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SEMICOPULÆ

Fabrizio Durante and Carlo Sempi

Dedicated to Berthold Schweizer on the occasion of his seventy-fifth birthday.

We define the notion of semicopula, a concept that has already appeared in the statistical
literature and study the properties of semicopulas and the connexion of this notion with
those of copula, quasi-copula, t-norm.
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1. INTRODUCTION

The object of the research here reported is the study of the notion of semicopula.
To the best of our knowledge, this term was used for the first time by Bassan and
Spizzichino ([3]) in a statistical context. The concept of semicopula was already
known, in a different context, as conjunctor (a monotone extension of the Boolean
conjunction with neutral element 1) or t-seminorm ([23]). However, it has never been
studied in its own right at the same level of generality of the present note. As will
be seen shortly, this notion is a generalization of that of quasi-copula and, hence, of
that of copula. We recall that copulæ were introduced by Sklar ([21, 22]) who proved
the theorem that bears his name (for more details, see [16, 20]). The investigations
on a class of operations on distribution functions that derive from corresponding
operations on random variables defined on the same probability space ([2, 18]) lead
to the introduction of the concept of quasi-copula ([11, 25]).

Commutative semicopulæ are also a “good” generalization of triangular norms
(briefly t-norms), introduced by K. Menger in order to extend the triangle inequality
from the setting of metric spaces to probabilistic metric spaces, and successfully used
in probability theory, mathematical statistics and fuzzy logic, as generalization of
classical logic connectives ([13, 20]).

The paper is organized as follows: semicopulæ are defined in Section 2, where their
main properties are given. A compactness question is the subject of Section 3, while
Section 4 is devoted to the natural order on semicopulas. The object of Section 5
is the study of a special operation on semicopulas. Multivariate semicopulæ are
introduced and briefly studied in Section 6.
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2. DEFINITION AND FIRST PROPERTIES

Definition 2.1. A function S : [0, 1]2 → [0, 1] is said to be a semicopula if, and
only if, it satisfies the two following conditions:

(a) S(x, 1) = S(1, x) = x for all x in [0, 1];

(b) S(x, y) is increasing in each place.

The class of all semicopulas will be denoted by S.

If S is a semicopula, then for all x ∈ [0, 1]

0 ≤ S(x, 0) ≤ S(1, 0) = 0,

namely S(x, 0) = 0 = S(0, x).
The notion of semicopula generalizes other concepts which have received more

attention in the literature:
– a semicopula C that is 2-increasing, namely which, for all x, x′, y, y′ in [0, 1] with
x ≤ x′ and y ≤ y′, satisfies the inequality

C(x′, y′)− C(x, y′)− C(x′, y) + C(x, y) ≥ 0, (1)

is a copula (see [16, 20]);
– a semicopula Q that satisfies the 1-Lipschitz property,

|Q(x, y)−Q(x′, y′)| ≤ |x− x′|+ |y − y′| (2)

for all x, x′, y, y′ in [0, 1], is a quasi-copula (see [11, 25]);
– a semicopula T that is both commutative

T (x, y) = T (y, x), for all x and y in [0, 1], (3)

and associative

T (T (x, y), z) = T (x, T (y, z)), for all x, y, z in [0, 1], (4)

is a t-norm (see [13, 20]).
Notice also that semicopulæ are binary aggregation operators with neutral ele-

ment 1 (see, e. g., [4]).
The class S of semicopulas strictly includes the class Q of quasi-copulas, which,

in its turn, strictly includes the class C of copulas, C ⊂ Q ⊂ S. Moreover, SE

will denote the set of commutative semicopulas; these correspond to exchangeable
random variables. Of course, SE is a proper subset of S and it strictly includes the
set T of t-norms. Finally, the family of continuous semicopulas will be denoted by
SC .

