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ON FACTORIZATIONS OF PROBABILITY
DISTRIBUTIONS OVER DIRECTED GRAPHS

Frantǐsek Matúš and Bernhard Strohmeier

Four notions of factorizability over arbitrary directed graphs are examined. For acyclic
graphs they coincide and are identical with the usual factorization of probability distribu-
tions in Markov models. Relations between the factorizations over circuits are described in
detail including nontrivial counterexamples. Restrictions on the cardinality of state spaces
cause that a factorizability with respect to some special cyclic graphs implies the factoriz-
ability with respect to their, more simple, strict edge-subgraphs. This gives sometimes the
possibility to break circuits and get back to the acyclic, well-understood case.

1. INTRODUCTION

During the last two decades graphs have been intensively employed to specify models
for associations among random variables. Vertices of the graphs correspond to the
variables and various types of edges give usually rise to assumptions on conditional
independences or on the form of factorizations of probability distributions, see [4],
[10] and [2]. Though the focus has been mainly on acyclic or modularly acyclic
graphs, a progress has been reported also on models with feedback, see [7]. Even
an elegant generalization of the close relation between the Markov properties and
Gibbs factorizations, see [5] and [6], was achieved for a very general class of graphs.

For acyclic directed graphs, the widely accepted models are defined by the recur-
sive factorization formula that consists of the product of Markov kernels depending,
in the condition, on parental vertices. The formula does not necessarily provide a
probability distribution when extended mechanically on arbitrary directed graphs.
The starting point of this note was our endeavour to understand those cases when a
probability distribution does come out and to describe the class of probability dis-
tributions obtained in this way; they are called recursively factorizable here. On the
way, three other kinds of factorizations were found to be of some interest, namely a
marginal, consistent and projective one.

By absence of cycles, the four kinds of factorizations coincide and bring nothing
new. The marginal and consistent factorizations lead sometimes to trivial classes of
models, see Lemma 2.3. The relation between the projective and recursive factoriza-
tions reminds the old classical question about the existence of a positive eigenvector
of a stochastic matrix, cf. Example 3.3.

The main attention is focused here on circuits. Under binarity restrictions on
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cardinality of the state spaces of variables, factorizability over a circuit is proved to
imply factorizability over a path in the circuit, see Theorem 4.3. This phenomenon,
called here arrow erasure, occurs also for noncircuits, cf. Lemma 4.6.

2. BASIC OBSERVATIONS

Let V be a finite nonempty set of vertices and E ⊂ {(u, v) ∈ V × V ; u 6= v} be a
set of arrows. The pair G = (V,E) is called here graph; usually one speaks about
the “directed graph without loops and multiple edges”. Two opposite arrows (u, v)
and (v, u) are allowed at the same time. For every v ∈ V the elements of the set
pa(v) = {u ∈ V ; (u, v) ∈ E} are the parents of v and cl(v) = v ∪ pa(v). We make
no difference between elements v and singletons {v} of V.

With every vertex v ∈ V, a finite nonempty state space Xv is associated and XA

stands for the Cartesian product of Xv over v ∈ A where A ⊂ V is any vertex set.
Elements of XA are denoted by xA; for A = V the subindices are omitted and for
A = ∅ the set X∅ is supposed to have only one element x∅. The coordinate projection
of X on XA works as x→ xA. Marginals of a probability distribution PA on XA are
denoted as PBA , B ⊂ A.

