
KY BERNET I K A — V OL UME 3 5 ( 1 9 9 9 ) , N UM B ER 6 , PAGE S 7 0 7 – 7 2 0

SCOPE AND GENERALIZATIONS OF THE THEORY
OF LINEARLY CONSTRAINED LINEAR REGULATOR

Paolo d’Alessandro and Elena De Santis

A previous paper by the same authors presented a general theory solving (finite hori-
zon) feasibility and optimization problems for linear dynamic discrete-time systems with
polyhedral constraints. We derived necessary and sufficient conditions for the existence
of solutions without assuming any restrictive hypothesis. For the solvable cases we also
provided the inequative feedback dynamic system, that generates by forward recursion all
and nothing but the feasible (or optimal, according to the cases) solutions. This is what we
call a dynamic (or automatic) solution. The crucial tool for the development of the theory
was the conical approach to linear programming, illustrated in detail in a recent book by
the first author. Here we extend this theory in two different directions. The first consists
in generalizations for more complex constraint structures. We carry out two cases of mixed
input state constraints, yielding the dynamic solution for both of them. The second case is
particularly interesting because it appears at first sight hopeless, but, again, resort to the
conical approach provides the key to overcome the difficulty. The second direction consists
in evaluating the possibility of obtaining at least one solution to problems in the present
class, by means of linear, instead of inequative, feedback. We illustrate three mechanisms
that exclude any linear solution. In the first the linear feedback cannot handle cases where
the origin is in the constraining set for the state. In the second the linear feedback lacks the
initial condition independence of the inequative solution. In the third the linear feedback
cannot control the geometric multiplicity of eigenvalues of the system, and this prevents
stabilization, when the constraint structure is such that we cannot allow the state to con-
verge to the origin. These results clearly strengthen the significance and relevance of the
theory of linear (optimal) regulator.

1. INTRODUCTION

The literature on constrained systems is rather broad. We cite e. g. the papers [1]
and the references therein and the paper [5], where the problem of stabilizing a lin-
ear discrete time system under combined input and state constraints was addressed.
In [2] we presented a general theory solving (finite horizon) feasibility and optimiza-
tion problems for constrained linear dynamic discrete-time systems. The assumed
constraints and functionals were linear. The general time-varying system and con-
straint case was dealt with. We derived necessary and sufficient conditions for the
existence of solutions without assuming any restrictive hypotheses. For the solvable
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case we also derived the structure of inequative feedback, which, coupled with the
given system, generates all and nothing but the feasible (or optimal according to the
cases) solutions. This is what we call a dynamic (and automatic) solution.

This theory parallels that of the quadratic regulator and fills a gap in dynamic
optimization, which in all textbooks starts from the quadratic instead of the linear
case. Crucial to our results was the machinery of the conical approach to linear
programming presented in [3].

In the present paper we make more definite the contours of the theory in terms of
generalizations and significance. More specifically we address two important ques-
tions. Are those considered in [2] the only cases that can be solved providing at the
same time a dynamic solution? Notice in this respect that the condition of providing
a dynamic solution is essential, because we know that any formulable finite horizon
linear case can be solved statically within the spaces of time-functions signals. This
fact is trivial and we do not need to dwell on an illustration.

The second question is: can we solve the problems addressed in [2], using a linear
instead of inequative feedback? Notice that this approach necessarily implies to
give up the set of all solutions because the solution of the feedback system becomes
unique. Thus this drawback could be accepted only in trade of a numerically more
simple solution.

We solve here these two problems in a significant, albeit not systematic, manner.
For the first question we show that we are able to derive dynamic and complete
solutions for two cases of mixed constraints. For the second question we produce
three examples that show that the linear feedback solution does not exist in general.

