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Olga Štěpánková, Igor Vajda, Pavel Źıtek,
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Managing Editors:

Karel Sladký
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ON THE DESCRIPTION AND ANALYSIS
OF MEASUREMENTS OF CONTINUOUS QUANTITIES

Reinhard Viertl

The measurement of continuous quantities is the basis for all mathematical and statis-
tical analysis of phenomena in engineering and science.Therefore a suitable mathematical
description of measurement results is basic for realistic analysis methods for such data.
Since the result of a measurement of a continuous quantity is not a precise real number
but more or less non-precise, it is necessary to use an appropriate mathematical concept
to describe measurements. This is possible by the description of a measurement result by
a so-called non-precise number. A non-precise number is a generalization of a real number
and is defined by a so-called characterizing function. In case of vector valued quantities
the concept of so-called non-precise vectors can be used. Based on these concepts more
realistic data analysis methods for measurement data are possible.

1. INTRODUCTION

The result of the measurement of a physical quantity is usually thought to be a
real number x ∈ IR times a measurement unit. Of course engineers know that
these numbers are uncertain in applications. Therefore stochastic models are used
to describe data uncertainty by assuming that the results of repeated measurements
of the same quantity are realisations of a stochastic quantity X. From a sample
x1, · · · , xn of measurements different probability statements are made about the
quantity of interest.

But there is a basic problem with this because the result of one measurement
of a one-dimensional continuous quantity is not a precise real number but more
or less non-precise. This imprecision is unavoidable also on the macroscopic level.
Therefore it has to be taken into account before analysing measurement data. It
should be noted that this kind of uncertainty is different from stochastic uncertainty
and errors.

Historically a concept to describe real measurement data is the description of
data in form of intervals and the related mathematical concept is the concept of
interval mathematics. But in many situations the boundaries of such intervals are
not precise and therefore a more general concept is necessary. Since intervals are
subsets of the set IR of real numbers a generalization of subsets of IR is useful.

In the year 1951 K. Menger published the idea of so-called ensembles flous which
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are generalizations of classical subsets in the following way. A classical subset A of
a given set M is characterized by its indicator function IA(·), where the possible
values of an indicator function is the binary set {0, 1}:

IA(x) =
{

1 for x ∈ A
0 for x 6∈ A

}
for all x ∈ M.

K. Menger allowed a generalization of this to take care of uncertainty and non-
precise boundaries of A. Therefore he defined a so-called ensemble flou by a real
valued function defined on the set M which is allowed to assume any value from the
interval [0, 1]. Such functions where later called membership functions µ(·) by L.
Zadeh who made the topic popular in the 1960’s,

µ : M → [0, 1].

The generalized subset A? defined by µ(·) is called fuzzy set in English.
Now the idea of K. Menger and L. Zadeh can be used to describe non-precise

measurements by non-precise numbers.

2. NON–PRECISE NUMBERS

A non-precise number x? is defined by its so-called characterizing function ξ(·) which
is a real function of one real variable x fulfilling the following:

(1) 0 ≤ ξ(x) ≤ 1 for all x ∈ IR.

(2) There exists at least one x ∈ IR with ξ(x) = 1.

(3) For all δ ∈ (0, 1] the so-called δ-cut Cδ

(
ξ(·)

)
defined by

Cδ

(
ξ(·)

)
:=

{
x ∈ IR : ξ(x) ≥ δ

}

is a closed finite interval
[
aδ, bδ

]
.

Precise real numbers as well as intervals are special cases of non-precise numbers.
The characterizing function of a precise real number x0 is the one point indicator
function I{x0}(·) and the characterizing function of an interval [a, b] is the indicator
function I[a,b](·). Therefore the concept of non-precise numbers is a suitable con-
cept for real measurement data. The area under the characterizing function of a
non-precise number x? is the amount of measurement uncertainty of x? concerning
imprecision.

3. CONSTRUCTION OF CHARACTERIZING FUNCTIONS

A crucial point is how to obtain the characterizing function of a measurement result.
This depends on the application area but some general remarks can be given.

Classical measurement instruments with pointers – also precision measurement
instruments – don’t produce precise numbers as measurement result. Important
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examples are strength measurements of materials. Looking realistically at the mea-
surement process a non-precise number is obtained as individual measurement result.

To obtain the characterizing function of a single measurement a precise look at the
pointer shows a vibration of it and from recording this the characterizing function
can be obtained.

For digital measurement equipments the resulting data x?
i are “numbers” with

finitely many digits, i. e. they are data in form of intervals

x?
i =

[
xi, xi

]
,

where xi is the reading on the instrument completed by zeros for all digits after the
last reported decimal, and xi is the reading of the instrument completed by 9’s for
all digits after the last reported decimal. The characterizing function is the indicator
function I[xi,xi](·).