Definition 2.1. A probability distribution P on X factorizes w.r.t. G = (V,E)

recursively if P (x) =
∏
v∈V ψv(x

v|xpa(v)), x ∈ X,
for some nonnegative functions ψv on Xv ×Xpa(v), henceforth
kernels, such that

∑
yv∈Xv

ψv(yv|xpa(v)) = 1, xpa(v) ∈ Xpa(v),

projectively if P (x) =
∏
v∈V

[
Qv(xcl(v))/Q

pa(v)
v (xpa(v))

]
, x ∈ X,

for some probability distributions Qv on Xcl(v), v ∈ V, such

that the projectivity conditions Q
pa(u)∩cl(v)
u = Q

pa(u)∩cl(v)
v take

place for any u, v ∈ V,
consistently if P (x) =

∏
v∈V

[
Qcl(v)(xcl(v))/Qpa(v)(xpa(v))

]
, x ∈ X,

for some probability distribution Q on X,

marginally if P (x) =
∏
v∈V

[
P cl(v)(xcl(v))/P pa(v)(xpa(v))

]
, x ∈ X,

where 0 in a denominator occurs only with 0 in the corresponding numerator and
the ratio is then taken as equal to 0.

If a probability distribution P is marginally factorizable w.r.t. a graph then it
has obviously a consistent factorization w.r.t. the same graph via Q = P. If P
is consistently factorizable via Q then it must be also projectively factorizable via
Qv = Qcl(v), v ∈ V. In symbols, MF⇒CF⇒PF . For (everywhere) positive probability
distributions the implication PF⇒RF holds, defining the kernels ψv obviously as
(xv|xpa(v)) → Qv(xv, xpa(v))/Q

pa(v)
v (xpa(v)) for all v ∈ V .

The following lemma describes factorizations w.r.t. acyclic graphs; G = (V,E) is
called acyclic if every its path v1, . . . , vn+1, n ≥ 1, has v1 6= vn+1. Here the path is
a sequence of vertices such that (vi, vi+1) ∈ E, 1 ≤ i ≤ n.
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Lemma 2.2. The four kinds of factorizations w.r.t. any acyclic graph coincide.

P r o o f . It suffices to show PF⇒RF⇒MF and this will be done by induction on
the cardinality n of the vertex set. For n = 1 every probability distribution on X is
factorizable in any of the four ways. Let us assume that the implications are valid
for all acyclic graphs with n ≥ 1 vertices and let G = (V,E) be an acyclic graph
with n + 1 vertices. A terminal vertex u ∈ V ((u, v) /∈ E for all v ∈ V ) of G exists
and is fixed arbitrarily.

Let a probability distribution P be PF w.r.t. G via some distributions Qv, v ∈ V.
Then PV−u(xV−u) for xV−u ∈ XV−u equals 0 or

P̂V−u(xV−u) =
∏

v∈V−u
Qv(x

cl(v)
V−u)/Q

pa(v)
v (xpa(v)V−u )

according to whether Qpa(u)
u (xpa(u)

V−u ) equals zero or not, respectively. We are going to
show that Qpa(u)

u (xpa(u)
V−v ) = 0 implies P̂V−u(xV−u) = 0. In fact, in the opposite case

we would have
∑
x∈X P (x) <

∑
xV−u∈XV−u

P̂ (xV−u) and, continuing with P̂V−u
over (V − u,E ∩ (V − u)2), a repetition of this reasoning would lead to 1 < 1. We
conclude PV−u = P̂V−u whence the marginal PV−u is PF via Qv, v ∈ V − u. By
induction, PV−u is RF via some ψv, v ∈ V − u. Adding the kernel ψu defined by
ψu(xu|xpa(u)) = Qu(xu, xpa(u))/Q

pa(u)
u (xpa(u)) if the denominator is positive and by

ψu(xu|xpa(u)) = |Xu|−1 otherwise, the probability distribution P is RF w.r.t. G via
ψv, v ∈ V.