The significance of the results we presents goes way beyond answering the above
two questions. In the first case we show that the machinery in [3] is powerful
enough to generate dynamic solutions for mixed constraints, where they look at first
sight impossible. Moreover the structure of these dynamic solutions contains some
novelties with respect to the case of separate input and state constraints. In the
second case we show that the power of the inequative feedback goes way beyond
that of linear feedback to solve cases that are precluded this latter. Thus it is
not a simple matter of one solution versus all the solutions. In fact, to cite just a
relevant example, we propose important control problems, that cannot be solved via
eigenvalue assignment by linear feedback, because linear feedback has no control on
multiplicity of eigenvalues. We show that these same problems are easily solved by
inequative feedback.

The paper is organized as follows: in the first part of Section 2 we recall and
generalize to the case of input constraints the results in [2]. The main new results
which answer our first question are in Subsection 2.1. In Section 3, examples are
offered to answer our second question. We will expand a little on the conceptual
content of our results in the conclusion.

2. GENERALIZATIONS PRESERVING DYNAMIC SOLUTIONS

In this session we will explore more general regulator problems, that still allow to
derive a dynamical solution like those introduced in [2].
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For simplicity we will consider the only feasibility. The extension to optimiza-
tion follows easily along the lines illustrated in [2]. We initiate recalling briefly the
derivation and structure of the regulator, but, unlike [2], we make reference to time
invariant systems and constraints. This hypothesis simplifies to some extent no-
tations and, at the same time evidences where, how and what time-variances are
generated by the solution mechanism. Our exposition goes as directly as possible to
the point, since formal statements in theorem-proof paradigm can be found in [2].

Thus consider the time invariant dynamic system

x(t + 1) = Ax(t) + Bu(t) (1)
y(t + 1) = Cx(t + 1), t ≥ 0

with time-invariant state constraints

Wx(t) ≤ M, 0 < t ≤ T or x(t) ∈ D. (2)

We assume for the present purposes a given initial state x(0) = x. In [2] we
defined St, 0 ≤ t < T (the set of admissible states at time t) to be the set of all
states x, for which there exists at least one input steering the system from x at time t
to states at t+1, t+2, . . . , T , that satisfy the constraint at the corresponding instant
of time. The system is feasible if and only if S0 is non-void and x(0) = x ∈ S0.

At each time t, St is the set of states x that satisfy the constraint:

Ax + Bu ∈ St+1 ∩D = Et+1

which defines the backward in time recursion for the sets of admissible states, with
initial (or final, if we look to time orientation) condition ET = D = {x : W x ≤
M}. Notice that, although we considered an entirely stationary case (both system’s
equation and constraints are stationary), the actual nature of the problem is time-
varying since the Et’s pose a time-varying constraint. For reasons that will be
evident shortly, it is convenient to write W = WT and M = MT . Substituting for
x(T ) in the expression of ET :

WT (Ax(T − 1) + Bu(T − 1)) ≤ MT

whence:
WT Bu(T − 1) ≤ MT −WT Ax(T − 1).

This is a first instance of the inequative feedback equation. At this point we
apply to the feedback equation the dual conical feasibility condition in its matrix
form, stated in [3]. Thus, if QT is a matrix whose rows are the generators of the
pointed polyhedral cone R(WT B)⊥∩P , where the symbol P denotes the nonnegative
orthant of the suitable Euclidean space, the equation is feasible if and only if

QT (MT −WT Ax(T − 1)) ≥ 0

or
QT WT Ax(T − 1) ≤ QT MT
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which defines ST−1 and shows that it is a polyhedron. Therefore ET−1 is a polyhe-
dron too and we can write ET−1 = {x : WT−1 x ≤ MT−1} with:

WT−1 =
(

QT WT A
W

)
and MT−1 =

(
QT MT

M

)
.

Now, in view of the backward recursion, it is clear that all the Et are polyhedra
and we can write Et = {x : Wt x ≤ Mt} with the above final conditions WT = W
and MT = M . Thus it is obvious that to solve completely the problem it only
remains to rewrite the above formulas for the generic t.

