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Editorial Office:
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NEURAL NETWORKS USING BAYESIAN TRAINING

Gabriela Andrejková and Miroslav Levický

Bayesian probability theory provides a framework for data modeling. In this framework
it is possible to find models that are well-matched to the data, and to use these models to
make nearly optimal predictions. In connection to neural networks and especially to neural
network learning, the theory is interpreted as an inference of the most probable parameters
for the model and the given training data. This article describes an application of Neural
Networks using the Bayesian training to the problem of Predictions of Geomagnetic Storms.
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AMS Subject Classification: 62M45, 62F15

1. INTRODUCTION

Neural networks continue to offer an attractive paradigm for the design and analysis
of adaptive, intelligent systems for many applications in artificial intelligence [7],
[8]. This is true for a number of reasons: for example, amenability to adaptation
and learning, robustness in the presence of noise, potential for massively parallel
computation.

Predictions of the hourly Dst index from the interplanetary magnetic field and
solar plasma density, based on Artificial Neural Networks (ANN), were made and
analysed by Lundstedt and Wintoft (feedforward networks) [10] and Andrejková et al
(recurrent networks, fuzzy neural networks) [2], [3]. Recent results have shown that
it is possible to use dynamic neural networks for predictions of GeoMagnetic Storms
(GMS) and modeling of the solar wind-magnetosphere coupling. In this paper we
are reporting preliminary results obtained with the help of a neural network model
using Bayesian probability at its training.

There has been increased interest in using of Bayesian networks but our model
is different. A Bayesian network is a compact, graphical model of a probability dis-
tribution [5]. Our model represents a combination of artificial neural networks with
Bayesian probability. Anděl [1] and Bernardo and Smith [4] describe the probability
theory and the Bayesian probability theory which have proved very successful in
a variety of applications, for example MacKay [11], [12], Schlessinger and Hlaváč
[16] and Müller and Insua [13]. The effectiveness of the models representing non-
linear input-output relationships depends on the representation of the input-output
space. The method belongs to a large family of approximation techniques working
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with some training samples. Families of approximation techniques are described in
Dechter and Rish [6].

A designed Neuro-Bayesian model will predict the occurrence of geomagnetic
storms on the basis of input parameters n, v, σBz

and Bz: n . . . the plasma density
of solar wind, v . . . the bulk velocity of solar wind, Bz, σBz . . . z-component of the
interplanetary magnetic field and its fluctuation.

To follow the changes of the geomagnetic field values we use the quantity Dst

index. Its values are in the interval ±10 nT (nano Tesla) during a normal situation
but during the geomagnetic storm they can decrease as much as some hundreds nT
in a few hours.

In Section 2, we describe some basic definitions and properties of the Bayesian
probability theory. In Section 3, we briefly describe the neural networks as a proba-
bilistic models. Section 4 contains the starting point to finding the weights of neural
networks. Some interesting results for GMS prediction are presented in Section 5.

2. BAYESIAN PROBABILITY

A Bayesian data-modeller’s aim is to develop probabilistic model that is well matched
to the data and makes optimal predictions using that model. A very good description
of this theory is presented in Bernardo at al [4]. Bayesian inference satisfies the
likelihood principle: Inferences depend only on the probabilities assigned to the
data that were obtained, not on properties of the data which might have occurred.

We shall use the following notation for conditional probabilities: Ω,Ω 6= ∅ –
the space of elementary events; H – σ-algebra of some nonempty subsets of Ω (a
model of computation), A,B ∈ H – events, P (A), P (B) – probabilities of the events
A,B, (Ω,H, P ) – a probability space, p(x) is a density of the random vector x on a
probability space (Ω,H, P ), P (A|B,H) is pronounced “the probability of A, given B
and H” and it explains the conditional probability; B and H mean the conditional
assumptions on which this measure of plausibility is based.

The Bayesian approach requires:

— specifying a set of prior distributions for all of weights in the network (and
variance of the error) and

— computing the posterior distributions for the weights using Bayes’ Theorem.

Prior distribution is a probability distribution on the unknown parameter vec-
tor ω ∈ Ω in the probability model, typically described by its density function p(ω)
which encapsulates the available information about the unknown value of ω. In our
case the weight vector w has no known prior distribution; this is therefore replaced
by a reference prior function.

Posterior distribution is a probability distribution on the unknown parameter
vector ω ∈ Ω in the probability model, typically described by its density function
p(ω|D), conditionally on the model, encapsulates the available information about
the unknown value of ω, given the observed data D and the knowledge about ω,
which the prior distribution p(ω) might contain. It is obtained by Bayes’ Theorem.
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Bayes Theorem: Given data D generated by the probability model {p(D|A),
A ∈ Ω} and a prior distribution p(A), the posterior distribution of A is p(A|D) ∝
p(D|A)p(A). The proportionality constant is {∫

Ω
p(D|A)p(A)dA}−1.

