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CONVEX CONES IN FINITE–DIMENSIONAL REAL
VECTOR SPACES

Milan Studený

Various classes of finite-dimensional closed convex cones are studied. Equivalent char-
acterizations of pointed cones, pyramids and rational pyramids are given. Special class
of regular cones, corresponding to “continuous linear” quasiorderings of integer vectors is
introduced and equivalently characterized. It comprehends both pointed cones and rational
pyramids. Two different ways of determining of vector quasiorderings are dealt with: es-
tablishing (i. e. prescribing a set of ‘positive’ vectors) and inducing through scalar product.
The existence of the least finite set of normalized integer vectors establishing every finitely
establishable (or equivalently finitely inducable) ordering of integer vectors is shown. For
every quasiordering of integer vectors established by a finite exhaustive set there exists the
least finite set of normalized integer vectors inducing it and elements of this set can be
distinguished by corresponding ‘positive’ integer vectors.

1. INTRODUCTION

Various classes of closed convex cones in finite-dimensional real vector spaces form
the topic of this paper. The source of motivation for this study is in apparently
remote area of mathematics, namely in artificial intelligence. Within the frame-
work of our research project1 we endeavour to develop a convenient mathematical
theory to describe structures of conditional stochastic independence of finite num-
ber of random variables (this would be of great importance for probabilistic expert
systems, a growingly-popular area of artificial intelligence). Nevertheless, the sys-
tematic thorough buildup of this theory made in [8] requires some subsidiary results
concerning the above mentioned cones (more concretely, several results concerning
“continuous linear” quasiorderings on the set of integer vectors are needed and these
results stem from other results about convex cones of real vectors). Though these
properties of geometric nature look natural, precise proofs require adequate space.
As they are rather specific in the theory on conditional independence structures they
would complicate the main text.

On the other hand, we don’t know any publication where the theory of finitely-di-
mensional convex cones (especially of rational pyramids) is systematically developed

1This research was supported by the internal grant No. 27 510 of Czechoslovak Academy of
Sciences “Explanatory power of probabilistic expert systems: theoretical background.”
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up to the degree sufficient for above mentioned purposes (although some particular
results probably can be scattered in the literature).

Thus, the paper is intended as an adequate treatise (maybe rather technical)
on closed convex cones in Rn (= the set of n-tuples of real numbers), i. e. the
cones corresponding to continous linear quasiorderings of real vectors. We tried to
base the paper on well-known facts from textbooks of linear algebra, topology and
linear programming. Provided we knew that some properties were shown there and
we haven’t really short proofs of them, we preferred to refer to the corresponding
source. Then the property is formulated as Statement in the text. Some evident or
easy properties often used later are named Facts.

Every closed cone in Rn corresponds naturally to a quasiordering of n-dimensional
real vectors. Namely, having a closed cone K ⊂ Rn and real vectors u, v ∈ Rn write
v ¹K u iff (u − v) ∈ K. This defines a reflexive transitive binary relation on Rn

(i. e. quasiordering), which is moreover linear and continous (for details see [6]).
Two ways of determining of quasiorderings of vectors are studied in this article:
establishing and inducing.

The method of establishing consists in prescribing a set of vectors and consider-
ing the ‘minimal’ quasiordering making these vectors ‘positive’. This leads to the
concept of conic hull recalled in § 3. On the other hand, the method of inducing by
a given set L ⊂ Rn consists in declaring vectors having nonnegative scalar products
with elements of L to be ‘positive’. This leads to the concept of dual cone treated
in § 4. In case that a quasiordering is moreover antisymmetric, it is called ordering.
The corresponding cones, called pointed, are studied in § 5. The next section (§ 6)
introduces a wider class of regular cones, which are later shown to correspond to
quasiorderings of integer vectors. Some facts concerning extreme rays studied in § 7
are utilized in § 8 to show several results about further special class of closed cones,
namely pyramids and rational pyramids. Finally, quasiorderings of integer vectors,
i. e. vectors whose components are integers, are studied in the last section (§ 9).

More detailed comment of contents starts every section.

2. BASIC NOTATION

The set of real, resp. rational, resp. integer, numbers will be denoted by R, resp. Q,
resp. Z, the corresponding subsets of nonnegative numbers (including zero) by R+,
resp. Q+, resp. Z+. Similarly, the sets of corresponding n-tuples will be denoted
by Rn, resp. Qn, resp. Zn. The set of positive integers or natural numbers (i. e.
{1, 2, ... }) will be denoted by N.

The Euclidean norm of a vector x will be denoted by ‖x‖, the scalar product
of vectors x and y by 〈x, y〉, their sum by x + y; the product of a scalar α and a
vector x will be written as α · x. The symbol xk → x means that the sequence {xk}
converges to the element x.

Having a set A ⊂ Rn the symbol A denotes its closure (with respect to the
Euclidean norm), Lin(A) its linear hull, A⊥ its orthogonal complement, (−A) its
multiple by (−1), i. e. (−A) = {−a ; a ∈ A }. Finally, A ⊕ B denotes the direct
product of sets A and B. The other symbols will be introduced in the text.
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Notice: Throughout the paper only real vector spaces Rn where n ≥ 1 will be
dealt with.

3. CONIC HULL

Basic concepts of cone, closed cone, conic hull and closed conic hull are recalled in
this section. This is supplied by a familiar result that the conic hull of a finite set is
closed (Proposition 1).

Definition 1. (cone, closed cone)
A set K ⊂ Rn is a cone iff it satisfies:

u, v ∈ K =⇒ u + v ∈ K (1)
u ∈ K, α ∈ R+ =⇒ α · u ∈ K. (2)

If K is moreover closed with respect the Euclidean topology (i. e. given by norm) it
is a closed cone.

Remark. Some authors [7] use term ‘convex cone’ for sets satisfying (1), (2),
while by ‘cone’ they understand sets satisfying (2). But we are interested in cones
corresponding to linear quasiorderings on Rn (see [6]).

It is evident that intersection of arbitrary nonempty collection of cones is a cone,
too. Similarly for closed cones. As the whole space Rn is a closed cone, for every
L ⊂ Rn the collection of (closed) cones containing L is nonempty. Thus, the following
definitions are correct.

Definition 2. (conic hull, closed conic hull)
Having L ⊂ Rn by con(L) denote the least cone containing L. It will be called the
conic hull of L. The least closed cone containing L will be denoted by con(L) and
called the closed conic hull of L.

It makes no problem to verify:

Fact 1. con(∅) = ∅ and having ∅ 6= L ⊂ Rn it holds:
con(L) = {v ∈ Rn ; v =

∑
u∈K

αu · u where ∅ 6= K ⊂ L is finite, αu ∈ R+ }.
Fact 2. Having L ⊂ Rn its closed conic hull con(L) coincides with the closure of its
conic hull i. e. con(L).

Hint: Verify that the closure of a cone is a cone.

To prove the mentioned result about conic hull of finite sets the following lemma
will be used.
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Lemma 1. Let ∅ 6= K ⊂ Rn be a closed cone, v ∈ Rn \ (−K). Then
con({v}) = {α · v ; α ∈ R+ } and con(K ∪ {v}) = {u + α · v ; u ∈ K α ∈ R+ }.

P r o o f . Note that the set A = {α · v ; α ∈ R+ } is closed. It suffices to
make sure that B = {u + α · v ; u ∈ K α ∈ R+ } is closed. Clearly A ⊂ B. Let
xk = uk +αk ·v ∈ B converges to x ∈ Rn. Suppose that uk 6= 0 for all indices (in case
uk 6= 0 for finite number of indices x ∈ A = A, otherwise consider the corresponding
subsequence of {xk}). Put βk = ‖uk‖ > 0, γk = αkβ−1

k ≥ 0, ũk = β−1
k · uk.