The inequative feedback equation is given by:

WtBu(t− 1) ≤ Mt −WtAx(t− 1), t = 1, . . . , T.

Thus, provided the constrained dynamical system is feasible, the set of all and
nothing but the admissible solutions is given by the closed loop system:

x(t + 1) = Ax(t) + Bu(t)
Wt+1Bu(t) ≤ Mt+1 −Wt+1Ax(t)

with x(0) = x and t = 0, . . . , T −1. Notice that this system is time-varying although
the original system was stationary.

The polyhedra St are defined by:

Qt+1Wt+1Ax(t) ≤ Qt+1Mt+1

where Qt+1 is a matrix whose rows are the generators of the pointed polyhedral cone
R(Wt+1B)⊥ ∩ P . Thus

Wt =
(

Qt+1Wt+1A
W

)
and Mt =

(
Qt+1Mt+1

M

)
.

This equation defines a backward recursion for the coefficient matrices Wt and
vectors Mt with initial conditions WT = W and MT = M . The recursion allows us
to compute all such matrices and vectors and hence also the sequence of polyhedra
{St} and {Et}. Finally the system is feasible if and only if S0 is non-void and
x(0) = x ∈ S0.

We claimed in [2], without expanding on this point for the sake of brevity, that
it is easy to generalize this theory to the case in which there is also a (pointwise in
time) constraint for the input. We carry on this exercise for the present stationary
case. Thus consider the problem obtained from the previous one just adding the
further constraint:

Zu(t) ≤ N. (3)

To get to the solution, it suffices to couple this equation with the feedback equa-
tion. Maintaining the same symbols as before, in particular for the new coefficient
and vectors for the sets Et, the new feedback equation becomes:

(
Wt+1B
Z

)
u(t) ≤

(
Mt+1

N

)
−

(
Wt+1A
0

)
x(t).
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If now Qt+1 is a matrix, whose rows are the generators of R

(
Wt+1B
Z

)⊥
∩ P ,

the new sets St will be defined by:

Qt+1

(
Wt+1A
0

)
x(t) ≤ Qt+1

(
Mt+1

N

)

and the new matrices and vectors defining the polyhedra Et are given by

Wt =


 Qt+1

(
Wt+1A
0

)

W




Mt =


 Qt+1

(
Mt+1

N

)

M


 .

A complete statement for the solution of the problem follows by a verbatim
repetition of the one for the previous cases substituting these new formulas wherever
it applies. This is omitted for the sake of brevity.

2.1. The case of mixed input and state constraints

From now on we drop the additional input constraint, to avoid more cumbersome
notation, but it will be clear from the present analysis how it is possible to extend
our results to incorporate such constraints.

Next we turn to addressing the following question. Can we still obtain a dynamic
solution in presence of mixed input-state constraints?

Actually there are various possible structures for mixed constraints, according to
the role played by the time variable. The easiest case to handle arises when the
constraints reflect the way time appears in the constraint given by the dynamical
equation. This corresponds to coupling to the dynamic system (1) the following
time-invariant constraints:

Wx(t + 1) + Zu(t) ≤ M, t = 0, . . . , T − 1. (4)

This case is new with respect to the theory in [2]. As first move, inspired by the
previous cases we pose:

WT = W, ZT = Z and MT = M.

Next we substitute for x(T ) the expression given by the dynamic system (1) in the
constraint at time (T − 1) and obtain:

(WT B + ZT ) u(T − 1) ≤ MT −WT Ax(T − 1)

which has the form of a particular instance of the feedback equation. Applying
the cited dual conical feasibility condition, if QT is a matrix, whose rows are the
generators of R(WT B + ZT )⊥ ∩ P , this equation is feasible if and only if:

QT WT Ax(T − 1) ≤ QT MT
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which defines for the present case the polyhedron of admissible states ST−1. Next
we couple this inequality with the constraint at time T − 2. In this way we obtain
a new constraint:

WT−1x(T − 1) + ZT−1u(T − 2) ≤ MT−1

where:

WT−1 =
(

QT WT A
W

)

ZT−1 =
(

0
Z

)

MT−1 =
(

QT MT

M

)
.

