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THE ALGEBRAIC OUTPUT FEEDBACK
IN THE LIGHT OF DUAL–LATTICE STRUCTURES

Giovanni Marro and Federico Barbagli

The purpose of this paper is to derive constructive necessary and sufficient conditions
for the problem of disturbance decoupling with algebraic output feedback. Necessary and
sufficient conditions have also been derived for the same problem with internal stability.
The same conditions have also been expressed by the use of invariant zeros. The main tool
used is the dual-lattice structures introduced by Basile and Marro [4].

1. INTRODUCTION

It is well known that disturbance decoupling was the first problem approached with
geometric techniques, by Basile and Marro [3] and, independently, by Wonham and
Morse [11]. In the former of these papers the investigation was extended to output
feedback using a dynamic regulator. The same problem was refined in the literature
by also taking into account the stability requirement (Willems and Commault [10],
Imai and Akashi [7] and, without using eigenspaces, Basile, Marro and Piazzi [5]).
The problems of disturbance decoupling and disturbance decoupling with internal
stability using algebraic output feedback have been solved for left invertible systems
by Chen [6].

In this work we will determine constructive sufficient conditions and non construc-
tive necessary and sufficient conditions for non invertible systems and constructive
necessary and sufficient conditions for systems that are only left or only right in-
vertible. This will be accomplished through the use of the dual lattice structures
introduced by Basile and Marro [4] which is one of the key features of the geometric
approach to linear MIMO systems. The strength of this approach lies in the great
simplicity of the conditions solving the problem and in the great easiness of their
checkability by using algorithms developed for the MATLAB platform.

We will also determine necessary and sufficient conditions for solving the problem
of disturbance decoupling with stability with algebraic output feedback. The same
conditions will be also derived by using the concept of invariant zeros first introduced
by Rosenbrock [9], referring to the Smith form and the system matrix, and then
revised under a geometric light by Anderson [1]. Unfortunately these conditions are
not constructive.
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Finally some numerical examples will be presented. A solution will be determined,
when possible, through specific algorithms developed on the MATLAB platform.

The following notation is used. R stands for the field of real numbers. Sets,
vector spaces and subspaces are denoted by script capitals like X , I, V, etc.; since
most of the geometric theory of dynamic system herein presented is developed in
the vector space Rn, we reserve the symbol X for the full space, i. e., we assume
X := Rn. The orthogonal complement of any subspace Y ⊆ X is denoted by Y⊥,
matrices and linear maps by slanted capitals like A, B, etc., the image and the null
space of the generic matrix or linear transformation A by imA and kerA respectively,
the transpose of the generic real matrix A by AT , the spectrum of A by σ(A), the
n×n identity matrix by In. The restriction of map A to the A-invariant subspace L
is denoted by A|L. Given two A-invariants L1 and L2 such that L1 ⊆ L2, the map
induced by A on the quotient space L1/L2 is denoted by A|L1/L2 . Notation Z1−Z2

will be used for the difference of sets Z1 and Z2 with repetition count.

2. GENERAL BACKGROUND AND STATEMENT OF THE PROBLEM

Let us consider a system described by a five-map system (A,B,C,D,E), modeled
by

ẋ(t) = Ax(t) +B u(t) +Dd(t) , x(0) = x0 (1)
y(t) = C x(t) (2)
e(t) = E x(t) (3)

where x ∈ X (= Rn), u ∈ U (= Rp) and y ∈ Y (= Rq) denote respectively the
state, input and output. In the following the short notations B := imB, C :=kerC,
D :=imD and E := kerE will be used.

The problem of simple disturbance decoupling by means of output algebraic feed-
back is stated as follows:

Problem 1. Given system (1) – (3) determine, if possible, a feedback matrix K
(having p rows and q columns) such that:

i) e(t) = 0, t ≥ 0, for all admissible d(·) and for x(0) = 0.

The problem of disturbance decoupling with stability by means of output alge-
braic feedback is stated as follows:

Problem 2. Assume for system (1) – (3) that (A,B) is stabilizable and (A,C) de-
tectable. Determine, if possible, a feedback matrix K (having p rows and q columns)
such that:

i) Problem 1 is solvable;

ii) lim
t→∞

x(t) = 0 for all x(0) with d(·) = 0.
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Conditions (i) and (ii) are called respectively the structure requirement and the
stability requirement.

