Bu(t), (1a)
y(t) = Ca(t); (1b)

— the zero-order holder Hs,, with holding period 07, ér € IR, 67 > 0, having
up(k) € IR? as discrete-time input, and u(t) as continuous-time output, ex-
pressed by:

u(0) =0, (2a)
u(t)ZUD(k), kor <t < (k+1)6T, k€Z+,t€IR; (2b)

— the sampling device Ss,., with sampling period ér, having y(t) as continuous-
time input and yp (k) € R? as discrete-time output, expressed by:

yD(k) = y(k (ST)7 ke Z+; (3)
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— the discrete-time linear time-invariant compensator K, having xx (k) € R™*
as state, rp(k) € IR? as discrete-time input, up (k) as discrete-time output and
the proper rational matrix K (z) as transfer matrix between rp (k) and up (k).

It is assumed that Ss, and Hs, are synchronised, as it is implied by (2) and (3).

It is well known that the behaviour of the series connection Py of the holder Hs,,
system P and the sampler S;, can be modelled at the sampling instants by a purely
discrete-time system Pp, whose state (k) € IR"" is defined by

$D(k) = x(kéT), keZ,

and whose transfer matrix between its input up (k) and its output yp(k), denoted
by Pp(z), is a strictly proper rational matrix.

In the following, rp, (k) and y;(¢) will denote the jth scalar component of rp (k)
and y(t), respectively, j =1,2, ..., q.

The following definition can be referred to both the hybrid control systems rep-
resented in Figures 1 and 3.

Definition 1. (Continuous-time input-output decoupling) A hybrid system hav-
ing a discrete-time input rp(k) and a continuous-time output y(¢) is said to be
continuous-time input-output decoupled if it satisfies the following conditions:

(i) for each i =1, 2, ..., g, its output response y(-) from its zero initial state to
an input_function rp(-) with rp ;(-) =0, for j =1, 2, ..., q, j # i, is such
that y;(-) =0for j=1,2,...,¢, 9 #;

(ii) the transfer matrix between rp(k) and the sampling yp (k) of its continuous-
time output y(¢) is nonsingular over the rational field.

In Definition 1, in order to avoid trivial solutions, the discrete-time condition (ii)
has been used; it is expressed in terms of the transfer matrix of the discrete-time
model of the hybrid system under consideration (i.e., the matrix Pp(z) K(z) for
the open-loop system in Figure 1). A different “continuous-time” condition is the
following one:

(iii) in condition (i) the component y;(-) of the output response y(-) is nonzero, for
each function rp_ ;(-) having a nonzero rational z-transform.

Tt is easy to see that, if condition (i) holds, then condition (ii) implies (iii), whereas

the following counterexample, involving a continuous-time system P having p > g,
shows that the opposite is not true, in general.

Example 1. Let the matrices describing system (1) be given by:

-1 0 0 ﬁ 0 0
A=| 0 -2 0 |, B= 0 — 0 ,C:Héﬂ
0 0 -1 0 0 1

1—e—1
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If 67 = 1, the transfer matrix Pp(z) can be easily expressed as follows:

171 172 0
Pp(z) = 0 0 1

z—e—1

If the dynamic compensator K has the following transfer matrix:

1 0

which is diagonal, but does not satisfy condition (ii). In order to prove that con-
ditions (i) and (iii) are satisfied, it is convenient to compute the output responses
y(l)(t) and y? (t), from null initial conditions, corresponding to the input signals
rg)(k:) = [68 (k) O]I and Tg)(k‘) =10 (50D(k;)]/, respectively, where 6P (k) denotes
the discrete-time unit impulse function. By means of standard computations, de-
scribed in detail in [13], such output responses can be expressed by:

ye) = | ™) 6772(6) ] Cveelo, 1),
y(l)(k 5 + 6) _ e (k+e—1) _ e*(’““g*l) _ 772(5) e;le—k |
Vk>0,keZ Veel, 1),
y@(e) = m(ze) } 7 Vee (o, 1),
yD(kor +e) = _ e_(,ﬁs_l) ] ,Vk>0,keZ Yee|0, 1),
where: . . , .
m(e) = 1:723,1» n2(e) == %, Ve e|0, 1).