Example 2.1. The following function Z is a semicopula, but it is not a quasi-
copula:

Z(x, y) =

{
0, (x, y) ∈ [0, 1[2 ,
min{x, y}, elsewhere.
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Example 2.2. The following function S is a semicopula, but, because it is not
associative, it is not a t-norm:

S(x, y) = xy max{x, y}.

Example 2.3. The following function S is an associative semicopula, but it is not
commutative

S(x, y) =

{
0, (x, y) ∈ [0, 1/2]× [0, 1[,
min{x, y}, elsewhere.

Example 2.4. The function Sθ (θ > 1) defined by

Sθ(x, y) :=

{
xyθ, x ≤ y,

xθy, elsewhere,

is a continuous semicopula, but not a quasi-copula, because if, for instance, θ = 2,
one has

S2(8/10, 9/10)− S2(8/10, 8/10) = 136/1000 > 1/10;

thus S2 is not 1-Lipschitz.

Proposition 2.1. If S : [0, 1]2 → [0, 1] is a semicopula, then for all x and y in
[0, 1],

Z(x, y) ≤ S(x, y) ≤ min{x, y} = M(x, y). (5)

P r o o f . If S is a semicopula, then, for all x, y ∈ [0, 1[, one has

0 = S(x, 0) ≤ S(x, y) ≤ min{x, y},
and, if x = 1 (analogously y = 1), then S(1, y) = y = min{y, 1}. ¤

In other words, S is a semicopula if, and only if, S is a binary aggregation operator
satisfying (5).

By introducing a condition stronger than 1-Lipschitz on semicopulas, we obtain

Proposition 2.2. Let S be a semicopula. Then S satisfies the kernel property,
viz.

∀x, x′, y, y′ ∈ [0, 1] |S(x, y)− S(x′, y′)| ≤ max{|x− x′|, |y − y′|}, (6)

if, and only if, S = M .

P r o o f . It is known that condition (6) on a semicopula S is equivalent to its
sub-shift invariance (see, e. g., [5]), i. e., for all x, y, a ∈ [0, 1] such that x + a and
y + a are in [0, 1]

S(x+ a, y + a) ≤ a+ S(x, y).
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In particular, if x ≥ y, S(x + (1 − x), y + (1 − x)) ≤ 1 − x + S(x, y), so that
S(x, y) ≥ y = x ∧ y, and analogously if x ≤ y. In view of Proposition 2.1 the proof
is complete. ¤

A related concept is that of co-semicopula, which we introduce here in analogy
with what is done in the case of t-conorms (see [13, 20]).

Definition 2.2. A function S∗ : [0, 1]2 → [0, 1] is called a co-semicopula if it is
increasing in each place and satisfies the boundary condition

S∗(x, 0) = S∗(0, x) = x for all x ∈ [0, 1].

The co-semicopula is the dual operation of a semicopula, according to the follow-
ing result, which can be easily proved.

Proposition 2.3. A function S∗ is a co-semicopula if, and only if, there exists a
semicopula S such that, for all x and y in [0, 1],

S∗(x, y) = 1− S(1− x, 1− y). (7)

This latter proposition allows to study only the properties of semicopulas and to
obtain the corresponding ones for co-semicopulas by (7).

It must be noticed that no assumption on the (left- or right-) continuity of a
semicopula has hitherto been made; but, in this case, the next result can be useful
(the proof is the same as that of Lemma 3.1 in the authors’ paper [8]).

Proposition 2.4. For a semicopula S, the following statements are equivalent:

(a) S is (left-)continuous in each place;

(b) S is jointly (left-)continuous.

Definition 2.3. A semicopula S is said to be convex if, for all x, y, u and v in
[0, 1] one has, for every α ∈ [0, 1],

S (αx+ (1− α)u, α y + (1− α) v) ≤ αS(x, y) + (1− α)S(u, v).

It is said to be concave if −S is convex.

The following proposition can be proved as in [1, Corollary 1].

Proposition 2.5. The (semi-)copula M is the only concave semicopula.

