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LARGE SCALE DYNAMIC SYSTEM STABILIZATION
USING THE PRINCIPLE OF
DOMINANT SUBSYSTEMS APPROACH

Vojtech Veselý

This paper considers the problem of stabilizing a large scale dynamic system via decen-
tralized control using the principle of dominant subsystems approach. Sufficient conditions
for the existence of local decentralized control laws stabilizing a given large scale dynamic
system with dynamic and parametric uncertainties are derived in terms of controller pa-
rameters for incompletely known continuous- and discrete-time systems.

1. INTRODUCTION

In order to receive practically applicable control of Large Scale Dynamic Systems
(LSDS), the decentralized controllers (DC) have to be used. These controllers con-
sist of several independent control stations, each of which observes only the local
output of a subsystem and controls only the local input. It is desired to find the
decentralized control of LSDS which satisfies the following requirements [17]:
– The structure and parameters of DC are designed using only the subsystem math-
ematical models so that the overall system stability is ensured and a desired control
performance quality is achieved.
– The DC has to be robust with respect to

1. changes of the interconnections between subsystems,
2. changes of the structure and parameters of other subsystems, and
3. changes of structure and parameters of subsystem itself.

– The decentralized control laws have to be obtained in a decentralized design pro-
cedure.

All of these requirements demand the new approches to the design of the decen-
tralized control. In general, the decentralized adaptive control strategies are closely
related with the robust SISO adaptive control methods as for example, applications
of model reference adaptive controllers [4]. The literature is mainly concerned to
the centralized design procedure, in which all DC are determined using the known
mathematical model of LSDS, for example, for linear dynamic systems in [1, 12, 10],
nonlinear dynamic systems in [5, 13] and adaptive decentralized control in [6, 10].
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Decentralized procedures can be found rarely [7, 10]. Various approaches were pro-
posed for the solution of the state control problem for a class of systems stabilizable
by the DC. The LSDS subsystems dynamic are supposed to be known while the
nonlinear-time-varying interconnections are unknown [4, 10]. Recently [16, 17, 18],
we have presented the decentralized adaptive control method stabilizing LSDS using
the principle of dominant subsystems. In this paper, we pursue the same idea and
the presented results are a generalization of the pole placement method for linear
system to the nonlinear-time-varying case.

The remainder of this paper is organized as follows. In Section 2 mathematical
description of an investigated system and problem formulation are given. For a given
nonlinear-time-varying LSDS with uncertainties, sufficient conditions for the choice
of structure and parameters of local continuous and discrete-time controllers which
ensure stability of composite systems are derived in Sections 3 and 4.

2. PROBLEM STATEMENT

Consider a nonlinear-time-varying LSDS which can be split into N subsystems:

ẋi = fi(xi, t) + bi(xi, ui, t) + hi(x, t) i ∈ N = {1, 2, . . . , N} (1)

where xi ∈ Rni , ui ∈ Rmi are the local state and control vectors of the i th sub-

system, respectively, n =
N∑

i=1

ni, m =
N∑

i=1

mi; fi(·), bi(·), hi(·) are continuous and

uniformly bounded vector functions, differentiable on the set Rρi × T × Rmi with
respect to variables of the system

Rρi = {xi ∈ Rni : ‖xi‖ ≤ ρi}, ρi > 0

and

fi(0, t) = bi(xi, 0, t) = hi(0, t) = 0
‖hi(x, t)‖ ≤ ξi‖x‖, ∀ (x, t) ∈ Rn × T (2)
T = 〈t0,∞), xi(t0) = xi0, i ∈ N

The numbers ξi ≥ 0 are supposed to be unknown. The problem of the local
control agent is to find adaptive DC of the form:

ui = qi(xi, ri, t) (3)
ṙi = gi(xi, ri, t) (4)

such that the closed-loop system consisting of the plant (1) and the adaptive decen-
tralized controllers (ADC) (3) and (4) is stable under the disturbances and uncer-
tainties defined below.

