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EFFICIENCY OF SOME ALGORITHMS
FOR PREDICTION IN FINITE STATIONARY
TIME SERIES

Pavel Ranocha

Important characteristics of any algorithm are its complexity and speed of real cal-
culations. From this point of view we analyze some algorithms for prediction in finite
stationary time series. First, we review results developed by Bondon [1] and then we derive
complexities of Levinson and innovations algorithm. It is shown that time needed for real
calculations of prediction is proportional to theoretical complexity of the algorithm. Some
practical recommendations for selection of the best algorithm are given.

Keywords: Stationary time series, multistep prediction, Levinson’s algorithm, innovations
algorithm

AMS Subject Classification: 60G25

1. INTRODUCTION

Let {Xn, n ∈ N} be real-valued, (weakly) stationary process with zero mean and
covariance function γ(k) defined on probability space (Ω,A,P). Let L2(Ω,A,P)
denote the Hilbert space with inner product 〈X,Y 〉 = E XY . Let H{Xn, n ∈ M}
be the Hilbert subspace of L2 generated by variables Xn, n ∈ M . If M = {l, . . . , n},
we simply write H{Xn, n ∈ M} = Hl,n. We use the symbol Pl,n for orthogonal
projection operator onto Hl,n. Finally, assume that H1,n $ H1,n+1 for all n ∈ N.

It is well-known that if we write the optimal linear prediction of variable Xn+h

based on the knowledge of X1, . . . , Xn in the form

X̂n+h(n) = P1,nXn+h =
n∑

i=1

ah
n,iXn+1−i,

then the prediction coefficients ah
n = (ah

n,1, . . . , a
h
n,n)T can be obtained by solving

the system of linear equations

Γnah
n = γn,h, (1.1)

where
Γn =

(
γ(i− j)

)n

i,j=1
, γn,h =

(
γ(n + h− 1), . . . , γ(h)

)T
. (1.2)
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Mean square error is given by

vh
n = E [Xn+h − X̂n+h(n)]2 = γ(0)− γT

n,hΓ
−1
n γn,h.

The main disadvantage of the direct method is its high numerical complexity. It
is necessary to find the solution of the system, the dimension of which is n, where n
is usually large. Moreover, if we get a new observation, we have to repeat the whole
procedure.

It is natural to ask whether it is possible to solve the described problem more
efficiently. Probably, the first effective method derived for the construction of pre-
dictions with finite past was the Levinson algorithm (see [5]). It is based on the
existence of relations between prediction coefficients recurrent with respect to num-
ber of observations which is equal to order of matrix Γn. Innovations algorithm,
which was derived later (see e. g. [4]), works with the properties of projection opera-
tor and orthogonal decomposition but it does not use the assumption of stationarity.
That is why its complexity is still very high (see below).

The procedures using also recursion with respect to prediction step were deduced
by Bondon in [1]. The author derived several methods enumerating prediction co-
efficients and mean square errors. (Similar relations for infinite time series were
derived earlier, see e. g. [2].) Quite recently, Brockwell and Dahlhaus [3] deduced
some recursive properties of orthogonal projections which lead to a variety of differ-
ent prediction algorithms (e. g. Durbin–Levinson, Burg and Whittle algorithms).

For the calculation of their numerical complexity, Bondon supposed that multipli-
cations (divisions) are much more time demanding than summations (subtractions).
No other operations occur. With the help of our programme implementation we
show that these simplifying assumptions do not effect the results significantly and
theoretical complexities computed on their basis may be used to compare the ef-
fectivness of the rated procedures. We use the same programme to measure time
needed for the calculations. In conclusion we deduce the numerical complexity of
Levinson and innovations algorithm and find out that their efficiency is far beyond
Bondon’s methods.