In case of analog equipments with a screen the result can be a light point on an
oscillograph. The light intensity of this “point” can be used to obtain the charac-
terizing function ξ(·) from the light intensity function ϕ(·). In applications the light
intensity is bounded for all x ∈ IR and the values ξ(x) of the characterizing function
are obtained by

ξ(x) =
ϕ(x)

maxx∈IR ϕ(x)
for all x ∈ IR .

If the light intensity is increasing up to a certain value and decreasing afterwards,
then the resulting function ξ(·) is a characterizing function as defined above.

More generally often color intensity pictures are obtained as results of measure-
ment processes. For example hardness measurements of materials or results of re-
mote sensing. Here the color intensity can be used to obtain the characterizing
function.

4. NON–PRECISE VECTORS

Measurements of observations of vector valued continuous quantities x =
(
x1, · · · , xk

)
are also not precise. Therefore a generalization of the concept of a vector, whose
components are thought to be real numbers, is necessary.

For continuous vector quantities with dimension k non-precise vectors x? are
defined by so-called vector-characterizing functions.

The vector-characterizing function ζ(·, · · · , ·) of a non-precise vector is a real
valued function of k real variables x1, · · · , xk obeying the following:

(1) 0 ≤ ζ(x1, · · · , xk) ≤ 1 for all (x1, · · · , xk) ∈ IRk.

(2) There exists at least one k-tuple (x1, · · · , xk) ∈ IRk with ζ(x1, · · · , xk) = 1.

(3) For all δ ∈ (0, 1] the so-called δ-cut Cδ

(
ζ(·, · · · , ·)

)
, defined by

Cδ

(
ζ(·, · · · , ·)

)
:=

{
(x1, · · · , xk) ∈ IRk : ζ(x1, · · · , xk) ≥ δ

}
is a closed com-

pact and convex subset of IRk.
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For a classical precise k-dimensional vector
◦
x = (

◦
x1, · · · ,

◦
xk) the vector-characterizing

function is the one-point indicator function I{◦x1,··· ,◦xk}(·, · · · , ·) and for a k-dimensional

interval [
a1, b1

]× [
a2, b2

]× · · · × [
ak, bk

]
=×k

i=1

[
ai, bi

]

the vector-characterizing function is the indicator function

I×k
i=1[ai,bi](·, · · · , ·) .

General vector-characterizing functions are obtained for data given as color in-
tensity pictures. In case of a 2-dimensional point on a radar screen the position of
an equipment is represented by a light “point” on the radar screen. The light inten-
sity determines the vector-characterizing function of the non-precise 2-dimensional
vector x?. Let φ(x1, x2) denote the light intensity in the plane IR2. Then the
vector-characterizing function ζ(·, ·) is given by its values

ζ(x1, x2) =
φ(x1, x2)

max
(x1,x2)∈IR2

φ(x1, x2)
for all (x1, x2) ∈ IR2.

5. FUNCTIONS OF NON–PRECISE VALUES

In analysing measurements, functions of the obtained measurements are essential.
Based on classical assumptions functions g(x1, · · · , xn) of n real numbers x1, · · · , xn

are considered.
For the realistic situation of non-precise measurement results x?

1, · · · , x?
n of one-

dimensional quantities, functions g(x?
1, · · · , x?

n) have to be considered where g(·, · · · , ·)
is a real valued function. For non-precise argument values x?

1, · · · , x?
n the resulting

value g(x?
1, · · · , x?

n) naturally is non-precise, i. e.

y? = g(x?
1, · · · , x?

n) ,

where y? is a non-precise number under certain conditions for g(·, · · · , ·).
In order to obtain the characterizing function η(·) of y? the so-called extension

principle developed by L. Zadeh in the 1970’s can be applied, compare [1] and
[10]. Before applying the extension principle the non-precise values x?

1, · · · , x?
n with

corresponding characterizing functions ξ1(·), · · · , ξn(·) have to be combined into a
non-precise vector x? in IRn. This can be done in the following way:

The vector-characterizing function ζ(·, · · · , ·) of x? is obtained from the charac-
terizing functions ξ1(·), · · · , ξn(·) by its values

ζ(x1, · · · , xn) = min [ξ1(x1), · · · , ξn(xn)] for all (x1, · · · , xn) ∈ IRn .

Remark 5.1. By this definition ζ(·, · · · , ·) is a vector-characterizing function. The
δ-cuts Cδ(x?) of the corresponding non-precise vector x? are related to the δ-cuts
Cδ(x?

i ) in the following way:

Cδ(x?) =×n
i=1Cδ(x?

i ) for all δ ∈ (0, 1] ,
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i. e. they are the Cartesian products of the δ-cuts of the n non-precise numbers
x?

1, · · · , x?
n.

Based on the so-called combined non-precise vector x? the characterizing function
of the non-precise value of a function can be calculated.

Let g(x1, · · · , xn) be a real valued continuous function. Then for non-precise
argument values x?