In (3) and (4), ri ∈ Rpi collects the local controller parameters which will be
adapted and gi(0, ri, t) = 0, ri(t0) = ri0, lim

t→∞
ri = r?

i ∈ Rs, for i ∈ N , where

Rs = {ri ∈ Rpi : system (1) with (3) and (4) is stable in Lyapunov sense, i ∈ N}.
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3. LARGE SCALE SYSTEM STABILIZATION PROBLEM

3.1. Continuous time case

Recently, we have presented the decentralized adaptive control method stabilizing a
LSDS using the principle of dominant subsystem approach. From [3] we recall some
preliminary results.

Definition 1. The square matrix W = [wij ]N×N is diagonally dominant if there
exist dj > 0 (j = 1, 2, . . . , N) such that

di|wii| >
N∑

j=1,j 6=i

dj |wij |, i = 1, 2, . . . , N

or
dj |wjj | >

N∑

i=1,i6=j

di|wij |, j = 1, 2, . . . , N. (5)

The square matrix W is negative diagonally dominant if it is diagonally dominant
and wii < 0, i ∈ N . The square matrix W is called M-matrix if wij ≥ 0 for all
off-diagonal elements of W .

Lemma 1. M-matrix is stable if it is negative diagonally dominant.

Let us refer a square matrix W as an aggregation matrix [18, 19] of the investigated
system (1), (3) and (4) in the form

dva

dt
≤ Wva (6)

where vT
a = [v1a, . . . , vNa] is a vector Lyapunov function.

The entries of va are the Lyapunov functions of isolated subsystems with ADC.
In order to ensure the negative diagonal dominance of the investigated system,

the stability measure of the i th subsystem given by the formula

αi = −dvia/dt

via
≥ −wii (7)

has to be increased when the system (1) with ADC (3) and (4) is not stable and/or
a desired control performance quality is not achieved. From Lemma 1, it is obvious
that if the LSDS is stabilizable by the supposed ADC there must exist such values
of diagonal entries wii (i ∈ N ) of the matrix W that the investigated system will
be stable. The design problem is to find DC (2) and (3) which ensure the negative
diagonal dominance of the investigated system.

On the set Rρi, determine the function via : Rni × T → R+ as a Lyapunov
function of the i th isolated subsystem

ẋi = fi(xi, t), i ∈ N . (8)
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The entries of vector Lyapunov function (6) can be taken as [8]

via = vi + (ri − r?
i )T (ri − r?

i ) (9)

The conditions for the change of the stability measure of the i th subsystem as a
function of local controller parameters ri are given by:

∂αi

∂ri
=− ∂

∂ri

(
dvia/dt

via

)
=
−

{
∂

∂ri
[(grad vi)Tbi]+2ṙi

}
via+2dvia

dt (ri − r?
i )

v2
ia

6=0 (10)

for ‖xi‖ 6= 0 and i ∈ N .
If for all entries of the vector ∂αi

∂ri
satisfy the following inequality

∂αi

∂ri
≥ 0 (11)

then from the equation (10) for the ADC algorithm one has got

ṙi = −βi
∂

∂ri
[(grad vi)Tbi] (12)

with βi ≥ 1
2 and ṙi ≥ 0. For

∂αi

∂ri
≤ 0 (13)

one obtains

ṙi = −γi
∂

∂ri
[(grad vi)Tbi] (14)

with γi ≤ 1
2 and ṙi ≤ 0.

The proposed ADC algorithm (12) or (14) ensures that the stability measure of
all subsystems will increase in the time if ṙi is not identically equal to zero. Owing
to Lemma 1 or the principle of negative diagonal dominance of the investigated
system, if the system is stabilizable by the proposed DC, there exist such values of
wii (wij = const), for i ∈ N , j ∈ N , that the system (1) with controller (3) and (4)
will be stable. The sufficient conditions of stability of the investigated system are
given by the following theorem.

Theorem 1. The equilibrium zT = [xT, (r− r?)T ] = 0 of the system (1), (3) and
(12) or (14) is stable and asymptotically stable with respect to variables x (or some
part of variables x) on the set Rρi × T, i ∈ N , if the following sufficient conditions
hold:

(i) For the Lyapunov function of the investigated system

Va =
N∑

i=1

via (15)
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the following condition holds [11]:

a(‖x‖) ≤ Va(x, t).