2. CLASSICAL METHODS

Levinson’s algorithm (see [5]), which we describe now, can be generally used for
solving the system of linear equations with so called Toeplitz matrix. It is a square
matrix with elements ti,j , for which there exist real numbers u−n+1, . . . , u0, . . . , un−1

such that ti,j = ui−j , i, j = 1, . . . , n. It is obvious that the matrix (1.2) satisfies this
condition. The system (1.1) can be written in the form

M∑
n=0

aM,nγ(k − n) = δk, k = 0, 1, . . . ,M,

where δk = γ(M + h− k). Its solution is given by

a0,0 =
δ0

γ(0)
, (2.1)
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aM+1,M+1 =
δM+1 −

M∑
k=0

aM,kγ(M + 1− k)

γ(0)−
M∑

k=0

CM
k γ(M + 1− k)

(2.2)

and
aM+1,k = aM,k − CM

k aM+1,M+1, k = 0, 1, . . . ,M. (2.3)

The constants CM
k are computed from

C0
0 =

γ(1)
γ(0)

, (2.4)

CM
0 =

γ(M + 1)−
M∑

k=1

CM−1
k−1 γ(k)

γ(0)−
M−1∑
k=0

CM−1
k γ(M − k)

(2.5)

and
CM

k = CM−1
k−1 − CM

0 CM−1
M−k , k = 1, 2, . . . ,M. (2.6)

The next method, which was derived later, was the innovations algorithm (see
e. g. [4]). If we write the prediction in the form

P1,nXn+h =
n+h−1∑

j=h

θn+h−1,j(Xn+h−j − X̂n+h−j), (2.7)

then the prediction coefficients θn,j are obtained from

v0 = κ(1, 1),

θn,n−k = v−1
k


κ(n + 1, k + 1)−

k−1∑

j=0

θk,k−jθn,n−jvj


 , k = 0, 1, . . . , n− 1, (2.8)

and

vn = κ(n + 1, n + 1)−
n−1∑

j=0

θ2
n,n−jvj , (2.9)

where κ(t, s) = cov (Xt, Xs). Mean square error is computed using

vh
n = κ(n + h, n + h)−

n+h−1∑

j=h

θ2
n+h−1,jvn+h−j−1. (2.10)

The main disadvantage of this procedure is its high numerical complexity (see
further). On the other hand, it can be used more generally, namely when predicting
in non-stationary processes. It can also be easily modified for the ARMA processes
in order to reduce the number of operations being made during the computations
(see [4]).
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3. BONDON’S PROCEDURES

In this section we introduce several propositions and some very effective algorithms,
which were derived by Bondon, [1].

Proposition 3.1. For any step h ≥ 1 and any n ≥ 1,

ah
n,i = a1

n+h−1,i+h−1 +
h−1∑

j=1

a1
n+h−1,ja

h−j
n,i , i = 1, . . . , n. (3.1)

P r o o f . See [1], Proposition 3.1. ¤

Proposition 3.2. For any step h > 1 and any n ≥ 1,

ah
n,i = ah−1

n+1,i+1 + ah−1
n+1,1a

1
n,i, i = 1, . . . , n (3.2)

and
vh

n = vh−1
n+1 + (ah−1

n+1,1)
2v1

n. (3.3)

P r o o f . See [1], Proposition 3.2. ¤

Proposition 3.3. For any step h ≥ 1 and any n ≥ 1,

vh
0 = γ(0),

ah
n,n =

[
γ(n + h− 1)−

n−1∑

i=1

a1
n−1,iγ(n + h− i− 1)

]
(v1

n−1)
−1, (3.4)

ah
n,i = ah

n−1,i − ah
n,na1

n−1,n−i, i = 1, . . . , n− 1, (3.5)

and
vh

n = vh
n−1 − (ah

n,n)2v1
n−1. (3.6)

P r o o f . See [1], Proposition 4.1. ¤

The first method described (denoted by A1) is based on Proposition 3.3 only.
Another possibility (A2) consists of calculating a1

n,i for 1 ≤ n ≤ p + s − 1 from
(3.4) – (3.6) and enumerating ah

p,i for 2 ≤ h ≤ s with the help of (3.1). The mean
square errors vh

p , 2 ≤ h ≤ s can be obtained from

vh
p = ‖Xp+h − P1,pXp+h‖2 = γ(0)−

p∑

i=1

ah
p,iγ(i + h− 1). (3.7)
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Proposition 3.4. For any step h > 1 and any n > 1,

ah
n,i = ah−1

n,i+1 + ah−1
n,1 a1

n−1,i − ah
n,na1

n−1,n−i, i = 1, . . . , n− 1 (3.8)

and
vh

n = vh−1
n + [(ah−1

n,1 )2 − (ah
n,n)2]v1

n−1. (3.9)

P r o o f . See [1], Proposition 4.2. ¤

In the first step of A3 coefficients a1
n,i and errors v1

n, 1 ≤ n ≤ p are computed
from (3.4) – (3.6). In the second stage we use the equalities (3.4), (3.8) and (3.9) to
enumerate ah

p,i and vh
p for 2 ≤ h ≤ s.