Evidently xk = βk · (ũk + γk · v) and ũk ∈ K ‖ũk‖ = 1. As {u ∈ K; ‖u‖ = 1}
is a compact set there exists a convergent subsequence of ũk. Thus, without loss of
generality, suppose ũk → u ∈ K, ‖u‖ = 1. In case lim supk→∞ βk = ∞ (consider
directly βk →∞) it holds ‖ũk+γk ·v‖ → 0 and hence γk ·v → −u, i. e. (−u) ∈ A = A.
This contradicts the assumption v 6∈ (−K). Thus {βk} is a bounded sequence and
has a convergent subsequence; consider it instead of {βk}. In case βk → 0 it holds
βk · ũk → 0 and x ∈ A = A. In case βk → β > 0 get ũk + γk · v → β−1 · x. Hence
γk · v → β−1 ·x−u gives β−1 ·x−u ∈ A = A i. e. x = β · (u+ γ · v) for some γ ≥ 0.

2

Note that the assumption v 6∈ (−K) in the preceding lemma is essential. It is
illustrated by the following example.

Example. Consider n = 3 and put
K1 = { (x1, x2, x3) ; x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x1 · x3 ≥ x2

2 }
K2 = { (0, 0, x3) ; x3 ≤ 0 }
(the set K1 is the closed conic hull of the branch x1 · x3 = 1, x1, x3 > 0 of the
hyperbola lying in the plane x2 = 1). Both these sets are closed cones, but their
sum
K1+K2 = { (x1, x2, x3) ; x1 ≥ 0, x2 ≥ 0, x3 ∈ R } \ { (0, x2, x3) ; x2 > 0 x3 ∈ R }
is not ‘closed’.

Proposition 1. Let L ⊂ Rn finite. Then con(L) = con(L).

P r o o f . I. The statement holds under the additional assumption that L is linearly
independent.
Indeed: In case L = ∅ it is evident. Proceed by induction according to cardL; if
L 6= ∅ choose v ∈ L, put K = con(L \ {v}) = con(L \ {v}) (use the induction
assumption). As L is linearly independent using Lemma 1 get con(L) = con(L).

II. con(L) =
⋃{con(T ); T ⊂ L T is linearly independent } in case L \ {0} 6= ∅.

Indeed: Clearly 0 ∈ con({y}) for any y ∈ L \ {0}; having 0 6= x ∈ con(L) use
Fact 1 and consider a specification x =

∑
u∈K

αu · u (K ⊂ L) with minimal number

of strictly positive αu. As T = {u ∈ K, αu > 0} 6= 0 it suffices to show that T is
linearly independent. By contradiction, in opposite case write 0 =

∑
u∈T

λu · u where

max
u∈T

λu > 0. Putting β = max
u∈T

λuα−1
u get x =

∑
u∈T

αu · u − β−1 · ( ∑
u∈T

λu · u) =
∑

u∈T

(αu − λuβ−1) · u. As αu − λuβ−1 ≥ 0 for all u ∈ T and at least one of these
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numbers is zero, this contradicts the assumption that card T is the minimal number
of strictly positive coefficients in specifications of x.

III. The statement is trivial in cases L = ∅ or L = {0}; in case L \ {0} 6= ∅ it
follows from I and II as the union of finite number of closed sets is closed. 2

Remark. The reader probably recognized that the operation of closed conic
hull realizes the idea of establishing mentioned in the Introduction: the situation
K = con(E) means that the set E establishes the closed cone K and therefore the
corresponding quasiordering. The previous assertion says that in case of finite es-
tablishing set conic hull gives the same result, i. e. every ‘positive’ vector can be
directly ‘combined’ from elements of the establishing set.

4. DUAL CONE

Every subset of Rn can induce a nonempty closed cone through scalar product as
mentioned in the Introduction. The ascribed cone is called dual. The section is
devoted to simple properties of this basic procedure of forming cones.

Definition 3. (dual cone)
Let L ⊂ Rn. Introduce its dual cone L∗ as follows:
L∗ = {x ∈ Rn; ∀u ∈ L 〈x, u〉 ≥ 0}.
Fact 3. Whenever L ⊂ Rn then L∗ is a nonempty closed cone.

Hint: In case L 6= ∅ write L∗ =
T

u∈L{x ∈ Rn; 〈x, u〉 ≥ 0} and each of these sets is a

closed cone containing 0.

Statement 1. Let L be a nonempty closed cone, a ∈ Rn \L. Then there exists p ∈ L∗

such that 〈p, a〉 < 0.

Comment: This is a familiar consequence of the Hahn-Banach theorem (see [6] § 14) known

as a conic version of well-known separation hyperplane theorem. The reader can find it in

this form in [7] as Consequence 11.7.1 or use Theorem 4.5 in [2] resp. Theorem 2.3 in [1].

Some useful facts concerning dual cones follow.

Fact 4. Whenever L1 ⊂ L2 ⊂ Rn, then L∗1 ⊃ L∗2 and hence L∗∗1 ⊂ L∗∗2 .

Fact 5. Having L ⊂ Rn it holds L ⊂ L∗∗.

Consequence 1. Having K ⊂ Rn the following three conditions are equivalent:
(i) K is a nonempty closed cone
(ii) K = K∗∗

(iii) K = L∗ for some L ⊂ Rn.

P r o o f . (i)=⇒ (ii) By Fact 5 K ⊂ K∗∗. Conversely, having a ∈ Rn \ K by
Statement 1 find p ∈ K∗ with 〈a, p〉 = 〈p, a〉 < 0 i. e. a /∈ K∗∗. Together K = K∗∗.
(ii)=⇒ (iii) is evident, (iii) =⇒ (i) follows from Fact 3. 2
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Fact 6. Whenever ∅ 6= L ⊂ Rn it holds L∗∗ = con(L).

Hint: con(L) ⊂ L∗∗ using Fact 5 and Fact 3. Conversely, having a closed cone K containing

L, Fact 4 and Consequence 1 give L∗∗ ⊂ K.

Fact 7. Whenever L ⊂ Rn then L∗ = L∗∗∗.

Hint: Fact 3 and Consequence 1.

Fact 8. Whenever L ⊂ Rn then L∗ = con(L)∗ = con(L)∗.

Hint: Write L ⊂ con(L) ⊂ con(L) , apply Fact 4; in case L 6= ∅ Facts 7,6 give L∗ = L∗∗∗ =

con(L)∗.

5. POINTED CONE

The antisymmetry condition means that the only simultaneously ‘positive’ and ‘neg-
ative’ vector is zero vector. The corresponding cones, called pointed cones, are
studied in this section. Firstly, the corresponding version of separation hyperplane
theorem (Consequence 2) is derived. Then it is used to derive equivalent charac-
terizations of pointed cones (Proposition 2) saying that pointed cones are ‘strictly
contained’ in a halfspace.

Definition 4. (pointed cone)
A nonempty closed cone K ⊂ Rn is called pointed iff K ∩ (−K) = {0}, i. e.
[u ∈ K and −u ∈ K ] implies u = 0.

Note that each nonempty closed cone can be viewed as a direct product of a
pointed cone and a linear subspace:

Fact 9. Given a nonempty closed cone K the set L = K∩ (−K) is a linear subspace,
K ∩ L⊥ is a pointed cone and K = (K ∩ L⊥)⊕ L.

Hint: L⊥ is a nonempty closed cone and Rn = L⊥ ⊕ L (see [4] § 66).

To derive an important equivalent definition of pointed cone Statement 1 needs
be strengthened as follows:

Lemma 2. Let K be a nonempty closed cone and a ∈ Rn \K. Then there exists
q ∈ K∗ such that 〈q, a〉 < 0, 〈q, u〉 > 0 whenever u ∈ K \ (−K), 〈q, v〉 = 0 whenever
u ∈ K ∩ (−K).

P r o o f . Denote L = K ∩ (−K).
I. ∀ w ∈ K ∩ L⊥ \ {0} ∃ p ∈ K∗ 〈p, w〉 > 0.

Indeed: As (−w) /∈ K use Statement 1 to find p ∈ K∗ with 〈p,−w〉 < 0.
II. ∃x ∈ K∗ ∀w ∈ K ∩ L⊥ \ {0} 〈x,w〉 > 0.