If P is RF w.r.t. G via some kernels ψv, v ∈ V, then the marginal distribution
PV−u factorizes recursively with respect to (V − u,E ∩ (V − u)2) through the ker-
nels ψv, v ∈ V − u. Obviously, P (x) equals PV−u(xV−u)ψu(xu|xpa(u)) and then
P cl(u)(xcl(u)) = P pa(u)(xpa(u))ψu(xu|xpa(u)), x ∈ X, by marginalization. The induc-
tion assumption implies that PV−u is MF and this factorization combined with the
previous two equalities yield the MF of P w.r.t. G. Note that P pa(u)(xpa(u)) = 0
entails P (x) = PV−u(xV−u) = 0. 2

Due to Lemma 2.2 all factorizations from Definition 2.1 are generalizations of
the usual recursive factorization in the Markov models over acyclic graphs, see [4].
Whereas the way to the definitions of MF and RF was straightforward, the defini-
tions of CF and PF emerged later as alternatives to the MF behaving sometimes
“pathologically”. An example of this behaviour follows.

Lemma 2.3. Let Kn = (V,E) where V = {1, 2, . . . , n}, n ≥ 1, and let E contain
all arrows (u, v) with different endpoints u, v ∈ V . A probability distribution P on
X is MF w.r.t. Kn if and only if P is CF w.r.t. Kn and this is equivalent to the
marginal factorization P (x) =

∏
v∈V P

v(xv), x ∈ X, of P w.r.t. (V, ∅).
P r o o f . The only nontrivial claim is that CF implies the product formula. If

P is CF w.r.t. the graph then P =
∏
v∈V Q/Q

V−v for some distribution Q on X.
Since Q is absolutely continuous w.r.t. P the I-divergence I(Q||P ), see [9], [10],
is a nonnegative real number. This yields (n − 1)h(V ) ≥ ∑

v∈V h(V − v) where
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h(A) is the Shannon entropy of QA, A ⊂ V. The set function h is submodular, i. e.
h(A) + h(B) ≥ h(A∪B) + h(A∩B), for any A, B ⊂ V, whence h(V ) ≤ ∑

v∈V h(v).
We will prove in a moment that the latter inequality cannot be strict what means
that P equals the desired product.

Let ck denote the sum of h(A) over all A ⊂ V of cardinality k, 1 ≤ k ≤ n. We
know that (n−1)cn ≥ cn−1 and want to show that cn ≥ c1. The number 2k(n−k)ck,
1 < k < n, can be casted into

∑ {
h(u ∪A) + h(v ∪A); A ⊂ V, |A| = k − 1, u, v ∈ V −A, u 6= v

}

≥ (n− k + 1)(n− k) ck−1 + k(k + 1) ck+1

owing to the submodularity of h. Thus we see that the inequality

(`+ 1) ck+` ≥
(

n

k + `

)(
n

k

)−1

ck + `
k + `+ 1
n− k − `

ck+`+1 , 1 ≤ k < k + ` < n ,

is valid for ` = 1. If it is valid for some 1 ≤ ` < n−k−1 then we combine it with the
previous one for k → k+`+1, exclude ck+` and obtain it also for `+1. By induction,
the inequality holds for ` = n− 2 and k = 1, i. e. (n− 1)ck−1 ≥ c1 + (n− 2)cn and
we arrive at the desired inequality cn ≥ c1. 2

Informally rephrased, MF=CF over Kn, n ≥ 1, and this amounts the mutual
stochastic independence. On the other hand, every probability distribution P is RF

w.r.t. Kn; even w.r.t. any graph G = (V,E) with V = {1, . . . , n} and E containing
E< = {(i, j); 1 ≤ i < j ≤ n}, n ≥ 1. It is namely always possible to factorize
P w.r.t. (V,E<) via some kernels ψ<v , v ∈ V, and then define the new kernels
ψv(yv|xpa(v)) = ψ<v (yv|yv<), v ∈ V, where v< = {u ∈ V ; u < v} and yv< is
the coordinate projection of xpa(v) on Xv< . The new kernels ψv, v ∈ V, factorize
projectively P w.r.t. the graph G.