This is readily seen to imply that conditions (i) and (iii) hold (see also the plots
reported in Figure 2). However, the singularity of Pp(z) K (z) makes y(!) (kdr) = 0,
Vk € Z*, so that y(l)(t) can be considered as a mere ripple. O

Condition (ii) has been preferred to the weaker condition (iii), since, as it is
evident from Example 1, the latter would allow input-output decoupled systems in
which the output response to some input functions (namely those having all the
nonzero components in correspondence to the zeros in the main diagonal of the
(singular) transfer matrix from rp(k) to yp(k)) would be constituted only by ripple.
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Fig. 2. The nonzero components of the output responses y(l)(t) and y(2)(t) considered in
Example 1.

Fig. 3. The hybrid control system X considered in Proposition 2.

However, the subsequent Proposition 1, whose proof is reported in the next sec-
tion, states that, for square systems, i.e., for p = ¢, both conditions (ii) and (iii)
can be used to define continuous-time input-output decoupling, under the following
assumption.

Assumption 1. For each eigenvalue A of matrix A, none of the complex numbers
A+ 927mifor, i # 0,4 € Z, is an eigenvalue of A.

Remark 1. Assumption 1 is commonly used in order to guarantee that the struc-
tural properties of the continuous-time system P are preserved for Pp [2], can be
used for guaranteeing the reverse implication for stability [7], and can be easily
satisfied by the choice of dr (e.g., it is satisfied if o7 is small enough).

Proposition 1. Under Assumption 1, if p = ¢, conditions (i) and (iii) imply
condition (ii).

On the basis of Definition 1, it is now possible to state and proof the following
proposition.

Proposition 2. The hybrid control system ¥ depicted in Figure 3 is continuous-
time input-output decoupled if and only if system S in Figure 1 is.
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Proof. (if) If system S is continuous-time input-output decoupled, then, consid-
ering the control system in Figure 3, the transfer matrix from ep (k) to yp (k) of the
discrete-time model Sp of S is diagonal and nonsingular, hence also the discrete-time
model Xp of the hybrid control system ¥ has a diagonal and nonsingular transfer
matrix from rp(k) to yp(k), so that condition (ii) is satisfied by system 3. Hence,
for every i =1, ..., g, for every reference input rp(-) such that rp_;(k) = 0 for each
k € Z* and for each j # 4, one has yp, (k) = 0 for each k > 0 and for each j # i.
This implies that the discrete-time signal ep(-), defined as ep (k) := rp(k) — yp(k),
k > 0, is such that ep ;(k) = 0 for all & > 0 and for each j # 4; this fact, since
system S satisfies condition (i), implies y;(¢) = 0 for all ¢ > 0 and for each j # 1, so
that condition (i) is satisfied by X.

(only if) If system X is continuous-time input-output decoupled, its discrete-
time model X p is input-output decoupled, whence, by means of purely discrete-time
reasonings, wholly similar to those used in the (if) part of this proof, it is easy to
see that the transfer matrix from ep(k) to yp(k) of the discrete-time model Sp of
S, is diagonal and nonsingular, thus implying that condition (ii) is satisfied by S.
Hence, for every signal ep(-) such that ep, j(k) = 0 for each j # ¢ and for each
k > 0, since Sp is (discrete-time) input-output decoupled, one has that yp (k) =0
for each k > 0 and for each j # i; this implies that the discrete-time signal rp(-)
defined by rp(k) := ep(k) + yp(k) is such that rp ;(k) = 0 for all & > 0 and for
each j # 4. For such a reference signal, y;(t) = 0 for all ¢ > 0 and for each j # 1,
since system Y. satisfies condition (i) of Definition 1. Since such a reasoning holds
for every ep(-) such that ep ;(-) = 0 for each j # ¢, and for each i =1, ..., g, then
it is proved that the hybrid system S satisfies (i). O

