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CONVERGENCE THEOREMS FOR MEASURES
WITH VALUES IN RIESZ SPACES

Domenico Candeloro

In some recent papers, results of uniform additivity have been obtained for convergent
sequences of measures with values in l-groups. Here a survey of these results and some of
their applications are presented, together with a convergence theorem involving Lebesgue
decompositions.

1. INTRODUCTION

This short note is an overview of some recent results, obtained by the Author in
some joint papers with A. Boccuto, concerning convergence theorems for sequences
of measures, of the type of Vitali–Hahn–Saks.

From these results, other relevant theorems are deduced, such as Schur-type the-
orems, Dieudonn—é-type theorems, and also some theorems concerning Lebesgue-
type decompositions for convergent sequences of measures.

We recall the so-called Vitali–Hahn–Saks (V-H-S) theorem (see [12]):
Given a sequence of σ-additive measures, defined on some σ-algebra B of subsets

of some abstract set X, from pointwise convergence of these measures on all elements
of B it follows that they are uniformly σ-additive, and the limit function is still σ-
additive on B .

This theorem has been generalized in many directions since then. We shall only
mention [1, 2, 6, 7, 8, 9]. However, in the framework of Riesz-space-valued measures
the results were not sufficiently general, mainly because in such spaces in general
there is no topology inducing the usual (O)-convergence.

In some recent papers, ([3, 4, 5]), a new instrument has been introduced, which
allows to obtain sufficiently general convergence theorems for Riesz-space valued
measures.

The basic tool is an equivalent formulation of order convergence, named (D)-
convergence, which is then used to formulate a suitable condition of convergence
for sequences of functions taking values in a Riesz space: such condition (which we
call (RD)-convergence) is formally stronger than pointwise order convergence, and
substantially weaker than uniform order convergence.

Here, we shall outline the main results obtained in [3, 4, 5], and then we prove a
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convergence theorem involving the Lebesgue decompositions of a sequence of mea-
sures (µn), (with respect to a scalar non-negative measure λ), assuming that the
measures (µn) are (RD)-convergent.

This result is simply meant as an application of the Vitali–Hahn–Saks theorem,
without aiming at full generality.

2. PRELIMINARIES

We begin recalling the following:

Definitions 2.1. A Riesz spaceR is said to be Dedekind complete if every nonempty
subset of R, bounded from above, has supremum in R.

A sequence (rn)n in R is said to be order-convergent (or (o)-convergent ) to r if
there exists a sequence (pn)n in R such that pn ↓ 0 and |rn − r| ≤ pn, ∀n ∈ N :
this will be written (o) limn rn = r. Order convergence can be formulated simply as
coincidence of lim inf rn and lim sup rn, as soon as (rn) is bounded (see also [13]).

A bounded double sequence (ai,l)i,l in R is called (D)-sequence or regulator if for
all i ∈ N we have ai,l ↓ 0 as l→ +∞.

We say that b ∈ R, b ≥ 0, dominates a sequence (rn)n of elements of R if there
exists n0 ∈ N such that |rn| ≤ b for n ≥ n0. Moreover, given a regulator (ai,l)i,l, we
call bound of (ai,l)i,l every element b of the type b =

∨∞
i=1 ai,ϕ(i), for some ϕ ∈ NN.

A sequence (rn)n in R is said to be (D)-convergent to r ∈ R (and we write
(D) limn rn = r) if there exists a regulator (ai,l)i,l whose every bound dominates
the sequence (rn − r)n.

In general, order-convergence implies (D)-convergence, while the converse is false,
unless R is weakly σ-distributive, according with the following definition.

A Riesz space R is said to be weakly σ-distributive if for every (D)-sequence
(ai,l)i,l we have:

∧

ϕ∈NN

( ∞∨

i=1

ai,ϕ(i)

)
= 0.

From now on R will denote a weakly σ-distributive and Dedekind complete Riesz
space: therefore order convergence and (D)-convergence shall be considered as equiv-
alent.

This is not a sharp requirement: one can easily see that weak σ-distributivity is
a necessary and sufficient condition for uniqueness of the (D)-limit.

The main motivation for working with (D)-convergence, rather than (O)-conver-
gence, in a weakly σ-distributive Riesz space, is contained in the following concept.

Definition 2.2. If E is any nonempty set, we say that a sequence (fn)n of elements
of RE (RD)-converges to f ∈ RE if there exists a regulator whose every bound
dominates every sequence of the type (fn(x)− f(x))n, with x ∈ E. Analogously, we
say that (fn)n (UD)-converges to f if there exists a regulator whose every bound
dominates the sequence

(∨
x∈E |fn(x)− f(x)|)

n
.
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We remark here that (RD)-convergence is somewhat stronger than pointwise (D)-
convergence (which in our context is equivalent to pointwise (O)-convergence), while
of course (UD)-convergence corresponds to uniform convergence. However (RD)-
convergence can be shown to be equivalent to pointwise (O)-convergence, as soon as
the latter is topological.