At this point we can carry on the backward recursion, which obviously leads to
identical formulas except that the generic time t substitutes the specific time index.

The polyhedra St are defined, for t = 0, . . . , T − 1, by the inequalities:

Qt+1Wt+1Ax(t) ≤ Qt+1Mt+1

where Qt+1 is a matrix whose rows are the generators of the pointed polyhedral
cone R(Wt+1B +Zt+1)⊥ ∩P . The backward recursion is regulated by the equations
(valid for t = 0, . . . , T − 1):

Wt =
(

Qt+1Wt+1A
W

)

Zt =
(

0
Z

)

Mt =
(

Qt+1Mt+1

M

)

with final (or initial) conditions WT = W , ZT = Z and MT = M . The constrained
system is feasible if and only if S0 is non-void and x(0) = x ∈ S0. If that is the case,
then all and nothing but the solutions of the constrained system are given by the
solutions of the inequative feedback system:

x(t + 1) = Ax(t) + Bu(t)
(Wt+1B + Zt+1) u(t) ≤ Mt+1 −Wt+1Ax(t)

with initial condition x(0) = x and defined in the time interval [0, T − 1]. Notice
that in this case there is no definition of the Et’s. Also it is needless to say that the
feedback system becomes time-varying although we started from a time invariant
constrained system.

The analysis of the present case seems to suggest that, if we had specified a dif-
ferent kind of mixed constraints, we would not have succeeded in deriving a dynamic
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solution. To some surprise a more careful examination shows that is not so. In fact
we will now provide a dynamical solution for the case where the input and state
variable, appearing in the constraints, are evaluated at the same instant of time.
The key argument relates to the constraining mechanism at the end of the temporal
span of the problem, which we assumed finite.

To be more precise we assume that the dynamic system (1) is coupled with the
following constraints:

Wx(t) + Zu(t) ≤ M t = 1, . . . , T. (5)

Let us look at the way the constraint acts at time T . Because u(T ) influences the
state at time T + 1, its value is immaterial, provided we can select a state satisfying
the inequality. In other words we need to find the set of all x(T ) for which there
exists an u(T ), that satisfies Wx(T ) + Zu(T ) ≤ M . This is but one of the problems
to which the dual conical theory developed in [3] gives a complete solution. First we
rewrite the inequality as:

Zu(T ) ≤ M −Wx(T ).

From [3] we know that, if Q is a matrix whose rows are the generators of the
pointed polyhedral cone R(Z)⊥∩P the set of all and nothing but the bound vectors,
that make this inequality feasible, are those satisfying:

Q(M −Wx(T )) ≥ 0

or
QWx(T ) ≤ QM. (6)

The polyhedron defined by this latter inequality is the sought set of states. In
this way we substitute to the final constraint another constraint, that bounds the
state alone. That substitution is what makes the dynamic solution possible. What
we have done is nothing but to project the polyhedron, defined by the constraint
in the input-state product space, on the only state space. As already explained,
this is justified by the fact that for each state in the projection, there is an input
that, paired with the state, satisfies the original constraint. Who is such an input
is irrelevant because our horizon terminates at time T . Notice that, consequently,
we have to deal with a time-variant constraint system from scratch. The constraint
coincides with the given one for t = 1, . . . , T − 1, and is given by (6) for t = T .

Let us now investigate whether there exists a dynamic solution for this constrained
system.