1, · · · , x?
n with combined non-precise vector x? the values η(y) of

the characterizing function η(·) of the non-precise value y? = g(x?
1, · · · , x?

n) are given
by the extension principle, and using the notation x = (x1, · · · , xn) ∈ IRn by

η(y) =
{

sup {ζ(x) : g(x) = y} if g−1({y}) 6= ∅
0 if g−1({y}) = ∅

}
for all y ∈ IR .

Proposition 5.1. Under the conditions above the function η(·) of y? is a charac-
terizing function as defined in Section 2 whose δ-cuts are

Cδ(y?) =

[
min

x∈Cδ(x?
)
g(x) , max

x∈Cδ(x?
)
g(x)

]
for all δ ∈ (0, 1].

The proof is given in [5].

Remark 5.2. The resulting characterizing function η(·) need not be continuous.
An example for one-dimensional non-precise argument x? is given in Figure 1.

x

0

1

x

1 0
η
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ξ 

Fig. 1. Characterizing function of a derived non-precise value y? = g(x?).
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6. ANALYSING MEASUREMENT RESULTS

For repeated measurements of a quantity, for example a geodetic length or angle,
the results are usually used to calculate the arithmetic mean or some weighted
mean value. For n measurements x?

1, · · · , x?
n these are n non-precise numbers. The

arithmetic mean of n precise numbers x1, · · · , xn,

xn :=
1
n

n∑

i=1

xi

has to be adapted to the situation of non-precise numbers. This is possible using
the concept from Section 5. Here the function g(·, · · · , ·) is

g(x1, · · · , xn) =
1
n

n∑

i=1

xi .

Let the n non-precise measurements x?
i have characterizing functions ξi(·), these

have to be combined to a non-precise vector x? with vector-characterizing function
ζ(·, · · · , ·).

Based on ζ(·, · · · , ·) the value g(x?
1, · · · , x?

n) = 1
n

∑n
i=1 x?

i is a non-precise num-
ber whose characterizing function η(·) is obtained via the extension principle from
Section 5.

An example of non-precise measurements is given in Figure 2.
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Fig. 2. Characterizing functions of 12 non-precise numbers.

In Figure 3 the characterizing function of the non-precise arithmetic mean x ?
12 of

the 12 non-precise measurements from Figure 2 is depicted.
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Fig. 3. Non-precise sample mean x ?
12.

The resulting characterizing function is the optimal realistic information which
can be obtained from the non-precise measurements.

7. STATISTICAL TESTING OF HYPOTHESES

One of the main points in model building is the formulation of hypotheses. In
order to decide if a model (hypothesis) is acceptable, so-called statistical tests are
performed.

Statistical tests are decision rules which are usually depending on a test statistic
g(x1, · · · , xn) which is a function of the observations x1, · · · , xn.

In standard statistics the data are assumed to be generated by a random sample
X1, · · · , Xn of the considered model X ∼ Pθ ; θ ∈ Θ. The decision is based on the
value t which a function of the sample, i. e.

T = g(X1, · · · , Xn)

assumes.
Usually the space of possible values of the test statistic T is decomposed into an

acceptance region A and its complement, the rejection region Ac. For precise data
x1, · · · , xn the value t = g(x1, · · · , xn) of the test statistic is precise also. Therefore
it is possible to decide whether the value t is in the acceptance region or not.

In case of non-precise data x?
1, · · · , x?

n the value t? = g(x?
1, · · · , x?

n) of a test
statistic, obtained by the method from Section 5, becomes non-precise. This makes
a major problem in the usual setting of testing models, because it is not always
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Fig. 4. Non-precise value of a test statistic.

possible to decide whether the non-precise value t? with characterizing function ξ(·)
belongs to the acceptance region or not. An example is given in Figure 4.

In order to find a solution for this problem the concept of p-values is useful.

Based on a non-precise value t? of a test statistic in form of a fuzzy number it is
still possible to find a precise p-value. Then the decision can be found in the same
way as for precise data where a precise value t of the test statistic is obtained.

The p-value for a non-precise value t? with characterizing function ξ(·) is the
smallest significance level α at which the hypothesis would be rejected. This signif-
icance level can be obtained from the characterizing function ξ(·) which is assumed
to have finite support supp(ξ(·)). For non-precise data x?

1, · · · , x?
n the p-value is

the smallest significance level α(x?
1, · · · , x?

n) for which supp(ξ(·)) is included in the
rejection region Ac. In Figure 5 this is explained by an example of a one-sided test
problem, where the precise number t0 determines the p-value.

By this construction the test decision can be made in the same way as in case of
precise data.
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ξ(t) 

t
0
 

Fig. 5. p-value for a non-precise value of a test statistic.

8. CONCLUSION

In order to obtain realistic results from the analysis of measurements of continuous
quantities, the single observations, which are always more or less non-precise, have
to be described quantitatively with a suitable mathematical model. This is possible
using so-called non-precise numbers and non-precise vectors. The results of such
analyses are non-precise numbers which describe adequately the information from
measurements. Moreover using the p-value approach to statistical tests allows to test
hypotheses concerning mathematical models also for non-precise measurements.

(Received January 30, 2002.)
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