The following theorem introduced by Basile and Marro [4] (p. 256) is basic to
solve Problem 1 in the geometric approach framework:

Theorem 1. Refer to triple (A,B,C). There exists a matrix K such that a given
subspace V is an (A+BKC)-invariant if and only if V is both an (A,B)-controlled
invariant and an (A, C)-conditioned invariant.

This theorem is constructive, meaning that given such a subspace V there exists
a procedure to determine matrix K.

Let us recall now the definitions of lattices φ(B +D, E) and ψ(E ∩ C,D), i. e. the
dual lattice structures, on which the next considerations will be based:

φ(B +D, E) := {V |AV ⊆ V + B +D, V ⊆ E , V∗ ∩ (B +D) ⊆ V} (4)

is the lattice of all (A,B + D)-controlled invariants self bounded with respect to E ,
and its supremum and infimum are given by

V∗ := maxV(A,B +D, E) (5)
Vm := V∗ ∩minS(A, E ,B +D) (6)

respectively, while

ψ(C ∩ E ,D) := {S |A(S ∩ C ∩ E) ⊆ S, D ⊆ S, S ⊆ S∗ + (C ∩ E)} (7)

is the lattice of all (A, C ∩ E)-conditioned invariants self hidden with respect to D,
with infimum and supremum given by

S∗ := minS(A, C ∩ E ,D) (8)
SM := S∗ + maxV(A,D, C ∩ E). (9)

All of the above subspaces are easily determined through the standard geometric
approach algorithms.

Finally let us recall the definitions of left and right invertibility. Under the as-
sumption that B and C have maximum rank, the triple (A,B,C) is said to be:

left-invertible if and only if V∗0 ∩ B = ∅, with V∗0 := maxV(A,B, C);

right-invertible if and only if S∗0 + C = Rn, with S∗0 := minS(A, C,B).
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3. STRUCTURAL CONDITIONS

Let us consider Problem 1. Clearly the problem admits solution if and only if the
reachable set by d, i. e. the minimal (A+BKC)-invariant containing D is contained
in E . By Theorem 1, Problem 1 is solvable if and only if there exists a subspace V
such that:

i) D ⊆ V ⊆ E (10)
ii) V is an (A,B)−controlled invariant (11)
iii) V is an (A, C)−conditioned invariant. (12)

Necessary but not sufficient conditions for the existence of such a V are:

D ⊆ V∗ (13)
S∗ ⊆ E (14)
S∗ ⊆ V∗. (15)

The proof of the above conditions is trivial. Conditions (13) and (14) derive from
(10) while (15) derives from (11) – (12).

Under assumptions (13) – (15) some very interesting properties regarding lattices
(4) and (7) can be determined. Under assumption (13) it can be proved that

i) every subspace of lattice (4) contains D,

ii) V∗ = maxV(A,B, E),

while under (14)

i) every subspace of lattice (7) is contained in E ,

ii) S∗ = minS(A, C,D),

as seen in Basile–Marro [4] (pp. 225–226).

Two very useful sublattices of (4) and (7), introduced by Basile–Marro [4] (p. 271)
are:

φR := {V | V ∈ φ(B +D, E), Vm ⊆ V ⊆ VM} (16)
ψR := {S | S ∈ ψ(C ∩ E ,D), Sm ⊆ S ⊆ SM}. (17)

where Vm and SM are given by (6) and (9) and, under assumptions (13) – (15),

VM := Vm + SM , (18)
Sm := Vm ∩ SM . (19)

These sublattices are the core of the dual-lattice structures theory. Such sublattices
are lattices themselves but, most importantly, it is possible to state a one-to-one
corrispondence between their elements through the following relations:

V = Vm + S , (20)
S = V ∩ SM (21)
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where V ∈ ψR and S ∈ φR.

Conditions (13) – (15) will be considered automatically satisfied from now on.

Using these sublattices we are able to introduce our first main result:

Theorem 2. Referring to (1) – (3), Problem 1 is solvable if relation

Vm ⊆ SM (22)

holds.