The next Lemma shows a further feature of such a kind of convergence, see [14].

Lemma 2.3. Let (ak
i,j) be any countable family of regulators. Then for each fixed

element u ∈ R there exists a regulator (ai,j) such that, for every ϕ ∈ NN one has

u ∧
∞∑

k=1

( ∞∨

i=1

ak
i,ϕ(i+k)

)
≤

∞∨

i=1

ai,ϕ(i).

We now introduce the following:

Definitions 2.4. Let Ω be any infinite set, A ⊂ P(Ω) be an algebra, and E ⊂ A
be any non-empty sub-family of A . Given a finitely additive bounded measure (or,
in short, mean ) m : A → R, we define the E -semivariation vE(m) : A → R by:

vE(m)(A) = sup
B∈E,B⊂A

|m(B)|, ∀A ∈ A.

When E= A, we get the semivariation of m :

v(m) := vA(m)

A mean m : A → R is said to be σ-additive (or, in short, measure ) if there exists
a (D)-sequence (ui,l)i,l such that, ∀ϕ ∈ NN and for every decreasing sequence (Hs)s

in A, Hs ↓ ∅, there exists s:

vA(m)(Hs) ≤
∞∨

i=1

ui,ϕ(i).

If a sequence of measures mj : A → R, j ∈ N, is given, uniform σ-additivity is
defined as above, but with s independent of j (see also [3]).
A finitely additive measure m : A → R is said to be (s)-bounded in E or simply
E − (s)-bounded, if there exists a (D)-sequence (wi,l)i,l such that, ∀ϕ ∈ NN and for
every disjoint sequence (Hs)s in E there exists s: ∀ s ≥ s,

vE(m)(Hs) ≤
∞∨

i=1

wi,ϕ(i).

If E is as above, we say that the maps mj : A → R, j ∈ N, are E-uniformly (s)-
bounded if the above condition holds, but with s independent of j (see also [3]).
When E = A we simply speak of (s)-boundedness or uniform (s)-boundedness.



290 D. CANDELORO

Given a sequence of means (mj)j∈N∪{0}, mj : A → R, we say that the mj ’s (RD)-
converge to m0 in E if the sequence of functions (mj : E → R)j (RD)-converges to
m0.

Let now Ω, R and A be as above. From now on, we assume that F , G ⊂ A are
two fixed lattices, such that the complement (with respect to Ω) of every element of
F belongs to G.

Definitions 2.5. A mean m : A → R is said to be regular if there exists a (D)-
sequence (γi,l)i,l in R such that for each A ∈ A and W ∈ F there exists sequences
(Fn)n, (F ′n)n in F , (Gn)n, (G′n)n in G, such that

Fn ⊂ Fn+1 ⊂ A ⊂ Gn+1 ⊂ Gn ∀n, (1)
W ⊂ F ′n+1 ⊂ G′n ⊂ F ′n ∀n, (2)

and the sequences (vA(m)(Gn \ Fn))n and (vA(m)(G′n \W ))n (D)-converge to 0
with respect to (γi,l)i,l.

The means mj : A → R, j ∈ N, are said to be uniformly regular if there exists a
(D)-sequence (γi,l)i,l in R such that ∀A ∈ A and ∀ W ∈ F there exist sequences
(Fn)n, (Gn)n, (F ′n)n, (G′n)n satisfying (1) and (2), and such that the sequences (ψn)n,
(ωn)n of elements of RN, defined by setting

ψn(j) = vA(mj)(Gn \ Fn), (3)
ωn(j) = vA(mj)(G′n \W ) n, j ∈ N,

(UD)-converge to 0 with respect to (γi,l)i,l.

We now introduce the concept of absolute continuity in our setting.

Definition 2.6. Let m be any R-valued finitely additive measure on A. Given any
other finitely additive measure ν : A → R+

0 , we say that m is absolutely continuous
with respect to ν (and write m¿ ν) if there exists a (D)-sequence (ai,l)i,l such that,
whenever (Hk)k is a sequence from A satisfying limk ν(Hk) = 0, for every ϕ ∈ NN
an integer k can be found, such that |m(Hk)| ≤ ∨∞

i=1 ai,ϕ(i), for all k ≥ k.
In case ν is fixed, and (mj)j is a sequence of finitely additive measures on A, uniform
absolute continuity of the mj ’s with respect to ν can be defined in a similar way,
but clearly the integer k must be independent of j.