Two approaches have been explored in the finding of the posterior probability:

— To find the most probable parameters (weights) using methods similar to the
conventional training and then approximate the distribution over weights us-
ing information available at this maximum.

— To use the Monte Carlo method to sample from the distribution over weights.
This was the method we applied initiation to using Markov chains.

There are two rules of probability which can be used:

— The product rule relates to joint probability of A and B, P (A, B|H) to the
conditional probability:

P (A,B|H) = P (B|H)P (A|B,H) (1)

— The sum rule relates the marginal probability distribution of A, p(A|H), to
the joint and conditional distributions:

p(A|H) =
∑

B

p(A,B|H) =
∑

B

p(A|B,H)p(B|H) (2)

Having specified the joint probability of all variables as in equation, we can use the
rules of probability to evaluate the way in which our beliefs and predictions should
change when we get new information.

3. NEURAL NETWORKS AS PROBABILISTIC MODELS

A supervised neural network is a non-linear parametrized mapping from an input x
to an output ŷ = f(x,w;A). The output is a continuous function of the parameters
w, which are called weights and A is an architecture of the network.

The network is trained in the classical way using a data set D = {(x(1),y(1)), . . . ,
(x(n),y(n))} by the backpropagation algorithm, n is the length of a training sample.
It means the following sum squared error is minimized

ED(w) =
1
2

n∑
m=1

∑

i

(y(m)
i − fi(x(m);w))2 (3)

The weight decay is often included in the objective function for minimization. This
means that

M(w) = βED(w) + αEW (w), (4)

where EW (w) = 1
2

∑
i w2

i , α and β are regularization constants.
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The learning process above can have the following probabilistic interpretation.
We suppose Ω = Rd, where d is a weight vector dimension. The error function is
interpreted as minus the log likelihood for a noise model:

p(D|w, β,H) =
1

ZD(β)
exp(−βED(w)) (5)

where parameter β defines a noise level σ2
n = 1

β and ZD(β) is a suitably chosen
constant.

Similarly, the regularization is denoted as a log prior probability distribution over
parameters w

p(w|α,H) =
1

ZW (α)
exp(−αEW (w)) (6)

where σ2
W = 1

α , α is a regularization constant and ZW (α) is a suitably chosen
constant.

The function E corresponds to the deduction of parameters w according to data
D. It means that

p(w|D, α, β,H) =
p(D|w, α, β,H)p(w|α,H)

p(D, α, β,H)
(7)

Bayesian inference for modelling problems may be implemented by analytical
methods, by Monte Carlo sampling, or by deterministic methods using Gaussian
approximations.

4. DESCRIPTION OF ALGORITHMS

We deal only with neural networks used for regression. Assuming a Gaussian noise
model, the conditional distribution for the output vector given the input vector
based on this mapping will be as follows:

p(y|x,w) = (2πσ2)d/2 exp(−|y − f(x,w)|2
2σ2

) (8)

where d is the dimension of the output vector and σ is the level of the noise in the
outputs.

In the Bayesian approach to the statistical prediction, one does not use a single
“best” vector of weights, but rather integrates the prediction from all possible weight
vectors over the posterior weight distribution which combines the data with prior
computed weights.

The best prediction for the given input from the testing data xn+1 can be ex-
pressed by

ŷn+1 =
∫

Rd

f (xn+1,w)p(w|(x1,y1), . . . , (xn,yn))dw. (9)
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The densities of the posterior probabilities of weight vectors are as follows (ac-
cording to the Bayes theorem):

p(w|(x1,y1), . . . , (xn,yn)) =
p(w)p((x1,y1), . . . , (xn,yn)|w)

p((x1,y1), . . . , (xn,yn))
(10)

=
p(w)p(y1, . . . ,yn|x1, . . . ,xn,w)

p(y1, . . . ,yn|x1, . . . ,xn)

The training data are independent of each other which means that the following
relationship is satisfied:

p(w)p(y1, . . . ,yn|x1, . . . ,xn,w)
p(y1, . . . ,yn|x1, . . . ,xn)

=
p(w)

∏n
i=1 p(yi|xi,w)

p(y1, . . . ,yn|x1, . . . ,xn)
(11)

To the formulation of Bayesian problem it is necessary to add the prior distri-
bution of weights. One of the possibilities is using the Gaussian noise function:
p(w) = (2πω2)−

d
2 exp

(
− |w|2

2ω2

)
, where ω is an expected weight scale, it should be set

by hand.
High-dimensional integrals mentioned above for predictions are in general ana-

lytically unsolvable and numerically difficult to compute. This leads to the problem
of Bayesian learning. While in traditional training we deal with an optimization
problem, in Bayesian training we deal with evaluation of high-dimension integrals.
Metropolis algorithm presents a method for evaluation of the integrals. However,
this algorithm works slowly for our problem. But it forms the basis for Hybrid Monte
Carlo method, which should be more effective for evaluating the integrals. Now we
will describe used methods in some basic steps. The developed algorithm for our
problem was applied according to the construction of Neal [14].