(ii) The conditions given by Eqs. (11), (12) or (13) and (14) are satisfied for the
disturbances acting upon the LSDS.

(iii) The investigated system (1) with the controller (2) and (12) or (14) is stabil-
izable.

P r o o f . Determine a function Va : Rn ×Rp × T → R+ (cf. (15)) as a Lyapunov
function of the investigated system as follows:

Va =
N∑

i=1

vi(xi, t) + (ri − r?
i )T (ri − r?

i )

For the time derivative of the Lyapunov function on the solution of (1), (2) and (3)
we can obtain

dVa

dt
=

N∑

i=1

{
(grad vi)T[fi + bi(xi, qi (xi, ri, t), t) + hi] + 2(ri − r?

i )Tṙi

}
+

∂Va

∂t
(16)

Owing to the condition (12) or (14) the negative definiteness (semidefiniteness) of
the second part of Eq. (16)

(grad vi)T bi(xi, qi(xi, vi, t), t), i ∈ N

become more intensive in the time if ṙi is not identically equal to zero. Since the
stability measure of all subsystems within the dynamic behaviour of the investigated
system is almost permanently increasing in the time, owing to the conditions (iii)
of Theorem 1 for all controller parameters rij there exists such instant of time,
say t1 ∈ 〈t0, tc〉, that rij ∈ Rs; the last but one term of (16) is at least negative
semidefinite then for t > t1 the following inequality holds:

dVa

dt
≤ 0

and the system is stable and asymptotically stable with respect to the part of vari-
ables z1, z = [x, r − r?] = [z1, z2], for which the following inequality holds:

dVa(z, t)
dt

≤ −c ‖z1‖2, c > 0.

This completes the proof. 2

3.2. Discrete–time case

Consider a nonlinear discrete-time-varying LSDS with N subsystems

xi(t + 1) = fi[xi(t), t] + bi[xi(t), ui(t), t] + hi[x(t), t] (17)
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and the adaptive DC

ui(t) = qi[xi(t), ri(t), t] (18)
∆ri(t) = gi[xi(t), ri(t), t] (19)

where t ∈ I = {0, 1, 2, . . .}, i ∈ N . Determine the Lyapunov function of the i th
subsystem with adaptive DC (18) and (19) on the set Rρi × I as follows

via(t) = vi(t) + (ri(t)− r?
i )T (ri(t)− r?

i ) (20)

where vi(t) is a Lyapunov function of the isolated subsystem xi(t + 1) = fi[xi(t), t ].
Let us take the Lyapunov function of LSDS in the form (15). For the first difference
∆Va(t) along the solution of (17), (18) and (19), one can write [9]:

∆Va(t) ≤
N∑

i=1

Li|hi[x(t), t]|+∆vi[xi(t), ui(t), t]−∆rT
i (t)[2(r?

i −ri(t))−∆ri(t)] (21)

where ∆ri(t) = ri(t + 1)− ri(t), Li > 0 satisfy the following inequality

|vi[xi(t)′, t]− vi[xi(t)′′]| ≤ Li‖xi(t)′ − xi(t)′′‖

for all xi(t)′, xi(t)′′ ∈ Rni , t ∈ I and i ∈ N . In order to ensure the negative diagonal
dominance of the investigated system, the stability measure of the i th subsystem
defined by the following formula

αi = −∆vi(t)
via(t)

(22)

has to be increased when the system (17) with adaptive DC (18) and (19) is not
stable. From Eq. (10), one can obtain the following adaptive decentralized control
laws:

∂αi

∂ri
≥ 0 (23)

∆ri(t) = −βi
∂

∂ri
(∆vi(t)) (24)

with βi ≥ 1
2 and ∆ri(t) ≥ 0

∂αi

∂ri
≤ 0 (25)

∆ri(t) = −γi
∂

∂ri
(∆vi(t)) (26)

with γi ≤ 1
2 and ∆ri(t) ≤ 0, i ∈ N .