Indeed: Put L0 = L⊥, U0 = K ∩ L0. In case U0 = {0} put x = 0. In the opposite
case start the following procedure (for i = 1, 2 . . . ): supposing Ui−1 6= {0} choose
wi ∈ Ui−1 \ {0} ⊂ K ∩ L⊥ \ {0}, by I find pi ∈ K∗ with 〈pi, wi〉 > 0 and put
Li = {v ∈ Li−1; 〈pi, v〉 = 0} Ui = K ∩ Li. As Li is a proper subspace of Li−1, the
dimension of Li strictly decreases with i (see [4] § 8) and the procedure will stop with
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{0} = Uk ⊂ Lk for some k ≥ 1. Consider minimal such k and put x = p1 + . . . + pk.
By Fact 3 K∗ is a cone, hence x ∈ K∗. It makes no problem to verify the required
property.

III. ∃x ∈ K∗ ∀u ∈ K \ (−K) 〈x, u〉 > 0.
Indeed: Take x ∈ K∗ from II. Having u ∈ K \ (−K) by Fact 9 write u = w + v
where w ∈ K ∩ L⊥, v ∈ L. As w 6= 0 〈x, w〉 > 0, as x ∈ K∗ 〈x, v〉 = 0.

IV. ∃ q ∈ K∗ 〈q, a〉 < 0, 〈q, u〉 > 0 for u ∈ K \ (−K), 〈q, v〉 = 0 for v ∈ K∩ (−K).
Indeed: Use III. to find the corresponding x ∈ K∗ and Statement 1 to find p ∈ K∗

with 〈p, a〉 < 0. As K∗ is a cone (Fact 3) qε = p + ε · x ∈ K∗ for every ε > 0. Hence
〈qε, v〉 = 0 whenever v ∈ K∩(−K) and 〈qε, u〉 ≥ ε〈x, u〉 > 0 whenever u ∈ K\(−K).
As limε→0〈qε, a〉 = 〈p, a〉 < 0 there exists ε > 0 with 〈qε, a〉 < 0 . 2

Consequence 2. Having a pointed cone K ⊂ Rn for every a ∈ Rn \K there exists
q ∈ K∗ such that
a) 〈q, a〉 < 0,
b) 〈q, u〉 > 0 whenever u ∈ K \ {0} .

Proposition 2. Having a nonempty closed cone K the following three conditions
are equivalent:
(i) K is pointed
(ii) ∃ q ∈ K∗ ∀u ∈ K \ {0} 〈q, u〉 > 0
(iii) ∀u ∈ K \ {0} ∃ p ∈ K∗ 〈p, u〉 > 0.

P r o o f . (i) =⇒ (ii) follows from Consequence 2 (the cone K = Rn is not pointed
for n ≥ 1), (ii) =⇒ (iii) is trivial, for (iii)=⇒ (i) consider u ∈ K ∩ (−K), supposing
u 6= 0 find the corresponding p ∈ K∗. But −u ∈ K implies 〈p,−u〉 ≥ 0 and it
contradicts 〈p, u〉 > 0. 2

6. REGULAR CONES

In this section certain class of closed cones involving pointed cones is introduced.
It will be shown later (Proposition 6, § 9) to correspond uniquely to (linear) qua-
siorderings of integer vectors. Firstly, several technicalities concerning topological
properties of dual cones, extreme points and density of Qn in linear subspaces are
gathered. Then regular cones are defined as cones having Qn dense in its boundary
subspace. Two equivalent characterization are shown (Proposition 3), the first one
says that regular cones are cones having Qn dense in their dual cone, the second
one characterizes them by certain separation hyperplane theorem. An example of a
nonregular cone concludes the section.

Lemma 3. Let K be a nonempty closed cone, denote L = K∩(−K). Given q ∈ K∗

satisfying [〈q, u〉 > 0 for u ∈ K \ (−K)] and a ∈ Rn \K with 〈q, a〉 < 0, there exists
ε > 0 such that ∀ p ∈ L⊥ with ‖p− q‖ < ε it holds [ p ∈ K∗ and 〈p, a〉 < 0 ].

P r o o f . From Fact 9 easily derive K \ (−K) = K ∩ L⊥ \ {0} ⊕ L. Put
S = {y ∈ L⊥; ‖y‖ = 1}. Evidently ∀ y ∈ K ∩L⊥ \{0} ∃α > 0 w ∈ K ∩S y = α ·w.
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Similarly, using Rn = L⊥⊕L find β > 0, s ∈ S, v ∈ L with a = β · s+ v. As K ∩S
is compact γ = min{〈q, u〉; u ∈ K ∩ S} > 0. Put ε = min{γ, |〈q, s〉|} > 0. Thus,
supposing p ∈ L⊥ ‖p − q‖ < ε it holds |〈p, s〉 − 〈q, s〉| < ε ≤ |〈q, s〉|, i. e. 〈p, s〉 < 0
and hence 〈p, a〉 < 0. Analogously 〈p, y〉 > 0 for all y ∈ K ∩ L⊥ \ {0} and hence
〈p, u〉 > 0 for all u ∈ K \ (−K). 2

Consequence 3. Let K is a nonempty closed cone and L = K ∩ (−K).
Then K∗ ⊂ L⊥ and K∗ has nonempty interior in L⊥.

P r o o f . K∗ ⊂ L⊥ is evident. Supposing K \ (−K) 6= ∅ (otherwise K∗ = L⊥)
take y ∈ K \ (−K), put a = −y, by Lemma 2 find q ∈ K∗ with [〈q, u〉 > 0 for
u ∈ K \ (−K)] and with 〈q, a〉 < 0 and apply Lemma 3. 2

Definition 5. (extreme point)
A set C ⊂ Rn is convex iff [ ∀x, y ∈ C ∀α ∈ 〈0, 1〉 α · x + (1− α) · y ∈ C ].
Given a convex set C ⊂ Rn say that e ∈ C is an extreme point of C iff
∀x, y ∈ C [∃α ∈ (0, 1) e = α · x + (1− α) · y] implies x = y
(i. e. e is an inner point of none segment in C or equivalently C \ {e} is convex).
The set of extreme points of C will be denoted by ex(C).

Statement 2. Let C ⊂ Rn be a nonempty compact (i. e. closed and bounded) convex
set. Then ex(C) 6= ∅ and C is the convex hull of ex(C), i. e.
C = {v ∈ Rn; v =

∑
u∈K

αu · uwhere ∅ 6= K ⊂ ex(C) is finite αu ∈ R+
∑

u∈K

αu = 1}.

Comment: This result is well-known as the Minkowski theorem or finite-dimensional version

of the Krein-Milman theorem. The reader can it find almost everywhere: in [1] as Theorem

2.13, in [2] as Theorem 5.10, in [7] us Theorem 18.5 or in [6] Theorem 15.1.

Statement 3. Given an m × n matrix A = (aij) and m-dimensional column vector

b = (bi) denote P = {y ∈ Rn;
n∑

j=1

aij ·yj ≤ bi for all i = 1, . . . ,m} (polyhedron given

by A and b, clearly it is a closed convex set). Let x ∈ P. Then x is an extreme point
of P iff there exists I ⊂ {1, . . . , m} card I = n such that the “excised” n×n matrix
AI = (aij)

j=1,...,n
i∈I is nonsingular and x is the (unique) solution of the corresponding

linear equation system AIx = bI , i. e. ∀ i ∈ I
n∑

j=1

aij · xj = bi.

Especially: Supposing that all elements of A and b are rational numbers every ex-

treme point of P belongs to Qn.

Comment: This characterization of extreme points (vertices) of a polyhedron is basics of

the familiar linear-programming method for finding all vertices of a polyhedron. We can

mention two textbooks where this can be found: in [3] Theorem 18.1 in combination with

problem 18.3, in [1] § 4 of the first chapter especially Theorem 2.18. To make sure of

the second part of the statement realize that the inverse of a matrix composed of rational

numbers is also composed of them. You can either consider the matrix over the field of

rational numbers or apply the well-known direct formula for inverse using determinants.
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Lemma 4. Let L be a subspace of Rn. Then Qn is dense in L (i. e. Qn ∩ L = L)
iff Qn is dense in L⊥ (i. e. Qn ∩ L⊥ = L⊥).