In the case of K2 every probability distribution is PF , too. In fact, if P is a
probability distribution on X1×X2 we set Q1 = P and Q2 = P 1P 2. The probability
distributions Q1 and Q2 satisfy the projectivity conditions Q2

1 = Q2
2, Q

1
2 = Q1

1 and
P factorizes projectively via Q1 and Q2. So that MF=CF⇒PF=RF over K2 and the
implication cannot be reversed. We conjecture that overK3 there exists a probability
distribution that is not PF (and is RF as we saw above); its construction might be
similar to the construction of Example 3.3 below.

Note that if the intriguing projectivity conditions in Definition 2.1 had been
stated, maybe more naturally, as Qcl(u)∩cl(v)

u = Q
cl(u)∩cl(v)
v , u, v ∈ V, we would have

had even the pathology by the “projective factorization” over Kn, n ≥ 2.

3. EXAMPLES OF FACTORIZATIONS

Let V = {1, 2, . . . , n}, n ≥ 2, and E = {(v−, v) ∈ V 2; v ∈ V } where v− = v − 1 for
1 < v ≤ n and v− = n for v = 1. The graph Cn = (V,E) is called a circuit. In
this section all factorizations are w.r.t. C3. The situation is more interesting than
over C2 = K2. Namely, in the chain of implications MF⇒CF⇒PF⇒RF , the last
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one owing to Lemma 4.1 to be proved in the next section, no reversion occurs. The
following three examples and figures demonstrate it, respectively.

Example 3.1. (CF 6⇒MF ) Let X1 = X2 = X3 = {0, 1} and the probability dis-
tribution P on X = {0, 1}3 be given by P (x1x20) = 1/8 for x1, x2 ∈ {0, 1} and by
P (001) = 1/2, see Figure 1 left. Obviously, this distribution P is not MF because
P (001)P 1(0)P 2(0)P 3(1) equals 1/2·3/4·3/4·1/2 whereas P 12(00)P 13(01)P 23(01) equals
5/8 · 1/2 · 1/2. However, P factorizes consistently through the probability distribution
Q given by Q(000) = Q(110) = 1/16, Q(100) = Q(010) = 3/16, and Q(001) = 1/2,
see Figure 1 right. Indeed, owing to Q12 = Q1 ·Q2, Q13 = P 13, and Q23 = P 23 the
equality

P = Q12/Q1 ·Q23/Q2 ·Q13/Q3

is equivalent to P · P 3 = P 13P 23 what is the case.

1/8

1/2

0 0

0

1/8

1/8

1/8

1/16

1/2

0 0

0

1/16

3/16

3/16

Fig. 1. The left distribution is CF via the right one, but not MF .

Example 3.2. (PF 6⇒CF ) Let the state spaces be exactly as in Example 3.1 and
let us take P (x) = 1/4 for x equal to 000, 100, 101 and 111, see Figure 2. The
probability distribution P is PF via Q1 = P 13, Q2 = P 1P 2 and Q3 = P 23 by the
same argument as in the previous example. We claim that P is not CF ; if it were
through some probability distribution Q on X then Q23(10) = 0 and Q13(01) = 0.
Further,

1 =
P (100)
P (101)

=
Q23(00)Q13(10)Q3(1)
Q23(01)Q13(11)Q3(0)

=
Q13(10)
Q23(01)

=
Q(100)
Q(101)

whence Q(100) = Q(101) = b. From

P (000) =
Q(000)
Q2(0)

=
Q(000)

Q(000) + 2b
= P (111) =

Q(111)
Q1(1)

=
Q(111)

Q(111) + 2b

we deduce Q(000) = Q(111) = a. Then 2a + 2b = 1 and P (000) = 1/4 = a/(a + 2b)

imply a = 1/5 and b = 3/10. But, 1/4 = P (100) 6= (
3/5 · 1/2 · 3/10

)
/
(
4/5 · 4/5 · 1/2

)
,

a contradiction.
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¡¡
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¡¡0

0 1/4

1/4

1/4

0 0

1/4

Fig. 2. This probability distribution is PF but not CF .