To the purpose of developing the backward recursion that coupled with the in-
equative feedback dynamic system solves the problem. It is convenient to state the
following positions:

WT = W

ZT = Z

MT = M

QT+1 = Q.
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Notice that now QT+1 is a matrix whose rows are the generators of R(ZT )⊥ ∩P .
Next we substitute for x(T ) in the final constraint

QT+1WT x(T ) ≤ QT+1MT

to obtain:

QT+1WT Bu(T − 1) ≤ QT+1MT −QT+1WT x(T − 1). (7)

Notice that this equation (which is the counterpart of the last step feedback
equation of the first problem we examined) has the form of a mixed constraint.
Because at T − 1 we are given a mixed constraint, we pair the two constraint to
obtain the present form of the last step feedback equation. Thus the latter inequality,
paired with:

Zu(T − 1) ≤ M −Wx(T − 1)

yields the inequative feedback equation:
(

QT+1WT B
Z

)
u(T − 1) ≤

(
QT+1MT

M

)
−

(
QT+1WT A
W

)
x(T − 1).

Using self-evident positions, we rewrite this as:

ZT−1u(T − 1) ≤ MT−1 −WT−1x(T − 1).

Next let QT be a matrix, whose rows are the generators of the (pointed polyhe-
dral) cone R(ZT−1)⊥ ∩P , then, applying the cited dual conical feasibility condition
[3], we obtain the inequality defining ET−1:

QT WT−1x(T − 1) ≤ QT WT−1.

Notice that this inequality corresponds precisely to the final constraint. Thus,
substituting the value of x(T − 1), given by the system’s dynamic equation, the
recursion may start all over again. Consequently the dynamic solution exists and
has the structure appended below.

The inequative feedback system has the form:

Ztu(t) ≤ Mt −Wtx(t)
x(t + 1) = Ax(t) + Bu(t).

The polyhedra Et are defined by:

Qt+1Wtx(t) ≤ Qt+1Mt

where Qt+1 is a matrix whose rows are the generators of the pointed polyhedral cone
R(Zt)⊥ ∩ P. Moreover:

Zt =
(

Qt+2Wt+1B
Z

)

Mt =
(

Qt+2Mt+1

M

)

Wt =
(

Qt+2Wt+1A
W

)
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with initial conditions:

ZT = Z

MT = M

WT = W.

Finally notice that E1 is defined by

Q2W1x(1) ≤ Q2M1.

Substituting for x(1)

Q2W1Bu(0) ≤ Q2M1 −Q2W1Ax.

If Q1 is the matrix whose rows are the generators of the pointed polyhedral cone
R(Q2W1B)⊥ ∩ P , then S0 is defined by

Q1Q2W1Ax ≤ Q1Q2M1.

The constrained system is feasible if and only if S0 is non-void and x(0) = x ∈ S0.
If this is the case the above inequative feedback system yields all and nothing but
the feasible solutions of the constrained dynamic system.

We could carry on the study of generalizations along these lines. However we stop
here for space reasons: it is enough here to have made the point that the approach
introduced in [2] can applied to a much larger span of problems than those studied
therein.

In the final paragraph we turn to examine a question in a sense dual to the
previous one. Instead of studying generalization we would like to see whether other
approaches can overlap to that of [2], producing in certain cases special solutions (i. e.
not capable of yielding all the admissible trajectories) enjoying a simpler feedback
structure.

3. EXAMPLES

In [2] we have showed that in the case of time invariant systems with time variant or
time invariant state constraints the admissible inputs at some time t are described in
general by linear inequalities, with coefficients dependent on time but independent
of the initial state. In the following examples we show that in general a linear
state feedback control law solving the feasibility problem does not exist. In the first
example we consider the case of time variant constraints, with the origin belonging
to some of the constraining sets. In the second we study the case of time variant
constraints, where the origin belongs to no one of the constraining sets. In the last
example the constraints and the inequalities describing the admissible input are time
invariant: this because the state constraining set is invariant controllable. We recall
that given a set Σ and a system x(t+1) = Ax(t)+Bu(t), we say that Σ is invariant
controllable if ∀x ∈ Σ, ∃u : Ax + Bu ∈ Σ.
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3.1. Example 1

Let us consider the time invariant discrete time system

x(t + 1) =
(

1 0
0 1

)
x(t) +

(
1
1

)
u(t)

with time variant state constraints:

x(t) ≥ t

(
1
1

)
, t ≥ 0 or x(t) ∈ Dt, t ≥ 0.