P r o o f . I. Qn is dense in L =⇒ L has a basis made up from elements of Qn.
Indeed: Take an orthonormal basis w1, . . . , wk of L (for details [4] § 65); choose
ε > 0 such that every k × k matrix B = (bij) is nonsingular whenever
(
∑
ij

(bij−δij)2)
1
2 < ε (δij means Kronecker’s delta; to find it realize that considering

the matrix norm ‖C‖ = (
∑
ij

c2
ij)

1
2 the determinant is a continous matrix function and

use the corresponding nonsingularity characterization – [4] § 53). Find vi ∈ Qn ∩ L

with ‖vi − wi‖ < εk−
1
2 and express each vi =

k∑
j=1

aij · wj . By orthonormality of

{wj} get

‖vi − wi‖2 = ‖
k∑

j=1

(aij − δij) · wj‖2 =
k∑

j=1

(aij − δij)2 for i = 1, . . . , n

and hence derive that A = (aij) is nonsingular and v1, . . . , vk form a basis.
II. Qn is dense in L⊥ =⇒ Qn is dense in L.

Indeed: According to I choose a basis p1, . . . , pk ∈ Qn of L⊥. It makes no problem
to see L = {v ∈ Rn; ∀ i = 1, . . . , k 〈pi, v〉 = 0}. Having w ∈ L and ε > 0 find for
each j = 1, . . . , n numbers aj , bj ∈ Q such that aj ≤ wj ≤ bj and bj − aj < εn−

1
2 .

Consider the polyhedron P = {v ∈ Rn; ∀ j = 1, . . . , n vj ≤ bj , −vj ≤ −aj and
∀ i = 1, . . . , k 〈pi, v〉 ≤ 0 〈−pi, v〉 ≤ 0}. As P is bounded and nonempty (w ∈ P ) by
Statement 2 ex(P ) 6= ∅. By Statement 3 ex(P ) ⊂ Qn. Thus, take some u ∈ ex(P ).
Clearly u ∈ L and ‖u− w‖ < ε.

III. Qn is dense in L =⇒ Qn is dense in L⊥.
Indeed: As L = L⊥⊥ ([4] § 62) Qn is dense in (L⊥)⊥ and use II. 2

Now, the main definition of this section follows.

Definition 6. (regular cone)
A closed cone K ⊂ Rn is called regular iff Qn is dense in K ∩ (−K), i. e.
Qn ∩K ∩ (−K) = K ∩ (−K).

Evidently, it holds:

Fact 10. Every pointed cone is regular, empty cone is regular.

Fact 11. Having P ⊂ Rn such that
a) u, v ∈ P =⇒ u + v ∈ P b) u ∈ P α ∈ Q+ =⇒ α · u ∈ P
it holds con(P ) = P .

Proposition 3. Let K be a closed cone. Then the following three conditions are
equivalent:
(i) K is regular
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(ii) ∀ a ∈ Rn \K ∃ p ∈ Qn ∩K∗ with 〈p, a〉 < 0
(iii) Qn is dense in K∗ (i. e. Qn ∩K∗ = K∗) .

P r o o f . (i) =⇒ (ii)
By Lemma 2 find q ∈ K∗ with 〈q, a〉 < 0 and [〈q, u〉 > 0 for u ∈ K \ (−K)]. Use
Lemma 3 to find the corresponding ε > 0 and by (i) and Lemma 4 find p ∈ Qn ∩L⊥

with ‖p− q‖ < ε.
(ii)=⇒ (iii)
The condition (ii) says (Qn ∩K∗)∗ ⊂ K. By Fact 4 K∗ ⊂ (Qn ∩K∗)∗∗ i. e. by Fact
6 and Fact 11 K∗ ⊂ con(Qn ∩K∗) = Qn ∩K∗, i. e. (iii) was shown.
(iii)=⇒ (i)
By Consequence 3 consider ∅ 6= V ⊂ K∗ open set in L⊥. By (iii) choose v ∈ Qn ∩ V
and find ε > 0 such that T = {w ∈ L⊥; ‖v − w‖ < ε} ⊂ V. Thus, supposing u ∈ L⊥

with ‖u‖ < ε we have v − u ∈ T and by (iii) find wk ∈ Qn ∩K∗ with wk → v − u,
i. e. v−wk ∈ Qn∩L⊥ converges to u. Any u ∈ L⊥ can be multiplied by some α > 0
to achieve ‖α · u‖ < ε. Together, Qn is dense in L⊥ and by Lemma 4 get (i) . 2

Thus, the separation hyperplane theorem for pointed cones can be strengthened
as follows.

Consequence 4. Having a pointed cone K ⊂ Rn, for every a ∈ Rn \ K there
exists r ∈ Zn such that [ ∀u ∈ K 〈r, u〉 ≥ 0 ] and 〈r, a〉 < 0.

P r o o f . Use Fact 10 and Proposition 3, take p ∈ Qn ∩K∗ from (ii) and consider
r = k · p where k ∈ N ensures r ∈ Zn. 2

Nevertheless, to illustrate the previous result an example of a nonregular closed
cone K such that Qn is dense in K is given.

Example. Consider n = 3 and put K = {(x1, x2, x3); x1 ≤ πx2} , where π is an
irrational number. Evidently K is a nonempty closed cone and Qn is dense in K
but K ∩ (−K) = {(x1, x2, x3); x1 = πx2} meets Qn in {(x1, x2, x3); x1 = x2 = 0}.

7. EXTREME RAYS

The concepts of ray and extreme ray are recalled in this section. It is shown that
(only) pointed cones have extreme rays and can be determined by means of the set
of extreme rays (Proposition 4).

Definition 7. (ray, extreme ray)
Let x ∈ Rn \ {0}. The set R = {α · x; α ≥ 0} is called the ray generated by x. Note
that every ray is generated by each its nonzero element.
Supposing K is a nonempty closed cone we say that a ray R ⊂ K is an extreme ray
of K iff

∀u, v ∈ K
1
2
(u + v) ∈ R =⇒ u, v ∈ R. (3)
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Fact 12. Having a nonempty closed cone K a ray R ⊂ K is an extreme ray of K iff

∀u, v ∈ K ∀α, β > 0 α · u + β · v ∈ R =⇒ u, v ∈ R (4)

Hint for necessity: Consider ũ = 2α · u, ṽ = 2β · v, as ũ, ṽ ∈ K apply (3).

To derive the above mentioned result the following lemma is needed.

Lemma 5. Let K ⊂ Rn be a pointed cone; suppose that q ∈ K∗ satisfies
[ 〈q, u〉 > 0 whenever u ∈ K \{0}] (see Proposition 2). Put T = {y ∈ K; 〈q, y〉 = 1}.
Then T is a compact convex set. Moreover, given e ∈ T the following two conditions
are equivalent:
(i) e is an extreme point of T
(ii) e generates an extreme ray of K.

P r o o f . I. T is compact and convex
Indeed: Denote S = {y ∈ Rn; ‖y‖ = 1}, S′ = {y ∈ S; 〈q, y〉 > 0}, Q = {y ∈ Rn;
〈q, y〉 = 1} and consider the mapping t : S′ → Q defined by y 7→t 〈q, y〉−1 · y.
To verify its continuity realize that y 7→ 〈q, y〉−1 is a continuous function. Clearly,
T = t(S′ ∩K). But S′ ∩K = S ∩K is compact (a closed subset of the compact set
S) and hence T is compact (for details [5], Chap. 5 Thms. 7, 8).
Moreover, T = Q ∩K implies that T is convex.

II. (i) =⇒ (ii)
Indeed: Suppose R = {α · e; α ≥ 0} u, v ∈ K 1

2 (u+ v) = α · e α ≥ 0. In case α = 0
get u,−u ∈ K and as K is pointed u = 0 and hence u, v ∈ R. Similarly in case
α > 0 and [u = 0 or v = 0]. Having u, v ∈ K \ {0} and α > 0 put β = 〈q, u〉, x =
β−1 · u, γ = 〈q, v〉, y = γ−1 · v. Clearly x, y ∈ T e = ( 1

2α−1β) · x + ( 1
2α−1γ) · v and

1 = 〈q, e〉 = 1
2α−1β〈q, x〉 + 1

2α−1β〈q, y〉 = 1
2α−1β + 1

2α−1γ. By (i) x = y = e, i. e.
u, v ∈ R.