The stability of the LSDS (17) with (18) and (24) or (26) has to be checked.
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Theorem 2. The equilibrium z(t)T = [x(t)T, (r(t) − r∗)T] = 0 of the system
(17) with adaptive DC (18) and (24) or (26) is stable and asymptotically stable with
respect to the variables x(t) (or some part of variables x(t)) at the set Rρi×I, i ∈ N ,
if the following sufficient conditions hold:

(i) The Lyapunov function of the investigated system (15) satisfies [11]:

a(‖x‖) ≤ Va(t)

(ii) The conditions given by Eqs. (23), (24) or (25) and (26) are satisfied for dis-
turbances acting upon the LSDS.

(iii) The investigated system (17) with controller (18) and (19) is stabilizable.

P r o o f . The proof of Theorem 2 is strictly similar to that of Theorem 1. 2

3.3. Simplifications of proposed adaptive decentralized controller

Let us assume that instead of (12) or (14) one may use the following algorithm

ṙi = −Qi(xi, ri, t) (27)

where the entries of the vector Qi(xi, ri, t) are positive (negative) definite continuous
algebraic functions with Qi(0, ri, t) = 0, Qi(xi, 0, t) 6= 0 for ‖xi‖ 6= 0, and the next
matching conditions are valid in Eq. (16)

(grad vi)T bi(xi, qi(xi, ri, t)) =
mi∑

j=1

`ij∑
v=1

r
2kijv+1
ijv mijv(xi, t) + mij0(xi, t) (28)

where the indices indicate i th subsystem, j th input of the i th subsystem, and v th
controller parameter of the j th input; kijv = 0, 1, 2, . . . ; pi =

∑mi

j=1 `ij , i ∈ N .
One can rewrite Eq. (16) using Eqs. (27) and (28) in the following form:

dVa

dt
=

N∑

i=1



Hi(x, t)−




mi∑

j=1

`ij∑
v=1

(rijv0 +

+
∫ t

t0

Qijv(xi, ri, τ) dτ


 r

2kijv

ijv mijv(xi, t)+2(ri−r?
i )T Qi(xi, ri, t)






(29)

where

Hi(x, t) = (grad vi)T [fi + hi] +
∂vi

∂t
+

mi∑

j=1

`ij∑
v=1

mij0

and we substitute the following equation instead of rijv :

rijv = −rijv0 −
∫ t

t0

Qijv(xi, ri, τ) dτ.

The sufficient stability conditions of the investigated system (1) with adaptive DC
(3) and (27) are given by the following theorem.
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Theorem 3. The equilibrium zT = [xT, (r − r?)T ] = 0 of the system (1) with
adaptive DC (3) and (27) is stable and asymptotically stable with respect to the
variables x at the set Rρi × T, i ∈ N , if the following sufficient conditions hold:

(i) The following condition holds for the Lyapunov function of investigated system
(15) (cf. [11]):

a(‖x‖) ≤ Va(x, t).

(ii) The investigated system (1) with the controller (3) and (27) is stabilizable,
i. e. there exist r?

i ∈ Rs, i ∈ N such that the system is asymptotically stable.
(iii) If the entries of the vector Qi(xi, ri, t) are positive (negative) definite then

the corresponding functions mijv(xi, t) for i ∈ N , j = 1, 2, . . . ,mi, v = 1, 2, . . . , `ij

have to be positive (negative) semidefinite (or definite).

P r o o f . If there exist some j = 1, 2, . . . , mi, v = 1, 2, . . . , `ij that the functions
mijv(xi, t) are definite for all i ∈ N , then owing to (27) and condition (iii) of
Theorem 3 the negative definitness of second part of Eq. (29) become active as for as
ṙi is not identically equal to zero. Since the investigated system is stabilizable and
the third part of Eq. (29) is negative definite, there exist instant of time t1 ∈ 〈t0, tc〉
and ri ∈ Rs such that for t > t1 the

dVa

dt
< −c ‖x‖, c > 0

and the investigated system is stable and asymptotically stable with respect to the
variables x. If for some i ∈ N there exists no definite function mijv(xi, t), j =
1, 2, . . . , mi, v = 1, 2, . . . , `ij , then owing to (27) and conditions (ii) of Theorem 3,
there exist an instant of time, say t1 ∈ 〈t0, tc〉, and ri ∈ Rs such that for t ≥ t1 the
following inequality holds:

dVa

dt
< −c ‖x‖

and the system is stable and asymptotically stable with respect to variables x. This
completes the proof. 2