Example 3.3. ∗ (RF 6⇒PF ) LetX1 = X2 = X3 = {0, 1, 2} and let a distribution P on
X be given by P (x) = 1/8 for x ∈ {000, 222} and P (x) = 1/4 for x ∈ {100, 010, 001},
see Figure 3 left. Let us suppose that three kernels ψ1, ψ2, ψ3 factorize recursively
P as ψ1ψ2ψ3. Then

1/64 = P (100)P (010)P (001) =
∏

v∈V
ψv(1|0)ψv(0|0)ψv(0|1) ≤

∏

v∈V
1/4 ψv(0|1)

and we obtain ψv(0|1) = 1 and ψv(1|0) = ψv(0|0) = 1/2, v ∈ V = {1, 2, 3}.
On the other hand, if a triple of kernels satisfies the previous nine equalities and∏
v∈V ψv(2|2) = 1/8 then P = ψ1ψ2ψ3, as in Figure 3 right. Hence, P is RF and we

found even all triples of kernels providing this kind of factorization.
If the probability distribution P were PF via some Q1, Q2, and Q3 then the

marginals Q3
1 = Q3

3, Q
1
2 = Q1

1, and Q2
3 = Q2

2 must be positive probability distribu-
tions and ψ1 = Q1/Q

3
1, ψ2 = Q2/Q

1
2, and ψ3 = Q3/Q

2
3 are three well-defined kernels

factorizing P recursively into ψ1ψ2ψ3. But then we can compute

Q3
3(x3) =

∑

x2∈X2

ψ3(x3|x2)Q2
2(x2) =

∑

x2∈X2

ψ3(x3|x2)
∑

x1∈X1

ψ2(x2|x1)Q1
1(x1)

=
∑

x2∈X2

ψ3(x3|x2)
∑

x1∈X1

ψ2(x2|x1)
∑

y3∈X3

ψ1(x1|y3)Q3
3(y3) =

∑

y3∈X3

φ(x3|y3)Q3
3(y3)

where
φ(x3|y3) =

∑

x1∈X1

∑

x2∈X2

ψ1(x1|y3)ψ2(x2|x1)ψ3(x3|x2)

is a kernel on X3 ×X3. If φ is considered for a 3 × 3 matrix with its rows indexed
by y3 = 0, 1, 2 and columns by x3 = 0, 1, 2, then

φ =




5/8 3/8 0
3/4 1/4 0
a b 1/8




where a ≥ 0 and b ≥ 0 depend on ψ1, ψ2, and ψ3 and a+b = 7/8. Hence, we know that(
Q3

3(0), Q3
3(1), Q3

3(2)
)

is a positive left eigenvector of the stochastic matrix φ. This
matrix has, however, no positive left eigenvector what contradicts the assumption

∗Cf. Theorem 8 in [8], p. 33, where the assumption of positivity is missing.
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P be PF . In fact, a or b is positive whence 0, 1 are its transient states, see [1],
Theorem 3.10, p. 40.

¡
¡

¡¡

¡
¡

¡¡
¡

¡
¡¡

¡
¡

¡¡

¡
¡

¡¡¡
¡

¡¡

ψ1(0|2) ψ1(1|2) ψ1(2|2)

1 0 0

1/2 1/2 0

ψ2(2|2)

ψ2(1|2)

ψ2(0|2)1

0

00

1/2

1/2

0

1/2

1/2

0

0

1

ψ3(0|2)

ψ3(1|2)

ψ3(2|2)

¡
¡¡

¡

1/4

1/4

1/8 1/4

1/8

Fig. 3. The left probability distribution is RF but not PF .

4. FACTORIZATIONS OVER CIRCUITS

In this section the implication PF⇒RF w.r.t. Cn announced earlier will be demon-
strated. Under restrictions on cardinalities of the state spaces also the reversed
implication appears to be true. Stronger restrictions of this kind cause the arrow-
erasure-phenomenon as exhibited in Theorem 4.3 and in Lemma 4.6.