P r o o f . Subspaces Vm and SM are both solutions of the problem under assump-
tion (22). In fact Vm satisfies (10) – (11), being the infimum of φ(B+D, E), and (12)
since

Sm := Vm ∩ SM = Vm ⇒ Vm ∈ ψ(C ∩ E ,D). (23)

Dually SM satisfies (10) and (12), being the supremum of ψ(C∩E ,D), and (11) since

VM := Vm + SM = SM ⇒ SM ∈ φ(B +D, E). (24)

This very interesting result has been derived without any assumption on the
system’s invertibility. Unfortunately condition (22) is only sufficient. It becomes
both necessary and sufficient if the system in hand is both left and right-invertible,
as stated in the following:

Theorem 3. Let the given system be both left-invertible with respect to u and
right-invertible with respect to y. Problem 1 is solvable if and only if relation (22)
holds.

P r o o f . (Only if) Being the system left and right-invertible all (A,B)-controlled
invariant subspaces are also self bounded with respect to E and all (A, C)-conditioned
invariant subspaces are also self hidden with respect to D. This means that any
subspace solving the problem, i. e. satisfying conditions (10) – (12), must be an
element of both φ(B+D, E) and ψ(C ∩ E ,D). Clearly if relation (22) is not satisfied
then lattices (4) and (7) have no intersection and so the problem has no solution.

(If) Implied by Theorem 2.

It is important to note that hardly the systems in hand are both left and right-
invertible. If one of these assumption fails relation (22) is not necessary anymore.
Anyway we are able to state new necessary and sufficient conditions for the solvability
of the problem:
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Theorem 4. Let the given system be left-invertible with respect to input u. Prob-
lem 1 is solvable if and only if Vm is an (A, C)-conditioned invariant.

P r o o f . (Only if) By the left invertibility assumption V∗∩B = ∅. This means that
every (A,B)-controlled invariant is self bounded with respect to E . This means that
a subspace V satisfying properties (10) – (12), has to be searched for in φ(B+D, E).
We want to show that if such a V exists then Vm is an (A, C)-conditioned invariant.
Being V an element of φ(B +D, E), hence Vm ⊆ V, it follows that

(Vm ∩ C) ⊆ (V ∩ C) ⇒ A (Vm ∩ C) ⊆ A (V ∩ C) (25)

and, being V an (A, C)-conditioned invariant,

A (Vm ∩ C) ⊆ A (V ∩ C) ⊆ V. (26)

On the other hand, Vm being an (A,B)-controlled invariant implies that

AVm ⊆ Vm + B ⇒ A (Vm ∩ C) ⊆ Vm + B. (27)

The two relations above show that A (Vm ∩ C) is included in the intersection of
subspaces V and Vm + B, hence

A (Vm ∩ C) ⊆ (Vm + B) ∩ V = (V ∩ Vm) + (B ∩ V) = Vm (28)

since Vm ⊆ V and since V∗ ∩ B = ∅ ⇒ V ∩ B = ∅.
(If) Obvious by virtue of (10) – (12).

Corollary 1. Let the given system be right-invertible with respect to output y.
The disturbance decoupling problem with algebraic output feedback is solvable if
and only if SM is an (A,B)-controlled invariant.

P r o o f . Dual to proof of Theorem 4.

All of these conditions are easily checkable through appropriate algorithms and
are constructive, meaning that, when a subspace satisfying Theorem 1 has been
determined, it is easy to obtain a matrix K solving the problem.

The following decomposition, which can be applied to a system satisfying state-
ments (13) – (15), is very useful to prove the next statements.

Decomposition 1. Consider the similarity transformation T := [T1 T2 T3 T4 T5 T6],
with imT1 = S∗ := minS(A, C,D), im [T1T2] = SM ∩ Vm, im [T1 T2 T3] = SM ,
im[T1 T2 T4] = Vm, im [T1 T2 T3 T4 T5] = V∗ = maxV(A,B, E) and T6 such that
T is nonsingular. In the new basis matrices A,B,C,D and E are expressed by

A′ =




A′11 A′12 A′13 A′14 A′15 A′16
A′21 A′22 A′23 A′24 A′25 A′26
O O A′33 O A′53 A′56
A′41 O O A′44 A′45 A′46
O O O O A′55 A′56
A′61 O O A′64 A′65 A′66



, (29)
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B′ =




B′1
B′2
O
B′4
O
B′6



, D′ =




D′1
O
O
O
O
O




(30)

C ′ =
[
C ′1 O O C ′4 C ′5 C ′6

]
, (31)

E′ =
[
O O O O O E′6

]
. (32)

This representation has been obtained without any assumptions on either left or
right invertibility for the system.