We recall that the Fréchet-Hoeffding lower bound ([15]) for both copulas and
quasi-copulas is the copula W defined by

W (x, y) := max{0, x+ y − 1};
this is called ÃLukasiewicz copula in [13].
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Proposition 2.6. If a semicopula S is convex and symmetric, then S ≤W .

P r o o f . Since S is convex and symmetric, it is Schur-convex; therefore, if x and
y are in [0, 1] with x + y ≤ 1, then S(x, y) ≤ S(x + y, 0) = 0 = W (x, y), while, if
x+ y ≥ 1, then S(x, y) ≤ S(1, x+ y − 1) = x+ y − 1 = W (x, y). ¤

By using Definition 2.1, one can easily prove that the functions of the following
four examples are semicopulæ.

Example 2.5. (Weighted arithmetic mean) If S0 and S1 are semicopulæ, then for
all θ ∈ [0, 1] both the weighted arithmetic mean (1 − θ)S0 + θS1 and the weighted
geometric mean Sθ

0 S
1−θ
1 are semicopulæ. In other words, the set S of semicopulas

is convex and log-convex.

Example 2.6. (Ordinal sum) Let {Ji}i∈I denote a family (possibly infinite) of
nonempty, pairwise disjoint open subintervals Ji := ]ai, bi[ of [0, 1]. Let {Si} be a
collection of semicopulas with the same index set {Ji}. The ordinal sum of {Si}
with respect to {Ji} is the function S defined by

S(x, y) :=

{
ai + (bi − ai) Si

(
x−ai

bi−ai
, y−ai

bi−ai

)
, (x, y) ∈ J2

i ;

M(x, y), elsewhere.

It is easily shown that an ordinal sum of semicopulas is a semicopula, which will be
denoted by S = (〈ai, bi, Si〉)i∈I .

Example 2.7. (Transformed semicopulæ) Let S be a semicopula and let ϕ be an
increasing bijection of [0, 1]. The function Sϕ, defined, for all x and y in [0, 1], by

Sϕ(x, y) = ϕ−1 (S (ϕ(x), ϕ(y)))

is also a semicopula, called the transform of S.

Example 2.8. (Frame semicopulæ) Let the points

0 = t0 < t1 < · · · < tn−1 < tn = 1

partition the unit interval [0, 1]; the frame semicopula Sf corresponding to the above
partition is defined by

Sf (x, y) :=





ti−1, if (x, y) ∈ [ti−1, 1[2 \ [ti, 1[2,
x ∧ y, if x ∨ y = 1,
0, if x ∧ y = 0.

Notice that a frame semicopula can always be modified by changing its value in any
of the “frames” [ti−1, 1[2 \ [ti, 1[2 from ti−1 to any ti−1 ∈ ]ti−2, ti−1[. Moreover, if
continuity questions arise, one may choose as the value taken on the side of each
frame one of the values taken on the two adjoining frames.
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Definition 2.4. Let S be a semicopula. The horizontal section of S at b ∈ [0, 1] is
the function hb : [0, 1] → [0, 1] defined by hb(t) := S(t, b); the vertical section of S at
a ∈ [0, 1] is the function va : [0, 1] → [0, 1] defined by va(t) := S(a, t); the diagonal
section of S is the function δS : [0, 1] → [0, 1] defined by δS(t) := S(t, t).

Proposition 2.7. Let S be a semicopula and δ its diagonal. Then

(a) δ(0) = 0 and δ(1) = 1;

(b) δ(t) ≤ t for all t ∈ [0, 1];

(c) δ is increasing;

(d) if δ(t) = t for all t ∈ [0, 1], then S = M ;

(e) if δ(t) = 0 for all t ∈ [0, 1[, then S = Z.