3. A SOLVABILITY CONDITION OF THE PROBLEM

The following theorem provides a necessary and sufficient condition for the exis-
tence of a solution of the continuous-time input-output decoupling problem, for the
hybrid control system in Figure 1 or in Figure 3, by reducing such a problem to
a purely continuous-time control problem, namely that of the existence of a static
precompensator achieving input-output decoupling for the continuous-time plant P.

Theorem 1. Under Assumption 1, there exists a discrete-time compensator K that
achieves continuous-time input-output decoupling for the hybrid control system S
in Figure 1 [or for the hybrid control system ¥ in Figure 3], if and only if there exists
a constant matrix M € IRP*? such that P(s) M is diagonal and nonsingular. If this
condition holds, under the same Assumption 1, the static compensator K having
K(z) = M as transfer matrix achieves continuous-time input-output decoupling for
the same system S in Figure 1 [for the same system ¥ in Figure 3].

Remark 2. The latter statement of Theorem 1 stresses that, under Assumption 1,
if continuous-time input-output decoupling can be achieved for system .S [or for sys-
tem Y|, a solution can be obtained in form of a static discrete-time controller K, and
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that its constant transfer matrix M can be designed by means of purely continuous-
time techniques. However, if plant P is not asymptotically stable but is stabilisable
and detectable, in order to obtain an asymptotically stable control system 3 it can
be more convenient to design the discrete-time controller K as the series connec-
tion of a dynamic subcompensator Kg and the static subcompensator having M as
transfer matrix, and to choose the transfer matrix of Kg in form of a square non-
singular and diagonal rational matrix, if any, such that the discrete-time model X p
of the hybrid control system ¥ in Figure 3 is asymptotically stable, thus implying
the asymptotic stability of ¥ (see Theorem 4 in [7]), and still guaranteeing for ¥
the continuous-time input-output decoupling (for square plants see the subsequent
Remarks 5 and 6 and Theorem 3).

Proof of Theorem 1. Just the part of the statements concerning the control
system .S in Figure 1 will be proven, since the part concerning the control system X
in Figure 3 (which is stated in square brackets) can be derived from the former part
by virtue of Proposition 2.

(if) Tt will be shown that the hybrid system S in Figure 1 is continuous-time
input-output decoupled, if the discrete-time compensator K is static and has transfer
matrix K(z) = M.

In fact, notice that, with this choice, the series connection Hpys of K and Hy,
in Figure 1, has the same input-output behaviour as the series connection Hepy of a
g-dimensional zero-order holder followed by the static continuous-time compensator
Kc having transfer matrix equal to M. With such a replacement, the resulting
control system certainly satisfies condition (i), since the underlying continuous-time
system, having P(s) M as transfer matrix, is input-output decoupled. In order to
prove that condition (ii) holds, define

TZD(k):(Sl—)l(k)eu 2:17 27 s 4

where e; denotes the ith column of the g-dimensional identity matrix, and §7; (k)
denotes the discrete-time unit step function, and apply the input function rp(-) =
r5(+) to the hybrid control system obtained from system S with the mentioned
replacement; then, from the zero initial state, the following continuous-time output
response y(t) = y'(t) is obtained:

yi(t) == ﬁl{[P(S)M] e} teR, t>0, (4)