P r o o f . It is always possible to choose T2 and T3 so that im[T2 T3] ⊆ kerC since
SM is self hidden with respect to D. It is always possible to choose T1, T2, T4

and T6 so that im[T1 T2 T4 T6] ⊆ imB since Vm is self bounded with respect to
E . The particular form of matrices B′ and C ′ are due to these particular choices.
The particular form of matrix D′ is due to relation D ⊆ S∗. The particular form of
matrix E′ is due to relation V∗ ⊆ E . The particular form of matrix A′ is due to Vm

being an (A,B)-controlled invariant and SM being an (A, C)-conditioned invariant.

This decomposition becomes even more simple if the system is left or right-
invertible. In the former case matrices B′1, B

′
2 and B′4 are zero and so we obtain

B′ =




O
O
O
O
O
B′6



, (33)

while in the latter matrices C ′4, C
′
5 and C ′6 are zero giving us matrix

C ′ =
[
C ′1 O O O O O

]
. (34)

It is also important to note the following:

Corollary 2. Let the given system be left-invertible. If subspace Vm is an (A, C)-
conditioned invariant, solving Problem 1, subspace VM also solves the problem.

P r o o f . The given problem admits a solution, as seen in Theorem 2, if and only
if Vm is a solution, i. e. a matrix K exists such that Vm is an (A+BKC)-invariant.
Given the particular structure of matrix B′, a matrix K which solves the problem
is such that A′61 + B′6KC

′
1 = 0 and A′64 + B′6KC

′
4 = 0, and obviously in that case
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Vm + SM is also an (A + BKC)-invariant. This implies, using Theorem 1, that
Vm +SM is both an (A,B)-controlled invariant and an (A, C)-conditioned invariant.

Corollary 3. Let the given system be right-invertible. If subspace SM is an (A,B)-
controlled invariant solving Problem 1, subspace Sm is both an (A, C)-conditioned
invariant and a (A,B)-controlled invariant.

P r o o f . Dual to proof of Corollary 2.

Corollary 4. Let the system be SISO and either left or right-invertible. Problem 1
has in general no solution.

P r o o f . Matrix K is a real number for the SISO nature of the system. Suppose
the system left-invertible. It appears obvious that generally it is impossible to choose
K such that A′61 +B′6KC

′
1 = 0 and A′64 +B′6KC

′
4 = 0 both hold and so the problem

doesn’t admit a solution.

This is a clear example of how regulators using algebraic output feedback work.
For the disturbance decoupling to have a solution using this kind of feedback it is
obviously necessary that the same problem has a solution through state feedback,
but this is not sufficient. In fact it is also necessary to use “enough” outputs to
evaluate “enough” state variables, since through algebraic output feedback we have
no information on x. SISO systems, in general, have too few outputs to solve the
problem using this kind of regulator. Clearly, extending the rank of matrix C, which
on a practical level means using more sensors, increases knowledge of state x and
consequently the chances that Problem 1 is solvable.

In the most general case of a system being neither left nor right-invertible we are
only able to state a constructive sufficient condition as seen in Theorem 2. Anyway
if relation (22) does not hold, as it often happens, the following result is very useful
for the search of a resolvent:

Property 1. Problem 1 admits a solution if and only if

i) Vm is an (A, C)-conditioned invariant, or

ii) SM is an (A,B)-controlled invariant, or

iii) a subspace V being both an (A,B)-controlled invariant and an (A, C)-conditioned
invariant exists such that Sm ⊂ V ⊂ Vm or SM ⊂ V ⊂ VM .