III. (ii) =⇒ (i)
Indeed: Suppose e = γ ·x+(1−γ) ·y x, y ∈ T γ ∈ (0, 1). As x, y ∈ K using Fact 12
and (ii) get x, y ∈ {α · e, α ≥ 0}. Using x, y, e ∈ T derive x = y = e. 2

Proposition 4. Let {0} 6= K is a nonempty closed cone. Then K is pointed iff K
has extreme rays. Moreover, supposing that {0} 6= K is a nonempty pointed closed
cone and L ⊂ K is (any) set generating all its extreme rays it holds K = con(L).

P r o o f . I. K is not pointed =⇒ K has no extreme rays.
Indeed: Take u ∈ K ∩ (−K) \ {0}, consider a ray R generated by x 6= 0 and write
x = 1

2 (x− u) + 1
2 (x + u). Supposing that R is extreme get x + u = β · x for β ≥ 0.

But β = 1 implies u = 0 and β 6= 1 gives x ∈ Lin({u}) i. e. R is generated by u or
(−u). But u = 1

2 (3u) + 1
2 (−u) implies that R is not extreme.

II. {0} 6= K is pointed, L ⊂ K generates extreme rays =⇒ L 6= ∅ and K = con(L).
Indeed: Apply Lemma 5. K 6= {0} implies T 6= ∅ and by Statement 2 get ex(T ) 6= ∅.
Clearly ∀ e ∈ ex(T ) ∃ue ∈ L βe > 0 e = βe ·ue by our assumption about L hence
L 6= ∅. By Statement 2 ∀ y ∈ T ∃M ⊂ ex(T ) finite y =

∑
e∈M

αe · e where
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αe ≥ 0
∑

e∈M

αe = 1 i. e. T ⊂ con(L). Hence K\{0} ⊂ con(L) and finally K = con(L).

2

We conclude this section by an easy lemma which can be useful when searching
extreme rays.

Lemma 6. Suppose that z : Rn −→ Rn is a one-to-one linear mapping. A set
K ⊂ Rn is a pointed cone iff z(K) is a pointed cone. Having a fixed pointed cone
K ⊂ Rn a set R is an extreme ray of K iff z(R) is an extreme ray of z(K).

P r o o f . As z is continous and z(K) ∩ z(−K) = z(K ∩ (−K)) the first part is
easy. Evidently R is the ray generated by an element x ∈ Rn \{0} iff z(R) is the ray
generated by z(x). Finally, it makes no problem to ‘shift’ the validity of (3) from R
to z(R). 2

8. PYRAMIDS

Special types of cones, namely pyramids and rational pyramids are studied in this
section. Firstly, both concepts are introduced and pointed pyramids are character-
ized as pointed cones with finite number of extreme rays (Consequence 5). Then
pyramids are equivalently characterized as dual cones of finite sets, resp. rational
pyramids as dual cones of finite sets of rational vectors (Proposition 5). Hence easily
follows that a closed cone is a (rational) pyramid iff its dual cone is a (rational) pyra-
mid and every rational pyramid is a regular cone (Consequence 6, 7). Afterwards,
a special separation hyperplane theorem for pointed rational pyramids enabling us
to distinguish extreme rays is derived (Consequence 8). The section is concluded by
the concept of exhaustive set which is used to characterize sets whose dual cones are
pointed rational pyramids (Lemma 8).

Definition 8. (pyramid, rational pyramid)
A set K ⊂ Rn is called a pyramid iff K = con(L) where L ⊂ Rn is finite. If there
exists L ⊂ Qn finite such that K = con(L), then K is called a rational pyramid.

Note that owing to:

Fact 13. ∀ q ∈ Qn ∃ 0 6= β ∈ Q+ ∃ z ∈ Zn q = β · z

It is easy to see:

Fact 14. K ⊂ Rn is a rational pyramid iff K = con(E) for finite E ⊂ Zn.

The further fact follows from Proposition 1:

Fact 15. Every pyramid is a closed cone.

Proposition 4 implies an easy criterion to recognize whether a pointed cone is a
pyramid:
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Consequence 5. Let K be a pointed cone. Then
a) K is a pyramid iff K has finitely many extreme rays,
b) K is a rational pyramid iff K has finitely many extreme rays and all of them are

generated by elements of Qn.

P r o o f . Suppose K 6= {0} (otherwise trivial). The sufficiency follows from
Proposition 4. For the necessity suppose K = con(L) where L is finite. To show
that every extreme ray R (generated by x 6= 0) has nonempty intersection with
L \ {0} write x = (

∑
u∈L\{v}

αu · u) + αv · v where αu ≥ 0, v ∈ L \ {0}, αv > 0

and by Fact 12 get v ∈ R. As L \ {0} has finitely many nonempty subsets and the
mapping R → R ∩ L \ {0} is one-to-one, K has finitely many extreme rays. 2

The aim of this section is to prove an important equivalent definition of pyramid
for the case that cones are given as dual cones. To show it the following fact will be
used.

Fact 16. Supposing K is a pyramid (resp. a rational pyramid) it holds K∗ = L∗

where L ⊂ Rn (resp. L ⊂ Qn) is finite.

Hint: In case K = con(L) use Fact 8 to get K∗ = con(L)∗ = L∗.

Proposition 5. Suppose K ⊂ Rn. Then
a) K is a nonempty pyramid iff K = L∗ where L ⊂ Rn is finite,
b) K is a nonempty rational pyramid iff K = L∗ where L ⊂ Qn is finite.

P r o o f . I. K = L∗ where L ⊂ Rn (resp. L ⊂ Qn) is finite =⇒ K is a pyramid
(resp. rational one).
Indeed: Put Q = {x ∈ Rn; ∀ j = 1, . . . , n − 1 ≤ xj ≤ 1}, P = K ∩ Q. P can be
written as {v ∈ Rn; ∀ r ∈ L 〈−r, v〉 ≤ 0 ∀ j = 1, . . . , n vj ≤ 1 − vj ≤ 1}, i. e.
P is a nonempty bounded polyhedron. By Statement 3 the set of extreme points
ex(P ) is finite (resp. ex(P ) ⊂ Qn is finite). Put T = con(ex(P )). Evidently T ⊂ K.
Conversely, having u ∈ K find α > 0 and v ∈ P with u = α · v. By Statement 2
v =

∑
w∈ex(P )

βw · w where βw ≥ 0
∑

w∈ex(P )

βw = 1 and hence u ∈ T. Thus, K = T

i. e. K is a pyramid (resp. rational one).
II. K 6= ∅ is a pyramid (resp. rational one ) =⇒ K = L∗ where L ⊂ Rn (resp.

L ⊂ Qn) is finite.
Indeed: K is a pyramid (resp. rational one ) implies by Fact 16 that K∗ = M∗ where
M ⊂ Rn (resp. M ⊂ Qn) is finite. Using part I get that K∗ is a pyramid (resp.
rational one). Use Fact 16 once more for K∗ to derive K∗∗ = L∗ where L ⊂ Rn

(resp. L ⊂ Qn) is finite. But Fact 15 and Consequence 1 imply K = K∗∗. 2

Note that the result saying that every pyramid is a dual cone of a finite set proved
in Proposition 5a is very old (it is an easy consequence of the main theorem from
[9]).
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Consequence 6. Suppose that K ⊂ Rn is a closed cone. Then it holds:
a) K is a pyramid iff K∗ is a pyramid,
b) K is a rational pyramid iff K∗ is a rational pyramid.

P r o o f . The necessity follows from Fact 16 and Proposition 5. In case K 6= ∅
the necessity also yields the sufficiency by means of Consequence 1 (K = K∗). 2

Consequence 7. Every rational pyramid is a regular cone.