S

since it is the output response of the series connection of Kcjps and P to the
continuous-time input function

u(t) = d-1(t) es, (5)

where §_1(t) is the continuous-time unit step function. By the diagonality of P(s) M,
y'(t) can be expressed as

y'(t) = yi(t) es, (6)
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for some scalar function y!(¢), and, by the nonsingularity of P(s) M, y:(-) is nonzero.
Notice that, for each ¢ = 1, 2, ..., ¢, the input function (5) can be seen as a free
response of a system K constituted by the parallel of ¢ integrators, to be connected
to Kcon. Then, the discrete-time function y4 (k), obtained by sampling y*(t), cannot
be identically zero, because this would imply a loss of observability, due to sampling,
of the series connection of Kj;, K¢p and P, which cannot take place, in view of
Assumption 1, as can be easily shown. Hence, the z-transform y4(2) of y& (k) is
nonzero, and by (6) can be expressed as:

U (2) = b1 (2) €, (7)
where ybl(z) is the z-transform of the sampling of yi(t). On the other hand, by
the mentioned equivalence between Hepy and Hpyy, it is easy to see that

i z
yD(Z):PD(Z)Mzilezﬂ (8)
By (7) and (8) the ith column of Pp(z) M is
z—1
> yD,z'(Z) €i,
for each i =1, 2, ..., ¢, hence Pp(z) M is (diagonal and) nonsingular over the field

of rational functions.

(only if) Now, given a discrete-time precompensator K such that the hybrid
control system S in Figure 1 is continuous-time input-output decoupled, a constant
matrix M € IRP*? will be determined, such that

P(s) M = diag (m1(s), ma(s), ..., my(s)),

with m;(s), i =1, 2, ..., g, being nonzero rational functions.
For each i = 1, 2, ..., q, for zero initial state of system S, if the input of S is
chosen as rp(k) = rg)(kj), with

r (k) = ri(k)ei, keZ, (9)

where r;(+) is an arbitrary nonzero scalar function, then, in view of the obtained
continuous-time input-output decoupling, the output y(¢) can be written as:

y(t) =y D (t) =y (t) e, V20, (10)

for some scalar function y(i)(t). In this situation, the corresponding input u(t) of

%

system P can be written as:

u(t) =u®(t) =Y al6_y(t—rdr),
r=0
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for some agi) elRP, r=0,1, ..., co. Then P(s)agi) cannot be zero for all r = 0,
1, ..., oo, since otherwise yl@(-) would be zero, thus implying a contradiction with
condition (ii), which is satisfied by hypothesis. Hence, define the integer 7; as follows

7; := min {7‘ €Z": P(s)alV) # O} .
Then, y* (t) can be decomposed as follows:

yO(t) =y (t =73 8r) 61 (t =7 07) + 5D (1), >0,

where y;i)(t) denotes the output response of system P from zero initial state to
. , NO) _
the input al’d_1(t), expressed by y(t) = £ {P(s) s } and §)(t) = 0 for all

T

t < (7; +1)dr, so that
y(t) = y? (t =Tidp) 0_1(t = T307), Vte [Fidp, (Ti+1)d7]. (11)

By (10) and (11), and by the meaning of yj(f) (t), foreach j =1,2,...,¢q, j #1,
the jth component of y}i) (t) is zero for all ¢ > 0. Then, denoting by y](f)(s) the

Laplace transform of y}i) (t), it satisfies

i az, i
¥ (s) = P(s) == =y (s) es,

S
for some nonzero scalar rational function yff;)i(s). Since the above reasoning can be
repeated for each i =1, 2, ..., g, the following relation holds:
P(s) [ o [ @ | o ]
T1 T2 Tq

. 1 2
= sdiag (y;)l(s), y;,)Q(s)’ cs y;?)q(s)) )

By defining m;(s) := syj(f),t.(s), fori=1,2,...,¢q, and

M = [ oV [ a® |- | o ]

T Tq

the proof is completed. O

Remark 3. Notice that Assumption 1 is not needed in the necessity proof of
Theorem 1; then, the existence of a static precompensator, which achieves input-
output decoupling for the given continuous plant P is needed, in order to solve the
continuous-time input-output decoupling problem for the hybrid control system S in
Figure 1 or for the hybrid control system ¥ in Figure 3, even if such an assumption
is not satisfied. Hence, if it does not exist, a continuous-time subcompensator must
be inserted both in Figure 1 and in Figure 3 between Hs, and P in order to achieve
the continuous-time input-output decoupling.
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Proof of Proposition 1. Notice that, if condition (ii) does not hold, then
either of the square matrices K(z) and Pp(z) has to be singular over the rational
field.