Consider now that instead of adaptive DC one may use the following algorithms:

ui = qi(xi, ri, t)
ri = −Gi(xi, t), i ∈ N (30)

Let us take the Lyapunov function of the system (1) with adaptive DC (30) in the
form

V =
N∑

i=1

vi (31)

For the time derivative of V along the solution of (1) and (30) with matching con-
dition (28) one may write the following formula:

dV

dt
=

N∑

i=1



Hi(x, t)−




mi∑

j=1

`ij∑
v=1

Gijv(xi, t) r
2kijv

ijv mijv(xi, t)






 (32)
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The sufficient stability conditions of the system (1) with adaptive DC (30) are
given by the following theorem.

Theorem 4. The equilibrium x = 0 of the system (1) with adaptive DC (30) is
stable and asymptotically stable with respect to the variables x (or some part of
variables x) at the set Rρi × T, i ∈ N , if the following sufficient conditions hold:

(i) The following condition holds for the Lyapunov function of investigated system
(31) (cf. [11]) a(‖x‖) ≤ V.

(ii) The investigated system (1) with the controller (30) is stabilizable.

(iii) The sign of the entries of the vector Gi(xi, t) must be the same as the sign
of the corresponding functions mijv(xi, t) for all i ∈ N , j = 1, 2, . . . , mi and v =
1, 2, . . . , `ij .

(iv) Assume that there exist some functions δij(xi) ∈ 〈δij min, δij max〉 for i ∈
N , j = 1, 2, . . . ,mi which characterize the qualitative dynamic properties of the i th
subsystem. When, for the some instant of time and ‖xi‖ 6= 0, one evaluates the
dynamic proces of the i th subsystem by δij = δij max, for i ∈ N , j = 1, 2, . . . , mi,
then the overall system is on the boundary of stability; for δij = δij min the dy-
namic behaviour has extremely excellent properties. This like function δij(xi) was
introduced in [8] to design of the adaptive controller. Let there exist positive num-
bers, δij0 ∈ 〈δij min, δij max〉, and such properties of scalar continuous functions
Gijv(δij(xi)), i ∈ N , j = 1, 2, . . . , mi, v = 1, 2, . . . , `ij , that the following con-
ditions hold:
– the function Gijv is increasing on the interval δij ∈ 〈δij min, δij max〉, and
– for δij ≥ δij0 it holds |rijv| ≥ σijv > 0
where σijv is a given positive number.

(v) If for some i ∈ N1 ⊂ N there does not exist a definite function mijv(xi, t), j =
1, 2, . . . , mi, v = 1, 2, . . . , `ij , then the function H(x, t) must satisfy:

H(x, t) =
N∑

i=1

Hi(x, t) ≤ 0 (33)

on the set {xi ∈ Rn
i : mijv(xi, t) = 0 and ‖xi‖ 6= 0 for i ∈ N1} and {xi ∈ Rn

i :
i /∈ N1}.

P r o o f . We have to prove the existence of such positive numbers σijv that under
conditions (i) – (v) of Theorem 4, the investigated system (1) with ADC (30) is stable
and asymptotically stable with respect to variables x or part of variables x.

Let us assume that there exist some j = 1, 2, . . . , mi, v = 1, 2, . . . , `ij such that
the functions mijv(xi, t) are definite for all i ∈ N . Using (1), (2), (29) and (32), we
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can obtain:

∂vi

∂t
+ (grad vi)T fi(xi, t) +

mi∑

j=1

`ij∑
v=1

mij0 ≤ βii ‖xi‖2

‖(grad vi)T hi(x, t)‖ ≤ ‖xi‖
N∑

j=1

αij‖xj‖ (34)