The next alternative (A4) is the procedure, in the first stage of which we calculate
a1

n,i and v1
n for 1 ≤ n ≤ p + s− 1 according to (3.4) – (3.6). These values are used in

the second stage, when we get ah
n,i and vh

n, 2 ≤ h ≤ s, p ≤ n ≤ p + s− h from (3.2)
and (3.3).

The next proposition shows a different approach for calculating prediction coef-
ficients based on the orthogonal decomposition of the space H1,n.

Proposition 3.5. For any step h ≥ 1 and any n ≥ 1,

P1,nXn+h =
n∑

i=1

ch
i (Xi − P1,i−1Xi) (3.10)

and

vh
n = γ(0)−

n∑

i=1

(ch
i )2v1

i−1 (3.11)

where

ch
i =


γ(n + h− i)−

i−1∑

j=1

a1
i−1,jγ(n + h− i + j)


 (v1

i−1)
−1. (3.12)

P r o o f . See [1], Remark 4.2. ¤

Proposition 3.5 is used to construct algorithm A5. First, a1
n,i and v1

n for 1 ≤ n ≤ p

are computed from (3.4) – (3.6). The coefficients ah
p,i and errors vh

p , 2 ≤ h ≤ s, are
then be obtained according to (3.10) – (3.12).

4. COMPARISON OF EFFICIENCIES

In this section we derive the complexity of both Bondon’s and classical algorithms
described above, namely innovations and Levinson, and compare them.

When using A1, the number of multiplications and divisions needed for computa-
tion of all the prediction coefficients and mean square errors concerning X̂p+1(p), . . . ,
X̂p+s(p) is summarized in Table 1.
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Table 1. The complexity of algorithm A1.

Coefficients Used Number of Range of
to be computed relation multiplications indices

ah
n,n (3.4) n n = 1, . . . , p, h = 1, . . . , s

ah
n,i (3.5) n− 1 n = 1, . . . , p, h = 1, . . . , s

vh
n (3.6) 2 n = 1, . . . , p, h = 1, . . . , s

Table 2. The complexity of algorithm A2.

Coefficients Used Number of Range of
to be computed relation multiplications indices

a1
n,n (3.4) n n = 1, . . . , p + s− 1, h = 1, . . . , s

a1
n,i (3.5) n− 1 n = 1, . . . , p + s− 1, h = 1, . . . , s

vh
n (3.6) 2 n = 1, . . . , p + s− 2, h = 1, . . . , s

ah
p,i (3.1) p(h− 1) h = 2, . . . , s

vh
p (3.7) p h = 2, . . . , s

The total complexity of A1 is

N1 = s

p∑
n=1

(2n + 1) = p2s + 2ps.

The numerical complexity of procedure A2 is shown in Table 2.
The total complexity of the algorithm is

N2 = p2 +
p

2
(5s + s2 − 2) + s2 − 3.

The difference between A1 and A2 is

N2 −N1 = p2(1− s) +
p

2
(s2 + s − 2) + s2 − 3.

We can see that the sign of the difference depends on the length of the series p and
the maximum step s.

The complexity of operations made when A3 is used can be found in Table 3.
The total complexity of the procedure is equal to

N3 = p2 + p(3s− 1) + s − 1.

Comparing it with the complexity of A1, we can see that

N1 −N3 = (s− 1)(p2 − p− 1) > 0,
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Table 3. The complexity of algorithm A3.