In order to show that matrix Pp(z) cannot be singular, for each i =1, 2, ..., ¢,
consider the same input function Tg) (k), vectors agi)7 r € Z™ and integer 7;, defined
in the necessity proof of Theorem 1. It follows that the output response 7% (t) of

system P, from the zero initial state, to the input function u(t) = @) (t), with
aD(t) = al’ 61 (1), t>0,

is nonzero. Letting @%)(k) be the sampling of 7(¥) (), its z-transform yg)(z) is given

by

79(2) = Pp(z) al”

12
iz—1’ (12)

and, by property (i), can be expressed as

75(2) =7 (2 e,

for some scalar function @%)) ,(2). Now, notice that foreachi=1,2,..., ¢, @ (t) can
be seen as a free response of a system K constituted by the parallel of ¢ integrators
to be connected to P. Therefore the function y(D”(k) cannot be identically zero,
since otherwise this would imply a loss of observability, due to sampling, for the
series connection of K; and P, which cannot take place under Assumption 1, as it
can be easily shown. Hence, the function y%) ;(2) is nonzero, for each i =1, 2, ...,
q. By defining the matrix M as in the necessfty proof of Theorem 1, in view of (12),
the following relation holds:

z—1 _ _
Pp(z) M = — diag (y(Dl?l(z), cey y%?q(z)) , (13)

which implies that Pp(z) is nonsingular.
If, vice-versa, K(z) is singular, then, if K;(z) denotes the ith column of K(z),
i=1,2,...,q, there exists an integer j, 1 < j < g, such that

Kj(z) =Y enlz) Kn(2), (14)

hetj

cn(z) being suitable scalar rational functions. Let ¢(z) a polynomial function of z

such that, for each h = 1, 2, ..., q, h # j, the function ¢;(z) defined by ¢,(z) :=
cn(2)/¥(2) is proper. Then, consider the input function 7p(k) having 7p(z) :=
[€1(2) ... Cj—1(2) 0 Tjy1(2) ... G(2)]" as z-transform; let up(z) be the z-transform

of the output response up (k) of K to the input 7p(k) from the zero initial state. In
view of (14), one has

(15)
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By property (i), it follows that the jth component 7;(t) of the output response 7(t)
of S to the function 7p(k), from zero initial state, is zero for all ¢ € R, ¢t > 0. But,
in view of (15), up(z) is also the z-transform of the output response of K, from zero
initial state, to the input 7p (k) having

as z-transform, so that 7,(#) must be nonzero, in view of condition (iii), yielding a
contradiction. O

Remark 4. As a byproduct of the proof of Proposition 1, it is easy to see that,
for arbitrary p and ¢, p > ¢, if condition (i) of Definition 1, and condition (iii), given
right after the same definition, hold, then:

— K(z) has full column rank;

— under Assumption 1, Pp(z) has full row rank.

Notice that such properties, which are obvious if (ii) holds, are implied also by
the weaker condition (iii). O

4. THE CASE OF SQUARE SYSTEMS

The following theorem states a relevant property of the class of square systems that
can be continuous-time input-output decoupled and satisfy Assumption 1: for such
systems, a (possibly dynamic) compensator K such that the discrete-time model
of the hybrid control system in Figure 1 or in Figure 3 is input-output decoupled,
without achieving the continuous-time input-output decoupling, cannot exist.

Theorem 2. Under Assumption 1, if for plant P p = ¢ and a discrete-time com-
pensator K (either static or dynamic) exists, such that the hybrid control system
S in Figure 1 (and, hence, the hybrid control system ¥ in Figure 3) is continuous-
time input-output decoupled, then any discrete-time compensator K (either static
or dynamic) that decouples the discrete-time model Pp of P, also achieves the
continuous-time input-output decoupling for S (and for ¥).