‖mijv(xi, t)‖ ≥ γijv‖xi‖2

where αij , γijv are non-negative numbers. The substitution of (34) into Eq. (32)
yields to:

dV

dt
≤

N∑

i=1


w′ii‖xi‖2 + 2 ‖xi‖

N∑

j 6=i

w′ij‖xij‖

 (35)

where

w′ii = βii + αii −
mi∑

j=1

`ij∑
v=1

|rijv|2kijv+1γijv

w′ij =
1
2

αij

The system (1) with adaptive DC (30) will be stable and asymptotically stable with
respect to variables x if the aggregation matrix W ′ = [w′ij ]N×N is negative definite.
From Lemma 1, it follows that there exist such positive numbers σijv that for

|rijv| ≥ σijv i ∈ N , j = 1, 2, . . . , mi, v = 1, 2, . . . , `ij ,

the matrix W ′ is negative definite. Let us assume that for some i ∈ N1 the functions
mijv are indefinite or semidefinite. Due to the condition (iii) of Theorem 4, the
second part of Eq. (32) for i ∈ N1 is at least positive semidefinite and for i 6∈ N1 one
is positive definite with respect to the variable xi. In virtue of the conditions (v)
of Theorem 4 and the structure of Eq. (32), there exist positive numbers σijv, for
i ∈ N , j = 1, 2, . . . ,mi, and v = 1, 2, . . . , `ij such that

dV

dt
≤ 0

and the system is stable and asymptotically stable with respect to variables z1, xT =
[zT

1 , zT
2 ] for which the following inequality holds:

dV

dt
≤ −c ‖z1‖.

This completes the proof. 2
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3.4. Adaptive control of systems with uncertainties

The problem of stability robustness arises from sources such as errors and simplifi-
cations in formulating the model of the plant, errors in implementing the controller
and the possibility of various sensors or actuator failures. A realistic treatment of
modelling uncertainty is to describe the physical plant not by a single model, but a
family of possible plant models. Modelling errors in physical systems fall into two
broad categories: parametric and dynamic uncertainty [2, 14]. Let us consider a
class of non-linear time-varying systems with the known part of LSDS:

ẋi = fi(xi, t)+ dfi(xi, t)+ bi(xi, ui, t)+ dbi(xi, ui, t)+h′i(xi, t)+ dhi(x, t)+Hi2(x, z)
(36)

and the unknown part:

żi = di(zi, t) + Hi2(x, z), i ∈ N

where all functions of (36) are algebraic continuous and bounded, which ensures
the unique solution of (36) for both all xi(t0) = xi0 ∈ Rni , zi(t0) = zi0 ∈ Rli and
continuous input ui ∈ Rmi . Assume that the functions Hi1, Hi2 and di(zi, t) are
unknown. The overall system (36) with the adaptive DC (3) and (27) (for example)
can be written in the compact form:

ẏ = G1(x, r, t) + H1(x, z) ż = G2(z, t) + H2(x, z) (37)

where

yT = [xT, (r − r?)T], zT = [zT
1 , . . . , zT

N ] ∈ R`, ` =
N∑

i=1

`i.

Let us suppose that (37) represents a family of plants with dynamic and parametric
modelling uncertainty, where the first isolated subsystem

ẏ = G1(x, r, t)

describes a nominal plant model with parametric uncertainty [18]. Assume that
G2(z, t) is asymptotically stable with respect to the variables z. Define on the set
Rρ × T the function v1 : Rn+p × T → R+ and on the set Rγ × T v2 : R` × T → R+

as Lyapunov functions for the 1st and 2nd isolated subsystem, respectively, where
Rγ = {z ∈ R` : ‖z‖ ≤ γ > 0}. For the time derivative of the Lyapunov function

V = v1 + v2 (38)

along the solution of (37), we obtain

V̇ =
2∑

i=1

(
∂vi

∂t
+ (grad vi)T(Gi + Mi)

)
(39)
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If we suppose that the following inequalities hold:

0.5
2∑

i=1

‖grad vT
i Hi‖ ≤ w12 ‖y‖ ‖z‖

∂v1

∂t
+ grad vT

1 G1 ≤ −w11(r) ‖y‖2

∂v2

∂t
+ grad vT

2 G2 ≤ −w22 ‖z‖2

where wij ≥ 0, i, j = 1, 2, then for (39) it yields

V̇ ≤ [ ‖y‖ ‖z‖ ]
[ −w11(r) w12

w12 −w22

] [ ‖y‖
‖z‖

]
(40)

The sufficient stability conditions of the system (37) are given by the following
theorem.