Coefficients Used Number of Range of
to be computed relation multiplications indices

a1
n,n (3.4) n n = 1, . . . , p

a1
n,i (3.5) n− 1 n = 1, . . . , p

v1
n (3.6) 2 n = 1, . . . , p

ah
p,i (3.8) 2(p− 1) h = 2, . . . , s

vh
p (3.9) 3 h = 2, . . . , s

ah
p,p (3.4) p h = 2, . . . , s

for any p > 1. We come to the same conclusion when we compare A3 and A2 since
for s > 1 we have

N2 −N3 =
ps

2
(s− 1) + (s− 2)(s + 1) > 0.

The numerical complexity of the next method (A4) is summarized in Table 4.

Table 4. The complexity of algorithm A4.

Coefficients Used Number of Range of
to be computed relation multiplications indices

a1
n,n (3.4) n n = 1, . . . , p + s− 1

a1
n,i (3.5) n− 1 n = 1, . . . , p + s− 1

v1
n (3.6) 2 n = 1, . . . , p + s− 1

ah
n,i (3.2) n n = p, . . . , p + s− h, h = 2, . . . , s

vh
n (3.3) 2 n = p, . . . , p + s− h, h = 2, . . . , s

Its total complexity is

N4 = (p + s− 1)2 + 2(p + s− 1) +
s∑

h=2

p+s−h∑
n=p

(n + 2).

Since
s∑

h=2

p+s−h∑
n=p

(n + 2) =
1
6
(s3 + 3ps2 + 3s2 − 3ps− 4s),

we have

N4 = p2 +
1
2
ps(s + 3) +

1
6
(s− 1)(s2 + 10s + 6).
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Table 5. The complexity of algorithm A5.

Coefficients Used Number of Range of
to be computed relation multiplications indices

a1
n,n (3.4) n n = 1, . . . , p

a1
n,i (3.5) n− 1 n = 1, . . . , p

v1
n (3.6) 2 n = 1, . . . , p

P1,i−1Xi

∑p
i=1(i− 1)

ch
i (3.12)

∑p
i=1 i h = 2, . . . , s

vh
p (3.11) 2p h = 2, . . . , s

However, algorithm A4 is still less effective than A3, since for every s ≥ 2,

N4 −N3 = (s− 1)
[
1
2
p(s− 2) +

1
6
s (s + 10)

]
> 0.

The number of operations made when using A5 is shown in Table 5.
The total complexity of this procedure is

N5 = p2
(s

2
+ 1

)
+ p

(
5s

2
− 1

)
.

Since for every p ≥ 2

N5 −N3 =
s

2
(p− 2)(p + 1) + 1 > 0,

A3 is still the most efficient method among those we mentioned.
The number of multiplications made during the application of the innovations

algorithm is summarized in Table 6. It is important to realize that coefficients
θn,n−k and errors vh

n do not need to be computed for all values of their indices [see
(2.7) and (2.10), the lower bound is h, not 1].

The total complexity of the innovations algorithm is equal to

NI =
p+s−1∑
n=1

min(p,n)−1∑

k=0

(2k + 1) +
p−1∑
n=1

2n +
p

2
(p− 1) + 2ps

=
1
3
p3 + p2(s + 1) + p

(
2s− 4

3

)
.

When deducing the complexity of the Levinson algorithm, it is essential to realize
that the constants CM

k (for any k, M) have to be calculated only once, since their
values are identical for any step h. It results from the fact that they depend only
on the elements of the matrix Γ which does not change when h differs. The total
complexity of the method is summarized in Table 7.
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Table 6. The complexity of innovations algorithm.

Coefficients Used Number of Range of
to be computed relation multiplications indices

θn,n−k (2.8) 2k + 1 k = 0, . . . , min(p, n)− 1,

n = 1, . . . , p + s− 1

vn (2.9) 2n n = 1, . . . , p− 1

P1,i−1Xi

∑p
i=1(i− 1)

vh
p (2.10) 2p h = 1, . . . , s

Table 7. The complexity of Levinson algorithm.