P r o o f . The statements (a), (b) and (c) are direct consequences of Definition 2.1.
Now, suppose that δ(t) = t for all t in [0, 1]. For all x, y ∈ [0, 1], if x ≥ y, then

S(y, y) = y ≤ S(x, y) ≤ S(1, y) = y;

whereas if x < y, then

S(x, x) = x ≤ S(x, y) ≤ S(x, 1) = x;

that is S(x, y) = min{x, y}. The proof of statement (e) is analogous. ¤

As in the case of copulas (see [9, 10, 17]), given a function δ satisfying properties
(a), (b) and (c), it is always possible to construct a semicopula whose diagonal section
is δ; for instance:

Sδ(x, y) :=

{
δ(x) ∧ δ(y), if x, y ∈ [0, 1[,
x ∧ y, elsewhere.

Sδ is a diagonal semicopula associated with δ.

Example 2.9. Consider the function δ : [0, 1] → [0, 1], given for all t ∈ [0, 1] by

δ(t) =





0, t ∈ [0, 1/2[ ;
1/2, t ∈ [1/2, 1[ ;
1, t = 1.

The diagonal semicopula associated to δ is the semicopula Sδ given by

Sδ(x, y) =





x ∧ y, x ∨ y = 1,
1/2, (x, y) ∈ [1/2, 1[2 ;
0, elsewhere.

Notice, however that a semicopula is not uniquely determined by its diagonal.
For example, if δ(t) = t2 for all t ∈ [0, 1], there are two semicopulæ, Π(x, y) = xy

and Sδ(x, y) = x2 ∧ y2, for (x, y) ∈ [0, 1[2, with diagonal section equal to δ.
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3. COMPACTNESS

Let X denote the set of all functions from [0, 1]2 to [0, 1] equipped with the product
topology (which corresponds to pointwise convergence).

Theorem 3.1. The class S of semicopulas is a compact subset of X (under the
topology of pointwise convergence).

P r o o f . Since X is a product of compact spaces, it is well known from Tychonoff
Theorem (see, e. g., [12]) that X is compact. The proof is completed by showing
that S is a closed subset of X, namely, that, given a sequence {Sn}n∈N in S, if Sn

converges pointwise to S, then S belongs to S. In fact, for all x, x′, y ∈ [0, 1] and
n ∈ N, one has

Sn(x, 1) = x −→
n→+∞

x = S(x, 1) = S(1, x),

and, if x ≤ x′, Sn(x, y) ≤ Sn(x′, y) implies S(x, y) ≤ S(x′, y), which is the desired
conclusion. ¤

A sequence {Sn : n ∈ N} of semicopulas is a Cauchy sequence with respect to
pointwise convergence if, for every ε > 0 and for every point (x, y) in [0, 1]2, there
exists a natural number n0 = n0(ε, x, y) such that

|Sn(x, y)− Sm(x, y)| < ε,

whenever n,m ≥ n0. As an immediate consequence, each Cauchy sequence of semi-
copulas converges pointwise to some semicopula; in other words S is complete. We
note that there are Cauchy sequences of (continuous) t-norms whose pointwise limit
is not a t-norm (see [13]); therefore T is neither a complete nor a compact subset of
S.

By connecting Example 2.5 and Theorem 3.1, it follows that S is a compact and
convex subset of X; therefore, in view of the Krein–Millman Theorem (see, e. g.,
[7]), one has

Corollary 3.1. The class S of semicopulas is the convex hull of the set formed by
extremal points of S, where a semicopula A is said to be extremal if, for all B and
C in S, and for all λ ∈ ]0, 1[, A = λB + (1− λ)C implies A = B = C.

Next we show that the semicopulæ Z and M are extremal.
Given the semicopula Z, suppose that there exist B and C in S and λ ∈ ]0, 1[

such that Z(x, y) = λB(x, y) + (1 − λ)C(x, y) on [0, 1]2. For all x, y ∈ [0, 1[, the
equality

Z(x, y) = 0 = λB(x, y) + (1− λ)C(x, y)

implies
B(x, y) = 0 = C(x, y),

so that one has B = Z = C on [0, 1]2.
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Using the same notations, we consider the semicopula M and suppose

M(x, y) = λB(x, y) + (1− λ)C(x, y)

on [0, 1]2. In particular, for every x ∈ [0, 1]; then the equality

M(x, x) = x = λB(x, x) + (1− λ)C(x, x)

implies
δB(x) = δC(x) = x,

which, in view of Proposition 2.7, yields B = C = M .