Proof. First, a useful relationship between any two discrete-time compensators,
K, and Ks, both achieving the discrete-time input-output decoupling for system Pp
is proven. If K1 (z) and K5(z) are the transfer matrices of such compensators, define

D1(2) := Pp(z) K1(2), (16a)
Dg(z) = PD )KQ(Z), (16b)

—~ o~
™R

D;(z) and Dy(z) being diagonal and nonsingular strictly proper rational matrices.
Therefore
Pp(z) (Ki1(2) D2(2) = Ka(2) Di(2)) = 0;
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Fig. 4. Factorisation of compensator K.

hence, since Pp(z) is nonsingular,
K1(2) Dy(2) = Ka(2) D1(2).
By the nonsingularity of D;(z), this implies:
K»(2) = Ki(2) Da(2) Dy ' (2). (16)

This holds, in particular, for K;(2) = M, M being a constant matrix, whose
existence is guaranteed by Theorem 1, and Ks(z) as the transfer matrix of any
compensator K mentioned in the statement of the theorem.

Then, denoting Ks(z) by K(z), (16) can be rewritten as

K(z) = M D(2) Dy (=),

thus implying the special property, for this special choice of K7, that the rational
matrix Do(z2) Dy '(2) is proper. Hence, the compensator K is equivalent to the
series connection of a (possibly dynamic) discrete-time system L, having L(z) :=
Dy(z) Dy (2) as transfer matrix, and of a static precompensator having M as trans-
fer matrix (see Figure 4). Since matrix L(z) is diagonal and nonsingular, and the
hybrid control system S appearing in Figure 4 is, by hypothesis, continuous-time
input-output decoupled, then it can be easily seen that the whole compensator K
achieves continuous-time input-output decoupling. O

Remark 5. It is stressed that, by Theorem 2, either the problem of obtaining
continuous-time input-output decoupling for a square plant satisfying Assumption 1
is not solvable (the solvability of the problem can be checked easily, for square
plants, by means of the condition reported in the subsequent Proposition 3), or any
precompensator which decouples the discrete-time model Pp of the given plant P
solves the problem of continuous-time input-output decoupling too. However, the
use of a merely static precompensator, in order to achieve continuous-time input-
output decoupling, can be more convenient, since it obviously preserves the two
key structural properties of stabilisability and detectability of system P, if system
P has such properties, and, therefore, it allows to satisfy also the requirement of
asymptotic stability, which appears unrenunciable for the overall control system.

The latter part of Remark 5 yields the following theorem.
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Theorem 3. (Continuous-time input-output decoupling with stability) Under
Assumption 1, if for plant P p = ¢, then there exists a discrete-time compensator K
that achieves both continuous-time input-output decoupling and asymptotic stability
for the unit feedback hybrid control system ¥ in Figure 3, if and only if plant P is
stabilisable and detectable and it satisfies the condition stated in Theorem 1.

Proof. The necessity is yielded by Theorem 1. The sufficiency is derived from
the proof of Theorem 2 by putting in the control scheme in Figure 3 the same com-
pensator K appearing in Figure 4 (where M is a static, square and nonsingular linear
map such that system S in Figure 4 is continuous-time input-output decoupled), and
by choosing the entries of the diagonal rational matrix L(z) := Do(2)D;*(2) so that
(by virtue of Assumption 1) the discrete-time model Xp of the hybrid system ¥ in
Figure 3 is asymptotically stable, and, hence, ¥ too is (see Theorem 4 in [7]). O

Remark 6. The proof of Theorem 3 suggests that, in order to obtain a hybrid
system Y which is both asymptotically stable and continuous-time input-output
decoupled, the scheme in Figure 3 can be used, under the hypotheses and conditions
of the theorem, with the compensator K constituted by the cascade connection
of a discrete-time dynamic stabilising compensator K¢ having the diagonal matrix
L(z) defined in the proof of the same theorem as transfer matrix, and of a static
compensator Kp having the matrix M appearing in the statement of Theorem 1
as constant transfer matrix. The latter can be easily obtained by means of the
subsequent Proposition 3.