Coefficients Used Number of Range of
to be computed relation multiplications indices

C0
0 (2.4) 1

CM
0 (2.5) 2M + 1 M = 1, . . . , p− 1

CM
k (2.6) 1 k = 1, . . . ,M , M = 1, . . . , p− 1

a0
0 (2.1) 1 h = 1, . . . , s

aM
M (2.2) 2M + 1 M = 1, . . . , p, h = 1, . . . , s

aM
k (2.3) 1 k = 0, . . . , M − 1, M = 1, . . . , p,

h = 1, . . . , s

vh
p (3.7) p h = 1, . . . , s

The total complexity of the algorithm is equal to

NL =
3
2
p2(s + 1) +

1
2
p(7s− 1) + s.

Comparing innovations and Levinson algorithm with the so far best method A3 we
get

NI −N3 =
1
3
p3 + p

[
s(p− 1)− 1

3

]
− s + 1 > 0

for every p ≥ 2 and

NL −N3 =
1
2
p2(3s− 1) +

1
2
ps + 1 > 0,

respectively.
We come to a conclusion that the algorithm denoted A3 is the most effective

among the methods described. On the contrary, the highest number of operations
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has to be done when applying the innovations algorithm. It is partially caused by
its generality. As we noted above, it can be used when predicting in non-stationary
time series.

Table 8. The complexity of the algorithms for p = 50.

Maximum step

Algorithm 1 2 3 5 7 10

A1 2 600 5 200 7 800 13 000 18 200 26 000

A2 2 598 2 801 3 056 3 722 4 596 6 297

A3 2 600 2 751 2 902 3 204 3 506 3 959

A4 2 600 2 755 2 965 3 544 4 375 6 059

A5 3 825 5 200 6 575 9 325 12 075 16 200

Innovations 46 800 49 603 52 511 58 650 65 233 75 975

Levinson 7 651 11 577 15 503 23 355 31 207 42 985

To make a better idea about theoretical complexity of described methods, we
summarize the results for values p = 50 and p = 200 in Tables 8 and 9. It is obvious
that the difference between the most efficient method A3 and the classical algorithms
is really large.

Table 9. The complexity of the algorithms for p = 200.

Maximum step

Algorithm 1 3 5 10 20

A1 40 400 121 200 202 000 404 000 808 000

A2 40 398 42 206 44 822 54 897 90 197

A3 40 400 41 602 42 804 45 809 51 819

A4 40 400 41 815 44 054 53 309 87 919

A5 60 300 101 300 142 300 244 800 449 800

Innovations 2 747 200 2 830 011 2 914 450 3 132 775 3 601 250

Levinson 120 601 242 003 363 405 666 910 1 273 920

For the practical application of described methods we chose a series from [2]
(p. 525, series A, 11th – 60th observation), which was identified as ARMA(1,1) with
parameters ϕ1 = 0, 92, ϑ1 = −0, 58 and σ2 = 0, 097. Solving the Yule–Walker
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system, we get

γ(k) =

{
0, 17 for k = 0,

0, 1× 0, 92k−1 for k ≥ 1.

Numerical results are resumed in Table 10.
Looking at Tables 8 and 10, we find out that the real and theoretical complexi-

ties of the algorithms are almost directly proportional. Furthermore, the computer
used for testing (processor Intel Pentium 4, 1.8GHz, operational memory 256MB,
programmed in Borland Pascal) was able to make approximately 1.5 to 2 million
operations per second. Hence, if we do not have to compute thousands or more
predictions, all algorithms give the desired results in real time.

Table 10. Real time complexity of the algorithms for p = 50 in milliseconds.

Maximum step

Algorithm 1 2 3 5 7 10

A1 1,60 3,24 4,83 8,07 11,26 16,09

A2 1,65 1,76 1,92 2,37 2,92 3,96

A3 1,59 1,65 1,76 1,87 1,98 2,19

A4 1,64 1,70 1,86 2,25 2,86 3,96

A5 2,03 2,91 3,79 5,49 7,14 9,45

Innovations 23,60 24,70 26,30 29,10 32,40 37,30

Levinson 4,61 7,03 9,39 14,28 19,17 26,42

Direct method 142,30 143,40 145,60 148,30 151,10 155,50

During computations another advantage of algorithm A3 appeared, namely the
numerical stability. While the results obtained by other methods showed some inac-
curacies, results given by A3 were quite precise. It could be caused by lower number
of divisions and operations overall.

(Received Month day, 2004.)
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