It is trivial to see that in this special case

Et = Dt, t ≥ 0.

In fact for a given T ,

DT =
{

x(T ) : −x(T ) ≤ −T

(
1
1

)}
.

Substituting for x(T ) we have

−Ax(T − 1)−Bu(T − 1) ≤ −T

(
1
1

)

or also

−Bu(t) ≤ −T

(
1
1

)
+ Ax(t).

The matrix Q whose rows are the generators of R(B)⊥ ∩ P is

Q =
(

0 0
)

(because R(B) + P = Rn) and hence ST−1 = Rn and ET−1 = DT−1. If we perform
another step, we have ET−2 = DT−2, and generalizing Et = Dt, t ≥ 0.

Therefore the set of all admissible solutions is given by the solutions of the closed
loop system:

x(t + 1) =
(

1 0
0 1

)
x(t) +

(
1
1

)
u(t)

−
(

1
1

)
u(t) ≤ −t

(
1
1

)
+ x(t)

x(0) ∈ P.

The provided state feedback control law is non stationary and it does not depend
on x(0). The question is if it exists a state feedback non stationary linear control
law, not depending on the initial state, solving the same feasibility problem: i. e. the
question is if matrices Ft exist such that the solutions of the closed loop system

x(t + 1) =
((

1 0
0 1

)
+

(
1
1

)
Ft

)
x(t)

are admissible, starting from any nonnegative initial state. We can immediately say
that such matrices do not exist, because if x(0) = 0, it follows that x(1) = 0, for
every value of F0, and therefore the constraint x(1) ∈ D1, cannot be satisfied.
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3.2. Example 2

Let us consider the time invariant discrete time system

x(t + 1) =
(

0.5 0
0 0.8

)
x(t) +

(
5
4

)
u(t)

with time variant state constraints:

x(t) ∈ Dt, t = 0, 1, 2

where the sets Dt are described as follows:

D0 =
{
x :

( −1 −1
)
x ≤ −1

}

Dt =



x :




0.5 −1.0
−0.4 0.8
−1.0 −1.0


 x ≤ t




0.75
1.20

−2.00






 , t ≥ 1.

Let us consider the constraint at time t = 2. Substituting for x(2), we have



0.5 −1.0
−0.4 0.8
−1.0 −1.0


 (Ax(1) + Bu(1)) ≤ 2




0.75
1.20

−2.00




and hence:


−1. 5

1. 2
−9.0


u(1) ≤ 2




0.75
1.20

−2.00


−




0.25 −0.80
−0.20 0.64
−0.50 −0.80


x(1).

The matrix Q whose rows are the generators of R



−1. 5

1. 2
−9.0



⊥

∩ P is

Q =
(

1.0 1.25 0.00000
0.0 1.00 0.13333

)

and hence
S1 =

{
x :

( −1 2
)
x ≤ 7

}
, E1 = D1.

Performing another backward step, we obtain that

S0 =
{
x :

( −1 2
)
x ≤ 3.5

}

E0 =
{

x :
( −1 2
−1 −1

)
x ≤

(
3.5

−1.0

)}
.

From the above computations, we see that the admissible control law is


−1. 5
1. 2
−9.0


u(t) ≤ (t + 1)




0.75
1.20

−2.00


−




. 25 −. 8
−. 2 . 64
−. 5 −. 8


x(t)
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x(0) ∈ E0, t = 0, 1.

The question is now if matrices F0, F1 exist such that

(A + BF0) x ∈ E1 ∀x ∈ E0

(A + BF1) x ∈ E2 ∀x ∈ E1.