P r o o f . Consider a rational pyramid K, by Consequence 6 K∗ = con(L) where
L ⊂ Qn is finite. Put V = {∑

t∈L

βt · t ; βt ∈ Q+ }, evidently V = K∗ i. e. Qn is dense

in K∗ and by Proposition 3 K is regular. 2

Lemma 7. Let K ⊂ Rn be a pointed pyramid and R its extreme ray. Then there
exists t ∈ Rn such that [ 〈t, x〉 = 0 for every x ∈ R ] and [ 〈t, s〉 > 0 for all s
generating the other extreme rays ].

P r o o f . By Proposition 2 find q ∈ Rn with [ 〈q, u〉 > 0 for u ∈ K \ {0} ] and put
T = {y ∈ K; 〈q, y〉 = 1}. Take the uniquely determined r ∈ R ∩ T (see Lemma 5)
and put K̃ = con(E \ {r}) where E denotes the set of extreme points of T . In case
E \ {r} 6= ∅ by Statement 1 find p ∈ K̃∗ with 〈p, r〉 < 0. It makes no problem to see
that t = p−〈p, r〉·q satisfies both 〈t, r〉 = 0 and 〈t, e〉 ≥ −〈p, r〉 > 0 for all e ∈ E\{r} .
The rest follows from Lemma 5. 2

Consequence 8. Let K ⊂ Rn be a pointed rational pyramid and R its extreme
ray. Then there exists q ∈ Qn such that [ 〈q, r〉 = 0 for all r ∈ R ] and [ 〈q, x〉 > 0
for all x generating the other rays of K].

P r o o f . Let r0 generates R, by Consequence 5bQn is dense in L = {α·r0 ; α ∈ R }
and by Lemma 4 Qn is dense in L⊥. By Lemma 7 there exists t ∈ L⊥ such that
〈t, s〉 > 0 for all s ∈ S where S denotes the set of points s generating the remaining
extreme rays and specified by the requirement ‖s‖ = 1. Find q ∈ Qn ∩ L⊥ with
‖q − t‖ < min{〈s, t〉 ; s ∈ S } (S is finite!) and the inequality |〈s, t〉 − 〈s, q〉| ≤
‖s‖ · ‖q− t‖ ≤ 〈s, t〉 implies 〈s, q〉 > 0 for each s ∈ S. Whenever x generates another
ray of K write x =

∑
s∈S

αs · s + αr · r where αi ∈ R+, necessarily αs > 0 for some

s ∈ S and hence 〈q, x〉 ≥ αs · 〈q, s〉 > 0. 2

Note that the preceding result does not hold for general pointed cones:

Example. Consider n = 3 and put K = con(L) where
L = { (x1, x2, x3) ; x1

2 + x2
2 ≤ 1 x3 = 1 } ∪ { (−1,−1, 1) , (−1, 1, 1) }

(the base of this cone is a circle with an attached oblong). Consider the ray generated
by r = (0, 1, 1). The only q ∈ K∗ with 〈q, r〉 = 0 satisfies 〈q, x〉 = 0 for x = (−1, 1, 1)
generating another extreme ray of K.

Definition 9. (exhaustive set)
A set E ⊂ Rn is called exhaustive iff E∗ ∩ (−E∗) ∩ Zn = {0}, i. e.
∀ z ∈ Zn [ ∀ e ∈ E 〈z, e〉 = 0 ] =⇒ z = 0.
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Lemma 8. a) Whenever E ⊂ Zn is finite exhaustive it holds E∗ ∩ (−E∗) = {0}.
b) Supposing that K ⊂ Rn is a closed cone the following conditions are equivalent:

(i) K = con(E) where E ⊂ Zn is a finite exhaustive set
(ii) K∗ is a pointed rational pyramid.

P r o o f . a) Put K = con(E); it is a rational pyramid. By Fact 8 K∗ = E∗.
Using Consequences 6b and 7 derive that K∗ is a regular cone. The exhaustivity
assumption says K∗ ∩ (−K∗)∩Zn = {0}, hence by Fact 13 {0} = K∗ ∩ (−K∗)∩Qn

and {0} = K∗ ∩ (−K∗) ∩Qn = K∗ ∩ (−K∗) = E∗ ∩ (−E∗).
b) The implication (i) =⇒ (ii) has been already proved above; supposing (ii) by
Consequence 6b K is a rational pyramid, hence by Fact 14 K = con(E) for some
finite E ⊂ Zn; Fact 8 says K∗ = E∗ and hence E∗∩(−E∗)∩Zn ⊂ K∗∩(−K∗) = {0}
gives the exhaustivity. 2

9. QUASIORDERINGS OF INTEGER VECTORS

The focus of study of this section are restrictions of closed cones (and hence the
corresponding quasiorderings) to Zn – the class of integer vectors. Firstly, intersec-
tions of Zn with (general) closed cones are characterized (Lemma 9). Further result
(Proposition 6) identifies them with regular cones and shows that the correspondence
is antitonne.

The method of establishing of quasiorderings (see the 9.Introduction) for integer
vectors leads to the concept of cover (Definition 10, in fact the set of conical com-
binations with rational coefficients). The cover is shown to be equal to intersection
of Zn with conic hull (Lemma 10). On the other hand, the method of inducing of
quasiorderings for integer vectors suggests to intersect Zn with a dual cone. Propo-
sition 7 says that quasiordering on Zn is finitely inducable iff it coincides with the
cover of a finite set or iff it is given by a rational pyramid. In the second part of
this proposition the existence of the least set of normalized integer vectors inducing
such quasiorderings is proved in certain special case, namely that the quasiordering
is established by an exhaustive set. Moreover, elements of this least inducing set
can be distinguished by integer vectors which are positive with respect to the qua-
siordering. Certain method to achieve elements of this least inducing set is indicated
by Lemma 12.

Finally, Proposition 8 characterizes similarly orderings given by rational pyra-
mids. The existence of the least set of normalized integer vectors establishing such
orderings is proved there too.

Lemma 9. Supposing L ⊂ Zn the following two conditions are equivalent:
(i) L = K ∩ Zn for some nonempty closed cone K
(ii) L satisfies the following three conditions:

u, v ∈ L =⇒ u + v ∈ L (β.1)
uk ∈ L u ∈ Zn βk, β ∈ N β−1

k · uk → β−1 · u =⇒ u ∈ L (β.2)
0 ∈ L (β.3)

P r o o f . The implication (i) =⇒ (ii) is easy to see. To show (ii) =⇒ (i) put P =
{α · v; v ∈ L α ∈ Q+}. Using (β.1) and Fact 11 get P = con(P ). It remains to
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see L = P ∩ Zn. Clearly, L ⊂ P ∩ Zn. Conversely, take u ∈ P ∩ Zn and consider
uk ∈ L, αk ∈ Q+ with αk · uk → u. In case u = 0 use (β.3). Supposing u 6= 0 find
a nonzero component uj 6= 0 of u (j ∈ {1, . . . , n}). For large indices k the numbers
(uk)j have the same sign as uj . In case uj > 0 put βk = (uk)j β = uj (otherwise
βk = −(uk)j , β = −uj) and as αkβk → β > 0 use (β.2) to derive u ∈ L. 2

Intersections of Zn with closed cones can be understood as quasiorderings on Zn.
The following result identifies them with regular cones. Note that by Consequence
1 K is a nonempty closed cone iff it has the form B∗ for some B ⊂ Rn.

Proposition 6. a) Whenever L = Zn ∩ B∗ where B ⊂ Rn then K = (Zn ∩B∗)∗

is a regular cone satisfying L = Zn ∩K∗.
b) Whenever K1, K2 are regular cones, then Zn ∩K∗

1 ⊂ Zn ∩K∗
2 is equivalent with

K2 ⊂ K1. Especially, the regular cone mentioned in a) is uniquely determined.