One can easily see that, in case m and ν are σ-additive and non-negative, this
definition of absolute continuity is equivalent to the so-called (0-0) one:

µ¿ ν if and only if ν(A) = 0 implies m(A) = 0.

The following theorem will be needed in the sequel. (See [3], Theorem 4.8.)
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Theorem 2.7. Let (mn)n be any sequence of uniformly bounded, uniformly s-
bounded R-valued finitely additive measures on an algebra Σ. If the measures mn are
absolutely continuous with respect to the same finitely additive measure ν : Σ → R+

0 ,
then they are uniformly absolutely continuous.

We shall also need the notion of singularity.

Definition 2.8. Assume that m and ν are as in Definition 2.6. We say that m
and ν are singular if there exist a regulator (ai,l)i,l and a sequence (Ak)k from A
such that limk ν(Ak) = 0 and such that for every ϕ ∈ NN an integer k0 can be found,
satisfying v(m)(Ac

k) ≤ ∨∞
i=1 ai,ϕ(i), for all k ≥ k0.

When this is the case, we write m ⊥ ν (or also ν ⊥ m).

A concept of uniform singularity for a sequence of measuresmj can be introduced,
by means of the same formulation as in Definition 2.8, but requiring that the integer
k0 does not depend on j ∈ N.

Proposition 2.9. Assume that m and ν are σ-additive and non-negative. Then m
and ν are singular if and only if there exists a setA ∈ A such thatm(A) = 0 = ν(Ac).

P r o o f . Of course, just the “only if” part needs proving. So, assume m ⊥ ν,
and let (Ak)k and (ai,l)i,l be the sequence and the regulator related to singular-
ity according with Definition 2.8. Without loss of generality, we can assume that∑
ν(Ak) <∞. Thus, if A denotes the set A := lim supAk, we have ν(A) = 0. On the

other hand, m(Ac) = (O)− limm(Bc
k), where Bk = ∪∞j=kAj , because of σ-additivity

of m. As m(Bc
k) ≤ m(Ac

k) for each integer k, we obtain m(Ac) = 0. 2

3. THE VITALI–HAHN–SAKS THEOREM

In this section, we shall report the main results of [3], in the formulation we need
later.

We first deal with the σ-additive case.

Theorem 3.1. Let (mn)n be any sequence of uniformly bounded, σ-additive mea-
sures, defined on the σ-algebra A and taking values in R. Let G be any lattice in
A, and assume that G is closed under countable disjoint unions.

If the measures mn are (RD)-convergent in G, then they are uniformly G-s-
bounded.

Of course, if G coincides with A, from (RD)-convergence in A it follows uniform
s-boundedness.

A typical consequence of the Vitali–Hahn–Saks theorem is the so-called Schur
theorem.
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Corollary 3.2. (Schur Theorem.) Let (mk)k be a sequence of σ-additive mea-
sures, defined on P(N) and taking values in R.

If the measures are (RD)-convergent to some measure m, then they are (UD)-
convergent (see Definition 2.2).

In finitely additive setting, we need a further assumption, in order to obtain a
result of the type of Vitali–Hahn–Saks. Moreover, for the sake of simplicity, we shall
assume (RD)-convergence in the whole σ-algebra A.

Theorem 3.3. Let (mn)n be any sequence of uniformly bounded, finitely additive
measures, defined on a σ-algebra A. If the measures mn are all absolutely continuous
with respect to a finitely additive measure ν : A → R+

0 and if they are (RD)-
convergent to some limit m0, then the measures mn are uniformly s-bounded and
uniformly absolutely continuous with respect to ν.

4. THE DIEUDONNÉ THEOREM

In this section we list some formulations of the Dieudonné-type theorems proved
in [5].

We assume, as usual, that A is a σ-algebra of subsets of a set Ω, and that F , G
are two sublattices of A, such that the complement of every element F ∈ F belongs
to G.

The following Lemma is crucial: it states that uniform s-boundedness on G im-
plies, for a sequence of regular means, uniform s-boundedness in A. The proof is in
[5].

Lemma 4.1. Under the same hypotheses and notations as above, let (mj : A →
R)j be a sequence of uniformly bounded, regular and G-uniformly (s)-bounded
means. Then the mj ’s are A- uniformly (s)-bounded, and uniformly regular.

Theorem 4.2. (Dieudonné) Let Ω, R, G, F be as above, and assume that G is
stable under countable disjoint unions. Suppose that (mj : A → R)j is a sequence
of uniformly bounded regular σ-additive measures such that there exists

m0 = (RD) lim
j
mj in G.

Then we have:

i) The measures mj , j ∈ N, are A-uniformly (s)-bounded and uniformly regular.

ii) There exists in R the limit m0 = (RD) limj mj inA.

iii) The mj ’s are uniformly σ-additive.

iv) m0 is regular and σ-additive.
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The p r o o f is an easy consequence of Theorem 3.1 and of the previous Lemma 4.1.