Theorems 1 and 3 and the proof of the latter motivate the interest in the solu-
tion of the problem of input-output decoupling for wholly continuous-time systems
by means of static precompensators. Such a problem seems not to have received
enough attention, since, at the best authors’ knowledge, the only available results
are concerned with square systems: an explicit condition for the existence of a static
precompensator achieving input-output decoupling for the continuous-time plant P
together with a formula for the computation of the solution can be found in [1],
expressed in terms of P(s), or (if the state space description (1) of P is given) can
be easily derived from [6]. Therefore it seems worth to explicitly state the follow-
ing proposition, which expresses a condition for the solvability of the problem that
seems to be simpler than the above mentioned ones, since it can be checked by direct
inspection of the transfer matrix P(s) of P; it gives also a parametrisation of all the
constant precompensators constituting a solution of the problem.

Proposition 3. If for plant P p = g, then there exists a square constant matrix M
such that P(s) M is diagonal and nonsingular if and only if there exist a square, ra-
tional, diagonal, nonsingular matrix D(s) and a square constant nonsingular matrix
= such that

P(s) = D(s) E. (17)
If (17) holds, all such matrices M can be expressed by

M =2"1A, (18)
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where A is any square, constant, diagonal, and nonsingular matrix.

Proof. The necessity follows by defining D(s) := P(s) M and Z := M~!, and
the sufficiency by defining M := Z~'A, where A is any square, constant diagonal
and nonsingular matrix.

In order to show that if there exist a constant square matrix M such that P(s) M
is diagonal and nonsingular, then (18) holds for some square, constant, diagonal and
nonsingular A, define Dy (s) := P(s) M for such a M, which, together with (17),
implies D(s) = = Dys(s) M~1, so that D~!(s)Djs(s) = ZM is diagonal, nonsingular
and constant. Hence, M = 2~ 1D ~1(s)Dy;(s), that is (18) with A = D=1(s) D(s).

a

Remark 7. Notice that, by Theorem 1 and Proposition 3, the existence of a square
rational diagonal and nonsingular matrix D(s) and of a square constant nonsingular
= such that (17) holds is, under Assumption 1, the solvability condition for the
problem of obtaining continuous-time input-output decoupling for the given plant
P, if it is square (1. e., if p = ¢). Such a condition can be easily checked, since it is
equivalent to the fact that, for each i =1, 2, ..., g, all the entries of the ith row of
the transfer matrix P(s) are multiple, through the constant coefficients &;1, &2, ...,
&ip, respectively, of the same rational function d;(s).

5. CONCLUDING REMARKS

The results here reported imply that the problem of the continuous-time input-
output decoupling for sampled-data systems may need the use of a continuous-time
dynamic subcompensator, in addition to the discrete-time one. In particular, by
Theorem 1 and Proposition 3, this can be avoided for square plants (i. e., for p = q)
only if (17) holds for some square constant and nonsingular matrix = and some
square rational diagonal and nonsingular D(s) — and for nonsquare plants only if
the condition of Theorem 1 holds —, that is (in any case) a very severe condition.
It is stressed that, if it is not satisfied, the use of the control schemes in Figures 1
and 3, involving a purely discrete-time compensator K, can yield a merely discrete-
time input-output decoupling, that is, for some 7 = 1, ..., ¢, a nonzero ripple will
unavoidably appear in the scalar continuous-time output responses y;(¢), for some
j # i, when rp ;(-) = 0 for all j # 4 and rp ,(-) is some nonzero scalar reference
signal, and the amplitudes of such a ripple can be unacceptable for small sampling
frequencies and/or unbounded signals rp_;(k).
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