P r o o f . (Only if) Suppose that a solution V exists such that S∗ ⊆ V ⊆ SM ∩Vm.
In such case it is possible to extend Decomposition 1 by choosing T1 = [T11 T12]
with im(T11) = S∗ and im (T1) = V. For V to be a solution of Problem 1 there must
exist a K such that A′411

+B′4KC
′
11

= 0, A′611
+B′6KC

′
11

= 0, A′412
+B′4KC

′
12

= 0
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and A′612
+ B′6KC

′
12

= 0. So matrix K solves the problem also for SM . The same
considerations can be repeated if we suppose that a solution V exists such that
Sm ⊆ V ⊆ SM . Dual considerations can be made if the supposed solution V is such
that Vm ⊆ V ⊆ V∗.

(If) Obvious.

If neither Vm nor SM are a solution for the problem, the subspace that solves
it has to be looked for in a “narrower” space, but we can’t state if that subspace
actually exists or not and we have no procedure to determine it. Anyway in many
practical cases it has been shown that subspace Vm solves the problem. An example
of a system following Property 1 is here presented:

Example 1. Given system (A,B,C,D,E)

A′ =




1 2 3 4 5 6 7
1 2 1 4 7 2 −2
0 0 −1 0 0 2 7
1 0 0 −3 −2 1 1
4 0 0 −3 5 2 3
0 0 0 0 0 4 1
7 0 0 2 −6 1 1




, (35)

B′ =




0 1
1 0
0 0
1 0
0 1
0 0
1 0




, D′ =




1
0
0
0
0
0
0




, (36)

C ′ =
[

1 0 0 0 0 0 0
0 0 0 1 0 0 0

]
, (37)

E′ =
[

0 0 0 0 0 0 1
]
. (38)

It is easy to compute

Vm =




1 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0




, SM =




1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0




. (39)
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Both Vm and SM do not solve the problem. Anyway subspace

V =




1 0 0
0 1 0
0 0 0
0 0 1
0 0 0
0 0 0
0 0 0




(40)

for which Sm ⊆ V ⊆ Vm is a solution of the problem being both an (A,B)-controlled
invariant and an (A, C)-conditioned invariant.

4. DISTURBANCE DECOUPLING WITH STABILITY

Let us consider now Problem 2. The following holds:

Theorem 5. Let the given system be left-invertible with respect to input u and
and the pair (A,B) be stabilizable. Referring to Decomposition 1, Problem 2 is
solvable if and only if:

i) Vm is an (A, C)-conditioned invariant;

ii) subspace VM is internally stabilizable;

iii) ∃F | (A+BF )VM ⊆ VM , (A+BF )X/VM
is stable , kerC ⊆ kerF .

P r o o f . Let us consider Decomposition 1 with B′ having the particular structure
seen for left-invertible systems. Obviously the first condition is still necessary but
not sufficient anymore. This is due to the fact that we are looking for a matrix K
such that Vm is an (A + BKC)-invariant and so that matrix (A + BKC) has all
eigenvalues stable. Clearly if the former condition is verified then matrix (A+BKC)
has a triangular structure so that

σ(A+BKC) = σ(A1) ∪ σ(A2)

where

A1 :=




A′11 A′12 A′13 A14

A′21 A′22 A′23 A′24
O O A′33 O
A′41 O O A′44


 (41)

A2 :=
[

A′55 A′56
A′65 +B′6KC

′
5 A′66 +B′6KC

′
6

]
. (42)

The first set of eigenvalues is stable if and only if relation (ii) holds while the second
one is stable if and only if:
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1. the system is stabilizable so that VM is externally stabilizable as an (A,B)-
controlled invariant i. e. ∃F | (A+BF )VM ⊆ VM , (A+BF )X/VM

is stable;

2. there exists a matrix K of output feedback which results perfectly mappable
with one of the state feedback matrices satisfying condition 1 just mentioned,
i. e. given one of the above F , there exists K such that

F = KC ⇔ CTKT = FT ⇔ imFT ⊆ imCT ⇔ kerC ⊆ kerF .

i. e. (iii) holds.

Corollary 6. Let the given system be right-invertible with respect to output y and
the pair (A,C) be detectable. Referring to Decomposition 1, Problem 2 is solvable
if and only if:

i) SM is an (A,B)-controlled invariant.

ii) subspace Sm is externally stabilizable

iii) ∃G | (A+ CG)Sm ⊆ Sm , (A+ CG)Sm
is stable , imG ⊆ imB.

P r o o f . Dual of proof to Theorem 5.