P r o o f . a) Clearly by Fact 5 Zn∩B∗ ⊂ (Zn ∩B∗)∗∗ = K∗. Conversely, by Fact
4 and Fact 7 Zn∩K∗ ⊂ K∗ = (Zn ∩B∗)∗∗ ⊂ B∗∗∗ = B∗. Thus Zn∩B∗ = Zn∩K∗.
Hence, by Fact 4, Fact 6 and Fact 11
K∗ = (Zn ∩B∗)∗∗ ⊂ (Qn ∩K∗)∗∗ = con(Qn ∩K∗) = Qn ∩K∗, i. e. K is a regular
cone by Fact 3 and Proposition 3(iii).

b) By Fact 4 K2 ⊂ K1 implies Zn ∩ K∗
1 ⊂ Zn ∩ K∗

2 . Conversely, supposing
Zn ∩K∗

1 ⊂ Zn ∩K∗
2 consider x ∈ K2 \K1. By Proposition 3(ii) find p ∈ Qn ∩K∗

1

with 〈p, x〉 < 0. Using Fact 13 find z ∈ Zn ∩K∗
1 with 〈z, x〉 < 0 and this contradicts

the assumption. 2

To characterize rational pyramids in Zn the following concept of cover will be
used.

Definition 10. (cover)
Let L ⊂ Zn. Introduce its cover denoted by cov(L) as follows:
cov(L) = {u ∈ Zn; u =

∑
v∈K

βv · v where ∅ 6= K ⊂ L is finite βv ∈ Q+ }.

Fact 17. Having L ⊂ Zn it holds
cov(L) = {u ∈ Zn; k · u =

∑
v∈K

λv · v where ∅ 6= K ⊂ L is finite k ∈ N λv ∈ Z+ }.

Lemma 10. Suppose that L ⊂ Zn.
a) Then cov(L) = con(L) ∩ Zn.
b) If moreover ∅ 6= L is finite, then cov(L) = Zn ∩ L∗∗.

P r o o f . Clearly cov(L) ⊂ con(L)∩Zn. Conversely, having u ∈ con(L)∩Zn write

u =
k∑

i=1

βi · vi where vi ∈ L βi ∈ R+ i = 1, . . . , k. Fix the vector (β1, . . . , βk) and

find (γ1, . . . , γk), (δ1, . . . , δk) ∈ Qk such that 0 ≤ γi ≤ βi ≤ δi for i = 1, . . . , k and
put:
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P = {(x1, . . . , xk) ∈ Rk; ∀ i = 1, . . . , k xi ≤ δi − xi ≤ −γi

∀ j = 1, . . . , n
k∑

i=1

xi(vi)j ≤ uj

k∑
i=1

xi(−vi)j ≤ −uj}.
As (β1, . . . , βk) ∈ P it is a nonempty bounded polyhedron. By Statement 2 P has an
extreme point (α1, . . . , αk) and by Statement 3 (α1, . . . , αk) ∈ Qk. But (α1 . . . , αk) ∈
P means u =

k∑
i=1

αi · vi i. e. u ∈ cov(L).

b) By Proposition 1 and Fact 6 con(L) = con(L) = L∗∗. 2

To ensure the uniqueness of the least set of establishing (resp. inducing) integer
vectors the following concept is needed.

Definition 11. (normalized integer vector)
Denote by Zn

norm the class of all vectors u ∈ Zn such that the collection of its
components u1, ..., un has no common prime divisor (especially 0 /∈ Zn

norm).

We mention several facts about Zn
norm:

Fact 18. ∀ z ∈ Zn \ {0} ∃m ∈ N z ∈ Zn
norm z = m · z.

Fact 19. ∀ z1, z2 ∈ Zn
norm [ k · z1 = l · z2 for k, l ∈ N ] =⇒ z1 = z2.

Fact 20. Every ray contains at most one element of Zn
norm.

Lemma 11. Suppose that E ⊂ Zn is finite and exhaustive with E∗ 6= {0}.
a) The following two conditions are equivalent for K ⊂ Rn:

(i) con(K) = E∗

(ii) cov(E) = Zn ∩K∗.
b) Define A as the set of all elements a ∈ Zn ∩ E∗ \ {0} satisfying

[ k · a = z1 + z2 k ∈ N z1, z2 ∈ Zn ∩ E∗ ] =⇒ [∃ l ∈ Z+ z1 = l · a ] (5)

Then the set A is finite and it is the least subset of Zn
norm such that con(A) = E∗.

P r o o f . a) I. In case K = ∅ (i) is untrue by Consequence 1 and (ii) by Fact 8
contradicts the assumption E∗ 6= {0}. Thus suppose K 6= ∅ in the sequel.

II. (i) =⇒ (ii)
By Fact 8, (i), Fact 6 and Proposition 1 write K∗ = con(K)∗ = E∗∗ = con(E) =
con(E). Then use Lemma 10a.

III. (ii) =⇒ (i)
Certainly E ⊂ cov(E) ⊂ K∗ implies by Fact 4 K∗∗ ⊂ E∗. Thus by Fact 6 the first
inclusion con(K) ⊂ E∗ is shown. By Lemma 8a {0} ⊂ K∗∗∩(−K∗∗) ⊂ E∗∩(−E∗) =
{0} derive that K∗∗ is pointed and therefore by Fact 10 regular. By Proposition 3(iii)
and Fact 7 get K∗ = Qn ∩K∗. Nevertheless (ii) says Zn ∩K∗ ⊂ cov(E) ⊂ con(E)
hence (Fact 13) Qn ∩K∗ ⊂ con(E) and further K∗ = Qn ∩K∗ ⊂ con(E). Hence by
Fact 8, Fact 4 and Fact 6 E∗ = con(E)∗ ⊂ K∗∗ = con(K).

b) IV. A ⊂ Zn
norm.

Whenever a ∈ A then by Fact 18 a = m · a for m ∈ N, a ∈ Zn
norm. Put k = 1, z1 =
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a, z2 = (m− 1) · a in (5) and derive a = z1 = l · a = lm · a for l ∈ Z+. Necessarily
l ∈ N and hence l = m = 1 says a = a.

V. There exists finite K ⊂ Zn
norm with con(K) = E∗.

By Proposition 5 and Fact 14 E∗ = con(T ) for finite T ⊂ Zn. Using Fact 18 for each
z ∈ T \{0} find βz ∈ N and z ∈ Zn

norm with z = βz ·z; then put K = {z ; z ∈ T \{0} }.
VI. Whenever K ⊂ Zn

norm with con(K) = E∗ then A ⊂ K.
By Lemma 10 Zn ∩E∗ = Zn ∩ con(K) = cov(K), hence by Fact 17 every a ∈ A can
be decomposed: k · a =

∑
v∈K′

γv · v for ∅ 6= K ′ ⊂ K γv ∈ Z+ k ∈ N. As a 6= 0 there

exists v ∈ K ′ with γv ∈ N ; put z1 = v z2 = k · a − v, evidently zi ∈ Zn ∩ E∗ and
by (5) z1 = l · a for some l ∈ Z+. Clearly l ∈ N (0 /∈ Zn

norm) and hence by Fact 19
and IV z1 = a.

VII. If [ K ⊂ Zn
norm is finite with E∗ = con(K) z ∈ K \ A ] then E∗ =

con(K \ {z}).
Clearly z ∈ E∗ ∩ Zn \ {0}. As z /∈ A find k ∈ N zi ∈ Zn ∩ E∗ such that [k · z =
z1 + z2 & ∀ l ∈ Z+ z1 6= l · z]. By Lemma 10 Zn ∩ E∗ = Zn ∩ con(K) = cov(K)
and therefore by Fact 17 write ki · zi =

∑
v∈K

γi
v · v for ki ∈ N, γi

v ∈ Z+ (i = 1, 2)

Hence easily get k k1 k2 · z =
∑

v∈K

(k1 γ2
v + k2 γ1

v) · v. In case kk1k2 ≤ k1γ2
z + k2γ1

z

simply get ∀ v ∈ K \ {z} γ1
v · v ∈ E∗ ∩ (−E∗) ∩ Zn and therefore (the exhaustivity)

γ1
v = 0. Thus k1 · z1 = γ1

z · z and by Fact 19 it contradicts [∀ l ∈ Zn z1 6= l · z ].
Therefore kk1k2 > k1γ2

z +k2γ1
z and z ∈ con(K \{z}). Hence K ⊂ con(K \{z}) says

E∗ = con(K) ⊂ con(K \ {z}) ⊂ con(K).
VIII. By V find K ⊂ Zn

norm finite with con(K) = E∗. By VII remove all elements
of K \A saving con(K) = E∗. Owing to VI exactly A remains. Thus A is finite and
satisfies con(A) = E∗. The rest follows from VI. 2