Under suitable additional conditions, we can also state a finitely additive version
of Dieudonné’s theorem.

Theorem 4.3. Let Ω, R, A, G, F be as usual, and assume that G is stable under
countable disjoint unions. Suppose that (mj : A → R)j is a sequence of uniformly
bounded regular finitely additive measures, absolutely continuous with respect to a
real-valued, nonnegative, finitely additive measure ν on A. Assume that there exists

m0 = (RD) lim
j
mj in G.

Then we have:

i) The means mj , j ∈ N, are A-uniformly (s)-bounded, uniformly regular and uni-
formly absolutely continuous with respect to ν.

ii) There exists in R the limit m0 = (RD) limj mj inA.

iii) m0 is (s)-bounded, regular and absolutely continuous with respect to ν.

5. CONVERGENCE OF LEBESGUE DECOMPOSITIONS

In this section, under a further condition on the Riesz space R, we shall see that,
assuming (RD)-convergence of a sequence (mn) of measures, it is possible to deduce
(RD)-convergence of their absolutely continuous and singular parts, with respect to
a given scalar non-negative measure ν.

We first introduce a definition.

Definition 5.1. We say that a complete Riesz space is super-Dedekind complete
if, for every subset A ⊂ R, bounded from above, there exists a countable subset
A0 ⊂ A, such that supA = supA0.

It is well-known that, under this assumption, a Lebesgue decomposition holds,
for R-valued measures. (See [10, 15]). So, from now on, R will be assumed to be
super-Dedekind complete. However, we shall need a particular formulation, so we
prefer to state it explicitly.

Theorem 5.2. Let m : A → R be any non-negative σ-additive measure, defined
on the σ-algebra A, and let ν : A → R+

0 be any σ-additive measure. Then there
exists a set V ∈ A such that the measure m|V ⊥ ν and m|V c ¿ ν.

P r o o f . DefineH := {H ∈ A : m(H) 6= 0, ν(H) = 0}, and put h := supH∈Hm(H).
As R is super-Dedekind complete, there exists a sequence (Hn)n in H such that
h = supn∈Nm(Hn). Without loss of generality, we can assume (Hn)n to be increas-
ing. Thus, the required set is V := ∪n∈NHn. Indeed, it is clear that m|V is singular
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with respect to ν, and we can easily see that m|V c ¿ ν, because for any set K
disjoint from V, ν(K) = 0 and m(K) > 0 would contradict maximality of V in H.2

The measures m|V c and m|V are called respectively the absolutely continuous
part and the singular part of m with respect to ν.

Now, assume that (mj)j is any sequence of σ-additive measures on the σ-algebra
A, and taking values in the positive cone of R. For every σ-additive measure ν :
A → R+

0 it is possible to find a unique set V ∈ A such that

mj |V ⊥ ν, mj |V c ¿ ν :

indeed, denoting by Vj the set corresponding to the measure mj according with
Theorem 5.2, it is enough to set V := ∪j∈NVj .

Remark 5.3. It is obvious that, in the situation here described, the measures
mj |V are uniformly singular with respect to ν. However, in general, the measures
mj |V c are not uniformly absolutely continuous, even when R = R : it is enough to
choose ν as the usual Lebesgue measure on the unit interval, and mj := jν|[0, 1

j ].
As mj ¿ ν for all j, clearly V = ∅; however, the measures mj are not uniformly
absolutely continuous.

Of course, uniform absolute continuity of the absolutely continuous parts, mj |V c ,
is ensured as soon as the sequence (mj)j is uniformly s-bounded. The following
theorem deals with such situation.

Theorem 5.4. Assume that (mj)j is a sequence of σ- additive measures, defined
on the same σ-algebra A and taking values in the positive cone of R. Let ν : A → R+

0

be any σ-additive measure.
If the sequence (mj)j is (RD)-convergent to some measure m, then the abso-

lutely continuous and singular parts of mj respectively converge to the absolutely
continuous and singular parts of m.

P r o o f . Convergence, and non-negativity, imply uniform boundedness of the mea-
sures mj . Thanks to Theorem 3.1, the measures mj are uniformly s-bounded, hence
also the measures mj |V and mj |V c are. This also implies that the absolutely contin-
uous parts, mj |V c , are uniformly absolutely continuous. As to convergence, it’s clear
from the hypotheses that (RD) limj mj |V c = m|V c and (RD) limj mj |V = m|V .

From the (0-0) definition of absolute continuity,it is clear that m|V c ¿ ν, while
ν(V ) = 0 immediately implies that m|V ⊥ ν. 2

(Received January 30, 2002.)
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