The same conditions can be stated in terms of invariant zeros. The following
holds:

Theorem 6. Let the given system be left-invertible with respect to input u and
and the pair (A,B) be stabilizable. Referring to Decomposition 1, Problem 2 is
solvable if and only if:

i) Vm is an (A, C)-conditioned invariant;

ii) Z(u; e)−Z(u, d; e) are all stable

iii) Z(u, d; e) ∩ Z(d; y, e) are all stable

iv) ∃F | (A+BF )VM ⊆ VM , (A+BF )X/VM
is stable , kerC ⊆ kerF .

P r o o f . We want to show the equivalence of these conditions with the ones stated
in Theorem 5. The first and last conditions are the same for both theorems, so we
just need to show that condition (ii) of Theorem 5 holds if and only if conditions
(ii) – (iii) hold for Theorem 6. Condition (ii) of Theorem 5 can be divided in two
parts:

1. Vm is internally stabilizable,

2. submatrix A′33 has stable eigenvalues.
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It has been shown in the past (by Piazzi and Marro [8]) that Vm is internally stabi-
lizable if and only if Z(u; e)−Z(u, d; e) are all stable. It is easy to see that submatrix
A′33 has stable eigenvalues if and only if Z(u, d; e) ∩ Z(d; y, e) are all stable since

Z(u, d; e) = σ(A′33) ∪ σ(A′55) (43)
Z(d; y, e) = σ(A′22) ∪ σ(A′33) (44)

and so the equivalence is proved.

Corollary 7. Let the given system be right-invertible with respect to input y and
and the pair (A,C) be detectable. Referring to Decomposition 1, Problem 2 is
solvable if and only if:

i) SM is an (A,B)-controlled invariant;

ii) Z(d; y)−Z(d; y, e) are all stable

iii) Z(u, d; e) ∩ Z(d; y, e) are all stable

iv) ∃G | (A+ CG)Sm ⊆ Sm , (A+ CG)Sm is stable , imG ⊆ imB.

P r o o f . Dual to proof of Theorem 6.

5. EXAMPLE

Let us consider now a numerical example:

Example 2. Given system (A,B,C,D,E)

A′ =




−1 5 3 4 5 6
−1 −2 −1 4 7 2
0 0 −3 0 2 7
−1 0 0 −3 −1 1
0 0 0 0 −4 −1
−2 0 0 2 1 5



, (45)

B =




0
0
0
0
0
1



, D =




1
0
0
0
0
0



, (46)

C =




0 0 0 1 0 0
0 0 0 0 1 0
1 0 0 0 0 0


 , (47)
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E =
[

0 0 0 0 0 1
]

(48)

which is obviously left invertible with respect to u, it is easy to compute subspace

Vm =




1 0 0
0 1 0
0 0 0
0 0 1
0 0 0
0 0 0



, (49)

which is a (A, C)-conditioned invariant, i. e. solves the structural conditions given by
Theorem 4. Morover subspace VM is internally stabilizable. Using the constructive
algorithm given by Theorem 1. it is easy to obtain an output feedback matrix solving
the problem in hand given by

K =
[ −2 0 2

]
. (50)

The complete system which makes use of such algebraic feedback unit is stable since
its eigenvalues are given by the set {−0.9754 + 3.3391i,−0.9754− 3.3391i,−4.0493,
−3,−4.5000 + 0.8660i,−4.5000− 0.8660i}.

6. CONCLUSIONS

A solution for the problem of disturbance decoupling using algebraic output feed-
back has been considered. The necessary and sufficient conditions for the structural
problem (without stability) are easily checkable and constructive. For the problem
with stability requirement the conditions are not constructive anymore: the solution
has to be searched among the output-to-input matrices solving the structural prob-
lem. The structural part of the problem may have no solution, or only one solution,
in which case we have no freedom on choosing matrix K so that the final system
is stable, or more solutions, giving us a chance to look for a matrix K solving the
problem with stability.

Clearly, this new approach to the problem of disturbance decoupling has many
advantages in the use of algebraic output feedback, giving us a chance to build simple
and robust regulators which do not use a state observer.

The problem of disturbance decoupling for non-invertible systems still remains
partially open.

(Received December 11, 1998.)
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