Lemma 4.1. The projective factorization w.r.t. a circuit implies the recursive
factorization w.r.t. the same circuit.

P r o o f . If P is PF w.r.t. Cn, n ≥ 2, then P =
∏
v∈V Qv/Q

v−
v for some distri-

butions Qv on X{v,v−}, v ∈ V, satisfying the projectivity conditions Qv
−
v = Qv

−
v− ,

v ∈ V. Let us denote by Yv = {xv ∈ Xv; Qvv(xv) > 0}. One defines

ψv(xv|xv−) =





Qv(xv, xv−)/Qv
−
v (xv−), xv− ∈ Yv− ,

|Yv|−1, xv− /∈ Yv− , xv ∈ Yv,
0, xv− /∈ Yv− , xv /∈ Yv .

We claim that P factorizes projectively via ψ1, . . . , ψn. For x ∈ Y1× · · · ×Yn, this is
obvious. If x ∈ X has its coordinate xv in Xv−Yv for some v ∈ V then P (x) = 0. In
this case also ψv(xv|xv−) is equal to zero when xv− ∈ Xv− − Yv− (by the definition
of ψv). Otherwise ψv(xv|xv−) does not exceed Qvv(xv)/Q

v−
v−(xv−) = 0. 2

Proposition 4.2. If a probability distribution P on X is RF w.r.t. Cn, n ≥ 2, and
|Xv| ≤ 2 for at least one v ∈ V then P is also PF w.r.t. Cn.

P r o o f . Without any loss of generality we can assume |Xn| ≤ 2. Let P have a RF

over Cn = (V,E) via ψ1, . . . , ψn. If ψ1(x1|xn) = ψ1(x1|yn), x1 ∈ X1, xn, yn ∈ Xn,
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i. e. ψ1 does not depend on its condition, then P has a RF over (V,E − {(n, 1)})
and then by Lemma 2.2 P is MF over the latter acyclic graph. Hence, P is PF over
Cn via Qv = P v∪v

−
, 1 < v ≤ n, and Q1 = P 1 · Pn. From now on we can suppose

Xn = {0, 1}.
Let φ be the Markov kernel on Xn ×Xn given by

φ(xn|yn) =
∑

x1∈X1

· · ·
∑

xn−1∈Xn−1

ψ1(x1|yn)ψ2(x2|x1) · · ·ψn(xn|xn−1)

and let us assume first φ(1|0) = 0. We set ψ′1(x1|xn) = ψ1(x1|0) for x1 ∈ X1,
xn ∈ Xn, and claim that the kernels ψ′1, ψ2, . . . , ψn provide a RF of P over Cn. This
is obvious for x ∈ X such that xn = 0. In the opposite case, xn = 1, we observe that
the product ψ1 · · ·ψn sums to 1 whence 0 = φ(0|0) + φ(1|1) − 1 = φ(1|1) = Pn(1)
and thus P (x) = 0. At the same time, 0 = φ(1|0) ≥ ψ′1(x

1|xn) · · ·ψn(xn|xn−1). We
conclude that P has also the RF ψ′1ψ2 · · ·ψn with the factor ψ′1 not depending on
its condition and that P is therefore PF . In the case φ(1|0) = 0, or symmetrically
φ(0|1) = 0, we are done.