4. ORDER

Proposition 2.1 suggests a partial order on the set of semicopulas.

Definition 4.1. If S1 and S2 are semicopulæ, S1 is said to be smaller than S2,
and one writes S1 ≺ S2, if S1(x, y) ≤ S2(x, y) for all x, y in [0, 1].

This is a partial ordering, because not every pair of semicopulas is comparable: it
is sufficient to consider the copulas of Example 2.18 in [16] or the following example.

Example 4.1. Let S1 and S2 be, respectively, the two ordinal sums given by

S1(x, y) = (〈0, 1/2, Z〉) =

{
0, (x, y) ∈ [0, 1/2[2,
min{x, y}, elsewhere;

and by

S2(x, y) = (〈1/2, 1, Z〉) =

{
1/2, (x, y) ∈ [1/2, 1[2,
min{x, y}, elsewhere.

Then S1(1/4, 1/4) ≤ S2(1/4, 1/4), but S1(3/4, 3/4) ≥ S2(3/4, 3/4).

Let A be a nonempty subset of S. We denote by ∨A and ∧A, respectively, the
pointwise supremum and infimum of A, that is, for each (x, y) ∈ [0, 1]2,

∨A(x, y) := sup{S(x, y), S ∈ A}, ∧A(x, y) := inf{S(x, y), S ∈ A}.

Proposition 4.1. S is a complete lattice, that is, for every A ⊂ S, A 6= ∅, ∨A
and ∧A are in S.

P r o o f . Let A be a nonempty subset of S. For all x, x′, y ∈ [0, 1] such that
x ≤ x′, one has

∨A(x, 1) = sup{S(x, 1), S ∈ A} = sup{x, S ∈ A} = x,
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that is ∨A satisfies the condition (i) of Definition 2.1; moreover,

∨A(x, y) = sup{S(x, y), S ∈ A} ≤ sup{S(x′, y), S ∈ A} = ∨A(x′, y),

that is ∨A satisfies the condition (ii) of Definition 2.1, and hence ∨A is a semicopula.
Analogously one can prove that ∧A is a semicopula. ¤

In particular, the minimum (and the maximum) of two semicopulas is a semi-
copula. This result holds for quasi-copulas, but neither for copulas ([19]) nor for
t-norms, as the following example shows.

Example 4.2. Consider the two t-norms Π and T , defined for all x, y ∈ [0, 1] by
Π(x, y) = xy and

T (x, y) =





0, (x, y) ∈ [0, 1/2]× [0, 1/2] ;
x, (x, y) ∈ [0, 1/2]× ]1/2, 1] ;
y, (x, y) ∈ ]1/2, 1]× [0, 1/2] ;
2xy − x− y + 1, (x, y) ∈ ]1/2, 1]× ]1/2, 1] .

Let S be the pointwise minimum of Π and T . Then

S (S(5/10, 6/10), 8/10) = 24/100,

while
S (5/10, S(6/10, 8/10)) = 0,

i. e. S is not associative, and hence it is not a t-norm.

In [19], it was proved that the class Q of quasi-copulas is the Dedekind–MacNeille
extension (the DM-extension, for short) of the set C of copulas, that is Q contains
lower and upper bounds (i. e. pointwise infima and suprema) of all subsets of C, in the
same way as the real numbers are the extension of the set of rationals by Dedekind’s
cuts (for more details on lattice theory, see, e. g., [24]). In view of Proposition 4.1,
S is a extension of class T of t-norms and S strictly includes the DM-extension of
T , because the supremum (infimum) of a subset of t-norms is commutative. This
suggests the following

Conjecture. The DM-extension of T is the set of commutative semicopulas, or,
equivalently, S is a commutative semicopula if, and only if, S is the supremum of a
subset of t-norms.