Theorem 5. The equilibrium [yT, zT] = 0 of the system (37) is stable and asymp-
totically stable with respect to the variables x on the set Rρ × T , if the following
sufficient conditions hold:

(i) The following condition holds (cf. [11]) for the Lyapunov function of investi-
gated system (38)

a(‖x‖) ≤ V (x, r, z, t).

(ii) The first isolated subsystem of (37) is completely controllable.
(iii) The second isolated subsystem which describes the unmodeled dynamics of

the system (37) is asymptotically stable with respect to the variables z.
(iv) The system (37) is stabilizable by the proposed adaptive DC.
(v) The functions H1 and H2 are uniformly bounded.
(vi) The following inequality holds:

w11w22 > w2
12

P r o o f . The prove of this theorem follows immediately from Lemma 1. 2

Since we suppose that the conditions of above theorem are fulfiled, there is no
problem to stabilize of the LSDS (37) with dynamic uncertainties via in this paper
proposed adaptive DC. One may suppose that only parametric uncertainties occur
in the first subsystem of (37) for the design of adaptive DC. Let us assume that the
parameters of the 1 st subsystem (37) vary over some a priori known compact set C.
For the time derivative of the Lyapunov function (15) along the solution of the 1 st
subsystem (36) with (28), one may obtain

dVa

dt
=

N∑

i=1



Hi(x, t)−




mi∑

j=1

`ij∑
v=1

∫ t

t0

Qijv dτ
(
r
2kijv

ijv mijv − 2Qijv

)

 +

+ 2r?T
i Qi + (grad vi)Tdbi



 (41)
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where (see Eqs. (36) and (29))

hi(x, t) = dfi + dhi + h′i

and without loss of generality we assume that rijv0 = 0. The sufficient stability
conditions of the investigated system for dbi = 0 are given by Theorem 3.

Let us consider the following three matching conditions:
1. dbi = βibi(xi, ui, t);
2. dbi has the same structure as bi(·) and the similar matching condition holds

as it is given by Eq. (23);

3. the matrix Bi for the linear LSDS

ẋi = Aiixi + Biui +
N∑

j=1,j 6=i

Aijxj yi = Cixi, i ∈ N

is given by
Bi = Bi0(I + GiSi)

and the adaptive DC ui = −riKiCixi −Kpi
Cpi

xi

with ṙi = −xT
i Qixi, Qi < 0

The robustness properties of the investigated system with above matching con-
ditions can be summarized as follows.

1. βi > −1

2. sign (mijv + dmijv) = sign(mijv)

3. CT
i KT

i (I + GiSi)TBT
i0Pi + PiBi0(I + GiSi)KiCi ≥ 0 if Ci = I and Ki = BT

i0Pi

then it yields

λM ((GiSi)T + GiSi) > −2 or ‖GiSi‖ < 1 for i ∈ N

where Pi is the positive definite matrix which can be obtained from the following
Lyapunov matrix equation:

(Aii −BiKpiCpi)TPi + Pi(Aii −BiKpiCpi) = −Mi, Mi > 0.

4. CONCLUSION

In this paper, an original approach to the solution of the LSDS stabilization prob-
lem is proposed. Sufficient stabilizability conditions are derived for the nonlinear
dynamic system with dynamic and parametric uncertainties. The proposed adap-
tive decentralized controllers possesses robustness properties with respect to
– changes of the interconnections betwen subsystems,
– changes of the structure and parameters of other subsystems with controllers, and
– the given changes of parameters of subsystem itself.
It is shown that under conditions of Theorem 5, the dynamic uncertainties of
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the modelled system cannot destabilize the investigated system. From the para-
metric robustness properties point of view, the parametric changes of input functions
bi(xi, ui, t), i ∈ N are the most dangerous. It is shown that the proposed adaptive
DC possesses robustness properties for a broad class of parametric uncertainties
which can be met in practice.
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