Proposition 7.
a) Let L ⊂ Zn. Then the following three conditions are equivalent :

(i) L = Zn ∩K where ∅ 6= K ⊂ Rn is a rational pyramid
(ii) L = cov(E) for finite ∅ 6= E ⊂ Zn

(iii) L = Zn ∩M∗ for M ⊂ Zn finite.
b) Supposing that E ⊂ Zn is finite and exhaustive there exists the least finite
A ⊂ Zn

norm such that cov(E) = Zn ∩A∗. Moreover, it holds

∀ a ∈ A ∃u ∈ Zn 〈a, u〉 = 0 & [ ∀ s ∈ A \ {a} 〈s, u〉 > 0 ] (6)

P r o o f . a) (i)⇐⇒ (ii) easily follows from Lemma 10a and Fact 14, (i)⇐⇒ (iii) is
an easy consequence of Proposition 5b and Fact 13.

b) The statement is easy in case E∗ = {0}: by Lemma 10b cov(E) = Zn ∩E∗∗ =
Zn, it suffices to take A = ∅. Thus, suppose E∗ 6= {0} and by Lemma 11b take
the least set A ⊂ Zn

norm with con(A) = E∗. By Proposition 1 and Lemma 11a get
cov(E) = Zn ∩ A∗. Whenever M ⊂ Zn

norm is finite with cov(E) = Zn ∩M∗ by the
same argument get con(M) = con(M) = E∗ and hence A ⊂ M by Lemma 11b.
Further, by Proposition 5b E∗ is a rational pyramid and by Lemma 8 a pointed
cone. Therefore by Consequence 5b every of finite number of its extreme rays is
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generated by an element of Qn and thus by Facts 13, 18, 20 by the unique element
of Zn

norm; denote this finite subset of Zn
norm by B. Proposition 4 says E∗ = con(B)

and by Lemma 11b A ⊂ B. Having a ∈ A ⊂ B apply Consequence 8 to find q ∈ Qn

with 〈q, a〉 = 0 and [∀ a ∈ A \ {a} 〈q, a〉 > 0 ], then use Fact 13. 2

Having a concrete finite exhaustive E ⊂ Zn you can sometimes face the problem
to find the least finite A ⊂ Zn

norm with con(E) = Zn ∩A∗ (see Proposition 7b). The
characterization of A from Lemma 11b (namely the condition (5)) is too clumsy for
this purpose. Below a more convenient equivalent definition is given.

Definition 12. (portrait)
Having finite exhaustive E ⊂ Zn with E∗ 6= {0} for each s ∈ E∗ introduce its
portrait Es (in E) as follows: Es = {u ∈ E ; 〈s, u〉 > 0}.

Lemma 12. Suppose that E ⊂ Zn is finite and exhaustive with E∗ 6= {0}. An
element a ∈ Zn

norm ∩ E∗ satisfies the condition (5) from Lemma 11b iff its portrait
in E is minimal within Zn

norm ∩ E∗ i. e. it holds:

∀ s ∈ Zn
norm ∩ E∗ Es ⊂ Ea =⇒ Es = Ea (7)

P r o o f . I. ∀ r, s ∈ Zn ∩ E∗ Es ⊂ Er ⇐⇒ [∃ k ∈ N k · r − s ∈ E∗ ].
The sufficiency is trivial, for necessity find (for each u ∈ E) ku ∈ N with ku · 〈r, u〉 ≥
〈s, u〉 and put k = max{ku; u ∈ E}.

II. a ∈ A =⇒ [∀ s ∈ Zn
norm ∩ E∗ Es ⊂ Ea =⇒ s = a ] =⇒ (7).

By I find k ∈ N with k · a− s ∈ E∗ and put z1 = s z2 = k · a− s; as a ∈ A by (5)
s = z1 = l · a for l ∈ Z+, necessarily l ∈ N and by Fact 19 s = a.

III. ∀ s ∈ Zn
norm ∩ E∗ ∃ a ∈ A Ea ⊂ Es.

By Lemma 11b E∗ = con(A), i. e. Zn ∩ E∗ = cov(A) by Lemma 10a, decompose s
as suggested in Fact 17, choose a ∈ A with nonzero coefficient and apply I.

IV. a ∈ Zn
norm ∩ E∗ satisfies (7) =⇒ a ∈ A.

Using III find b ∈ A with Eb ⊂ Ea. Owing to (7) Eb = Ea and by II (take b instead
of a) get a = b, i. e. a ∈ A. 2

The corresponding version of Proposition 7 for pointed rational pyramids follows.

Proposition 8. Let L ⊂ Zn.
a) Then the following four conditions are equivalent :

(i) L = K ∩ Zn where K 6= ∅ is a pointed rational pyramid
(ii) L = cov(A) for finite ∅ 6= A ⊂ Zn such that [∃ q ∈ Rn 〈q, u〉 > 0 for

u ∈ A \ {0}]
(iii) L ∩ (−L) = {0} and L = cov(A) for finite ∅ 6= A ⊂ Zn

(iv) L = Zn ∩M∗ where M ⊂ Zn is finite and exhaustive.
b) Whenever any of preceding conditions is satisfied there exists the least subset
E ⊂ Zn

norm satisfying L = cov(E) (naturally finite by (iii)).

P r o o f . a) (i)=⇒ (ii)
By Fact 14 and Fact 1 K = con(A) with finite ∅ 6= A ⊂ Zn. As K is pointed by
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Proposition 2 there exists q ∈ Rn such that [〈q, u〉 > 0 whenever u ∈ K \ {0}]. Then
use Lemma 10a.
(ii)=⇒ (iii) is evident as 〈q, u〉 > 0 whenever u ∈ cov(A) \ {0}.
(iii)=⇒ (iv) use Proposition 7a and M∗ ∩ (−M∗) ∩ Zn ⊂ L ∩ (−L).
(iv)=⇒ (i) By Lemma 8b M∗ is a pointed rational pyramid.

b) By Consequence 5b every of finite number of extreme rays of K intersects Qn

and therefore by Facts 13, 18 also Zn
norm, by Fact 20 this element is unique. Define

E as the set of these elements, by Proposition 4 K = con(E) and using Lemma 10a
L = cov(E). Moreover, having Ẽ ⊂ Zn

norm with L = cov(Ẽ) consider x ∈ E and
write
x =

∑
v∈F

βv · v + βu · u where F ⊂ Ẽ is finite, u ∈ Ẽ \ {0}, βv ∈ Q+, 0 < βu ∈ Q.

Consider the ray R generated by x, using Fact 12 u ∈ R, by Fact 20 x = u, i. e.
x ∈ Ẽ. Therefore E ⊂ Ẽ. 2

10. CONCLUSION

Let us give a short summary of the main results of the paper.

Proposition 2 gives an equivalent definition of pointed cones, similarly Proposition
3 gives equivalent definitions of regular cones and Proposition 5 equivalent definitions
of pyramids and rational pyramids. Note that every rational pyramid is a regular
cone according to Consequence 7.

Regular cones are shown in Proposition 6 to correspond to quasiorderings of inte-
ger vectors. Two equivalent definitions of such orderings corresponding to rational
pyramids are derived in Proposition 7. Moreover, the existence of a uniquely deter-
mined finite set inducing this ordering is proved and “separation property” of this
set shown. Especially these results are utilized in [8].

Proposition 8 gives equivalent definitions of orderings of integer vectors corre-
sponding to rational pyramids and shows that they can be established by means of
a uniquely determined finite set of normalized integer vectors.
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I am indebted to F.Matúš and J. Fuka whose comments helped me to improve the presen-
tation.

(Received May 18, 1992.)

REFE REN CES

[1] S.A. Ashmanov: Linear Programming (in Russian). Nauka, Moscow 1981.
[2] A. Brøndsted: An Introduction to Convex Polytopes. Springer-Verlag, New York –

Berlin – Heidelberg – Tokyo 1983. Russian translation: Mir, Moscow 1988.
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