5. POINTWISE INDUCED SEMICOPULÆ

Let A and B be semicopulæ and let ϕ be a mapping from [0, 1]2 into [0, 1]. Then a
new mapping ψ(A,B) : [0, 1]2 → [0, 1] is also defined via

ψ(A,B)(x, y) := ϕ (A(x, y), B(x, y)) . (8)
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We shall investigate under which conditions the mapping ψ(A,B) just introduced is
a semicopula, for every choice of A and B in S; in other words, when does (8) induce
a map ψ : S × S → S? When this occurs, we shall say that ϕ induces pointwise the
binary operation ψ on S. The following Lemma will be needed.

Lemma 5.1. Let s1, s2 and t be points in [0, 1[ with s1 ≤ s2. Then there exist
two semicopulæ A and B and two points (x1, y1) and (x2, y2) in [0, 1]2, with x1 ≤ x2

and y1 ≤ y2 such that

A(x1, y1) = s1 and A(x2, y2) = s2,

B(x1, y1) = t = B(x2, y2).

P r o o f . Three cases will be considered.

Case 1: t ≤ s1 ≤ s2. Let A be the ordinal sum given by

A = (〈si, si+1, Z〉)i∈I ,

with I = {0, 1, 2, 3} and s0 = 0, s3 = 1, so that

A(x, y) =





0, (x, y) ∈ [0, s1[2 ,
s1, (x, y) ∈ [s1, s2[2 ,
s2, (x, y) ∈ [s2, 1[2 ,
x ∧ y, elsewhere,

and let B be the ordinal sum given by

B = (〈ti, ti+1, Z〉)i∈I ,

with t0 = 0, t1 = t, t2 = 1, so that

B(x, y) =





0, (x, y) ∈ [0, t[2 ,
t, (x, y) ∈ [t, 1[2 ,
x ∧ y, elsewhere.

Then

A(s1, s1) = s1, A(s2, s2) = s2, B(s1, s1) = t = B(s2, s2).

Case 2: s1 ≤ t ≤ s2. Choose B as in the previous case and let A be the frame
semicopula defined by

A(x, y) :=





0, (x, y) ∈ [0, 1[2 \ [s1, 1[2 ,
s1, (x, y) ∈ [s1, 1[2 \ ]t, 1[2 ,
t, (x, y) ∈ ]t, 1[2 \ [s2, 1[2 ,
s2, (x, y) ∈ [s2, 1[2 ,
x ∧ y, x ∨ y = 1.
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Then

A(t, t) = s1, A(s2, s2) = s2 and B(t, t) = B(s2, s2) = t.

Case 3: s1 ≤ s2 ≤ t. Choose B as in two previous cases and define A to be the
frame semicopula

A(x, y) :=





0, (x, y) ∈ [0, 1[2 \ [t, 1[2 ,
s1, (x, y) ∈ [t, 1[2 \ [x1, 1[2 ,
s2, (x, y) ∈ [x1, 1[2 ,
x ∧ y, x ∨ y = 1.

where we have chosen the point x1 subject to the only condition t < x1 < 1. Then

A(t, t) = s1, A(x1, x1) = s2, B(x1, x1) = B(t, t) = t,

which proves the assertion. ¤

Theorem 5.1. The following statements are equivalent:

(a) for all semicopulas A and B, ψ(A,B) is a semicopula;

(b) for every s ∈ [0, 1[ the functions t 7→ ϕ(t, s) and t 7→ ϕ(s, t) are increasing and
ϕ(x, x) = x for every x ∈ [0, 1].

P r o o f . (a) =⇒ (b) If ψ(A,B) is a semicopula, then

x = ψ(A,B)(x, 1) = ϕ (A(x, 1), B(x, 1)) = ϕ(x, x).