Let both a = φ(1|0) and b = φ(0|1) be positive. The positive distribution Rn
on Xn given by Rn(0) = a/(a + b) and Rn(1) = b/(a + b) is stable for the kernel φ.
That means Rn(xn) =

∑
yn∈Xn

φ(xn|yn)Rn(yn), xn ∈ Xn. We define recursively
Qv = ψvRv− and Rv = Qvv for 1 ≤ v < n and Qn = ψnRn−1. These Qv, v ∈ V,
are claimed to provide a PF of P. Namely, the projectivity conditions are satisfied
by the definition and by the stability, Qnn = Rn = Qn1 . Further, P = ψ1 · · ·ψn
equals

(
Q1/Rn

)(
Q2/R1

) · · · (Qn/Rn−1

)
obviously for x ∈ X such that the product

R1(x1) · · ·Rn(xn) is positive. In the opposite case, we take the smallest 1 ≤ v < n

such that Rv(xv) = 0 and deduce the inequality 0 = Qvv(x
v) ≥ ψv(xv|xv−)Rv−(xv

−
),

i. e. ψv(xv|xv−) = 0. Note that the positivity of Rn was crucial. 2

As a consequence we see that Example 3.3, witnessing RF 6⇒PF over C3, is minimal
not only because the underlying graph has the smallest possible number of nodes
and arcs but also because all its state spaces have minimal possible cardinalities.

Let us remark that the assumption on the binarity of a state space in Proposi-
tion 4.2. can be replaced by the assumption on positivity of P . The proof then works
similarly (the Markov kernel φ is now positive and does have therefore a positive
stable distribution Rn).

Theorem 4.3. If a probability distribution P on X is RF w.r.t. Cn, n ≥ 2, through
some kernels ψv, v ∈ V, and |Xv| ≤ 2 for all v ∈ V then ψv(xv|xv−) = ψv(xv|yv−),
xv ∈ Xv, xv− , yv− ∈ Xv− for at least one v ∈ V .

P r o o f . When some state space Xv is a singleton, the assertion is valid trivially.
We can take therefore Xv = {0, 1}, v ∈ V. If P = ψ1ψ2 over C2 then

0 = 1−
∑

x2∈X2

ψ1(0|x2)ψ2(x2|0) +
[
1− ψ1(0|x2)

]
ψ2(x2|1)

=
[
ψ1(0|0)− ψ1(0|1)

][
ψ2(0|0)− ψ2(0|1)

]
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so that either ψ1 or ψ2 does not depend on its condition.
If P = ψ1 · · ·ψn over Cn, n ≥ 3, the kernel ψ◦n on Xn ×X1 defined by

ψ◦n(xn|x1) =
∑

x2∈X2

· · ·
∑

xn−1∈Xn−1

ψ2(x2|x1) · · ·ψn(xn|xn−1)

suits to the factorization P {1,n} = ψ1ψ
◦
n w.r.t. ({1, n}, {(1, n)(n, 1)}). Hence, being

over C2, either ψ1(x1|0) = ψ1(x1|1), x1 ∈ X1, and we are ready or necessarily
ψ◦n(xn|0) = ψ◦n(xn|1), xn ∈ Xn. In the second case, ψ◦n(0|0) + ψ◦n(1|1) = 1 and the
product Q = δ1ψ2 · · ·ψn sums to one over X. Here δ1(x1|xn) = 1 or 0 according to
x1 = xn or not. This argumentation is repeated cyclically doing the next step with
the probability distribution Q. If every kernel ψv, v ∈ V, depended on its condition
then the product R = δ1 · · · δn would sum to one, a contradiction to the obvious∑
x∈X R(x) = 2. 2

No single restriction on the cardinality can be relaxed in Theorem 4.3.

Example 4.4. Let X1 = {0, 1, 2}, X2 = X3 = {0, 1} and the probability distribu-
tion P be given by P (000) = 1/2 and P (111) = P (211) = 1/4, see Figure 4 left. This
probability distribution is RF w.r.t. C3 via the kernels given in Figure 4 right. Each
of the kernels depends on its condition.
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1/2 1/4 1/4

1/2 1/2 0

110

001

0

1

1

0

¡
¡

¡
¡

¡
¡

¡
¡

1/2

1/4 1/4

Fig. 4. A projective factorization w.r.t. C3 without ‘trivial’ kernels.