Let us now assume that a matrix F0 = (f1 f2) of the above sort exists. The vector

v =
( −0.5 + 2α

1.5 + α

)
belongs to E0, ∀α ≥ 0.

We have that (A + BF0)v ∈ E1 if and only if, for some value of the parameters
f1 and f2, the following inequalities are satisfied for every α greater or equal to zero




0.5 −1.0
−0.4 0.8
−1.0 −1.0


 (A + BF0)v ≤




0.75
1.20

−2.00




or also, substituting for A, B and F0



−. 3α + (. 75− 3α) f1 − (2. 25 + 1. 5α) f2

. 24α− (. 6− 2. 4α) f1 + (1. 8 + 1. 2α) f2

−1. 8α + (4. 5− 18α) f1 − (13. 5 + 9α) f2


 ≤




2.075
.14
−1.05


 .

We see that the above inequalities cannot be satisfied for every nonnegative α.
Therefore we can conclude that our assumption is false, and hence we can say that
in general does not exist a linear state feedback control law solving a finite horizon
feasibility problem.

3.3. Example 3

Let us consider the time invariant discrete time system

x(t + 1) =
(

0.5 0
0 0.8

)
x(t) +

(
5
4

)
u(t)

with time invariant state constraints:

x(t) ∈ D t ≥ 0

D =





x :




1 0
0 1

−1 0
0 −1


x ≤




2
2

−1
−1








.

The set D is invariant controllable. In fact, if we consider the constraint



1 0
0 1

−1 0
0 −1


 x(T ) ≤




2
2

−1
−1
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for some T > 2, substituting for x(T ), we have



1 0
0 1

−1 0
0 −1


 (Ax(T − 1) + Bu(T − 1)) ≤




2
2

−1
−1




or also



1 0
0 1

−1 0
0 −1


 Bu(T − 1)) ≤




2
2

−1
−1


−




1 0
0 1

−1 0
0 −1


Ax(T − 1)

and substituting for A,B:



5
4

−5
−4


 u(T − 1)) ≤




2
2

−1
−1


−




0.5 0.0
0.0 0.8

−0.5 0
0.0 −0.8


x(T − 1).

The matrix Q whose rows are the generators of R




5
4

−5
−4




⊥

∩ P is:

Q =




1.00 0.00 1.00 0.00
1.00 0.00 0.00 1.25
0.00 1.00 0.80 0.00
0.00 1.00 0.00 1.00




and hence

ST−1 =
{

x :
(

0.5 −1.0
−0.4 0.8

)
x ≤

(
0.75
1.20

)}
.

We can verify that DT−1 ⊂ ST−1, and ET−1 = DT−1. Therefore Et = D ∀ t ≥ 0.
The set of all admissible solutions is given by the solutions of the closed loop

system:

x(t + 1) =
(

0.5 0.0
0.0 0.8

)
x(t) +

(
5
4

)
u(t)




5
4

−5
−4


 u(t) ≤




2
2

−1
−1


−




0.5 0.0
0.0 0.8

−0.5 0.0
0.0 −0.8


 x(t)

x(0) ∈ D.

It is trivial to see that a matrix F such that the solutions of the closed loop system

x(t + 1) = (A + BF ) x(t), x(0) ∈ D
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satisfy the given state constraints does not exist. In fact, because of the structure
of the constraining set, it should be true that:

i) A + BF is stable
ii) ∀λ ∈ σ(A + BF ), λ is real and |λ| = 1.

Therefore necessarily (A + BF ) =

„
1 0
0 1

«
. But we can immediately see that a

matrix F such that this last condition is true does not exist.
It is easy to prove that in this example the problem of making invariant the

given polytope can be solved applying an affine state feedback control law, i. e.
u(t) = Fx(t) + u, but this is not true in general, as we have shown in [4].

(Received December 11, 1998.)
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