Let s1, s2 and t be in [0, 1[ with s1 ≤ s2. Then, because of Lemma 5.1, there
are two points (x1, y1) and (x2, y2) in [0, 1]2 with x1 ≤ x2 and y1 ≤ y2 such that
A(x1, y1) = s1, A(x2, y2) = s2 and B(x1, y1) = B(x2, y2) = t. Therefore

ϕ(s1, t) = ϕ (A(x1, y1), B(x1, y1)) = ψ(A,B)(x1, y1) ≤ ψ(A,B)(x2, y2)
= ϕ (A(x2, y2), B(x2, y2)) = ϕ(s2, t).

In an analogous manner, one proves that, for all s ∈ [0, 1[, the function t 7→ ϕ(s, t)
is increasing.

The converse implication, (b) =⇒ (a), is just a matter of a straightforward veri-
fication. ¤

As a consequence of the preceding theorem, every idempotent aggregation opera-
tor induces pointwise a binary operation on S. Examples of idempotent aggregation
operators are given, for instance, by the geometric and harmonic means and, in
general, the quasi-arithmetic mean, defined by

M(x, y) = f−1

(
f(x) + f(y)

2

)
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for every stricly increasing bijection f of [0, 1].
It is known from [14] that the kernel property completely characterizes the func-

tions that induce pointwise a binary operation on the class Q of quasi-copulas. In
the case of copulas, instead, this problem is still open.

6. MULTIVARIATE SEMICOPULÆ

The notion of semicopula can be extended in a natural way to the n-dimensional
case (n ≥ 3).

Definition 6.1. A function S : [0, 1]n → [0, 1] is said to be an n-semicopula if it
satisfies the two following conditions

(a) S(x1, x2, . . . , xn) = xi for xi in [0, 1] and xj = 1 for all j 6= i;

(b) S(x1, x2, . . . , xn) is increasing in each place.

As a convention, the identity on [0, 1], id[0,1], is the only 1-semicopula.
Given a family of n-semicopulas {Sn}n∈N, the corresponding aggregation oper-

ator A : ∪n∈N [0, 1]n → [0, 1], where An = Sn for all n ∈ N, has neutral element 1
and annihilator element 0.

Higher dimensional semicopulæ are easily constructed from lower dimensional
ones, in view of the following results, the easy proof of which will not be reproduced
here.

Proposition 6.1. Let H be a 2-semicopula and let Sm and Sn be, respectively, an
m-semicopula and an n-semicopula (m,n ∈ N); then the function S : [0, 1]m+n →
[0, 1] defined by

S(x1, . . . , xm+n) := H (Sm(x1, . . . , xm), Sn(xm+1, . . . , xm+n)) (9)

is an (m+ n)-semicopula.

Aggregation operators of type (9) are called double aggregation operators; they
allow to combine two input lists of information coming from different sources into a
single output (see [6] for more details).

Proposition 6.2. Let S1, S2,. . . , Sn be bivariate semicopulæ; then the function
S : [0, 1]n+1 → [0, 1] defined by

S(x1, x2, . . . , xn+1)
:= Sn (Sn−1 (Sn−2 (. . . S3 (S2 (S1(x1, x2), x3) , x4) , . . . , xn) , xn+1))

is an (n+ 1)-semicopula.

In the opposite direction we can construct lower dimensional semicopulas from
higher dimensional ones.
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Proposition 6.3. Any m-marginal, m ≥ 2, of an n-semicopula Sn, m < n is an
m-semicopula, viz., if Sn is an n-semicopula, then the function Sm : [0, 1]m → [0, 1]
defined by

Sm(x1, x2, . . . , xm) = Sn(x1, x2, . . . , xm, 1, 1, . . . , 1)

is an m-semicopula, and so is any function obtained from it by permuting its argu-
ments.

Propositions 6.1, 6.2 and 6.3 can be analogously proved also in the case of quasi-
copulas.
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