Theorem 4.3 can also be verbally reformulated as follows: under the binarity
restrictions on all state spaces any of the RF , PF , CF and MF over a circuit implies
any of the RF , PF , CF and MF over a path contained in the circuit, cf. Lemma 4.1
and Lemma 2.2. In other words, at least one arrow of the circuit can be erased
gaining the acyclicity. It seems also worthwhile to comment the reverse direction
under the binarity: it is not difficult to see that RF (=PF=CF=MF ) over a path
in Cn implies only RF (=PF ) over Cn and not MF and CF over Cn, n ≥ 2, cf.
Example 3.1 and Example 3.2, respectively.

Example 4.5. Let X1 = X2 = {0, 1, 2}, X3 = {0, 1} and P be given by P (x) = 1/4
for x equal to 000, 101, 211 and 220, see Figure 5. This distribution is MF w.r.t. C3,
but since no conditional independence is present, P is not factorizable w.r.t. a path
in C3. We do not know whether such an example with two two-element state spaces
exists.
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¡¡
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1/4

1/4

1/4

Fig. 5. A distribution that is MF w.r.t. C3 but not w.r.t. any path.

If instead of RF even MF is assumed in Theorem 4.3 then the assertion can be
reformulated equivalently as P {v,v

−} = P v · P v− for at least one v ∈ V. Here, a
special attention deserves the graph C3 because this pairwise independence takes
place even for at least two v ∈ V. In fact, if for example the kernel ψ3 = P 23/P 2 is
trivial then P 23 = P 2 · P 3 and P = P 13P 12/P 1 and this entails, by Theorem 8.3
of [3] on p. 615, P = P 12P 3 or P = P 2P 13. This observation is employed in the last
lemma to show another instance of the arrow-erasure.

Lemma 4.6. If a probability distribution P is MF w.r.t. the graph G = (V,E) of
the Figure 6 and |Xv| ≤ 2 for all v ∈ V then there exists v ∈ {1, 2, 3} such that P is
MF w.r.t. the acyclic graph G =

(
V,E − {(v−, v)}) (at least one arrow of the outer

circuit C3 can be erased).
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0

2

Fig. 6. A graph admitting the arrow erasure.

P r o o f . We can suppose that the marginal P 0 is positive onX0 = {0, 1} otherwise
P = P 0P 123 and one can immediately apply the arrow erasure over C3. Knowing
that

P = P 0 · P
013

P 03
· P

012

P 01
· P

023

P 02

we fix x0 = 0 from X0 and set Q(0)(x1x2x3) = P (x0x1x2x3)/P 0(x0) for all x1, x2

and x3. The probability distribution Q(0) on X1 × X2 × X3 is MF w.r.t. C3 and

thus, for at least two v ∈ {1, 2, 3}, Q{v,v−}(0) = Qv(0) · Qv
−

(0) . This consideration is
repeated with x0 = 1 and its corresponding conditional distribution Q(1) getting

again another two vertices v ∈ {1, 2, 3} such that Q{v,v
−}

(1) = Qv(1) · Qv
−

(1) . Hence, we
arrive at P {0,v,v

−} = P {0,v}P {0,v
−}/P 0 for at least one v ∈ {1, 2, 3}. This equality,

substituted into the starting MF of P , gives the MF of P w.r.t. the acyclic graph
G = (V,E − {(v−, v)}).

2
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5. CONCLUSION

The following diagram summarizes our knowledge about relations among the four
kinds of factorizations.

marginal factorization consistent factorization

recursive factorization projective factorization
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A full arrow means the implication and a dotted arrow existence of a counterex-
ample to the implication. We do not know whether MF⇒RF , CF⇒RFand PF⇒RF .
Note that over Cn or Kn by n ≥ 2 or over a graph with at most three vertices the
three missing arrows were full. To clarify the three open implications, cyclic graphs
with at least four vertices must be examined.

Under the binarity restrictions and a fixed kind of factorization, another open
and difficult question is to find all graphs that admit the arrow erasure for this kind
of factorization.
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