Suppose that we wish to evaluate

〈g〉 =
∫

Rd

g(q)p(q)dq. (12)

The Metropolis algorithm generates a sequence of vectors q0,q1, . . ., which forms a
Markov chain with the stationary distribution p(q). The integral in equation (12)
is then approximated as

〈g〉 ≈ 1
M

I+M−1∑

t=I

g(qt), (13)

where I stands for the number of initial values which will not be used in evaluation
and M stands for the number of functional values g. Averaging those values one
gets an approximate value for 〈g〉. In limit case, as M increases, approximation
converges to the real value 〈g〉. It is difficult to determine how long it takes to reach
the stationary distribution (and hence to determine the value of I), or determine how
the values of qt are correlated in following iterations (and hence how large M should
be). One cannot avoid such difficulties in applications that utilize the Metropolis
algorithm.
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Generation of the Markov chain is described by an energy function, defined as

E(q) = − ln(p(q))− ln(ZE), (14)

where ZE is a positive constant chosen for convenience. The algorithm starts by
random sampling of q0. In every t-th iteration, a random candidate q̃t+1 for the
next state is sampled from distribution p(q̃t+1 |qt). The candidate is accepted if its
energy is lower than that of the previous state; if its energy is higher it is accepted
with probability exp(−∆E), where ∆E = E(q̃t+1)− E(qt). In other words,

qt+1 =

{
q̃t+1 if U < exp(−∆E)
qt otherwise

(15)

and U is a random number from uniform distribution from interval 〈0, 1).
The Hybrid Monte Carlo method as an improvement on the Metropolis algorithm

eliminates much of the random walk in weight space, and further accelerates explo-
ration of the weight space. The method uses a gradient information provided by the
backgropagation algorithm.

Unlike the Metropolis algorithm, the Hybrid Monte Carlo method generates se-
quence of vector couples (q0, r0), (q1, r1), . . ., where vectors q are called position
vectors and vectors r are called momentum vectors. Both these vectors are of the
same dimension. Potential energy function E(q) used in Metropolis algorithm is ex-
tended to Hamiltonian function H(q, r) that combines potencial and kinetic energy:

H(q, r) = E(q) +
1
2
|r|2 . (16)

p(q, r) = p(q)p(r) is fact for the stationary distribution of generated Markov chain.
Marginal distribution of q is the same as the one for Metropolis algorithm. Thus,
the value of 〈g〉 can be again approximated by use of equation (13). Momentum
characteristics have Gaussian distributions, and they are independent of q and of
each other. The Markov chain is generated by two types of transitions – dynamic
and stochastic moves. The hybrid Monte Carlo method is described in [15].

5. RESULTS OF GEOMAGNETIC STORM (GMS) PREDICTIONS

We will discuss various implementation issues which are necessary for the actual
prediction. The data are available from the NASA “OMNI database” and are dis-
tributed by National Space Science Data Center [17] and WDC-A for Rockets&Satel-
lites. In the period 1963 – 1999, the quantities: Bz, σBz , n, v and Dst are measured
and saved at each hour. We will predict the values of Dst index with neural networks
in depending on the next four quantities:

Bz – z-coordinate of the interplanetary magnetic field, the values are in the
interval ±50 nT,

σBz – mean square error Bz characterizes the swings of the quantity,
n – the plasma density of solar wind in 1 cm3,
v – the bulk velocity of solar wind, the values can be as much as 1200 km/s.
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We suppose that the measured Dst index of geomagnetic storm is a function of
parameters Bz, σBz , n, v and in Figure 1 we can see the course of it.

Some data are not complete and we use linear interpolation to fill the gaps but
only in the case if the gap is less then 30 hours. The reconstructed data are used for
a choice of the samples to the training set according to the following criteria: if the
value Dst decreases at least 40 nT during two hours then the training sample (the
storm) is created from the measured values 36 hours before the decreasing, 2 hours
of the identification of decreasing and 106 hours after the decreasing. The file of
the values must satisfy requirements of completeness of measurements. This means
that 144 hours describe one event – GMS. One storm is used for the learning of the
neural network by moving the 8 hours window.

Fig. 1. The Dst index of geomagnetic storm measured in 1981, 62-nd day.

We have prepared the training data set and two data testing sets A and B. To
prepare the A and B sets we used the data from years 1980 – 1984 and 1989 – 1999
because we had the continued values of parameters n, v,Bz, σBz and Dst. The
prepared data were represented by a sequence of

st = (nt, vt, Bt
z, σ

t
Bz

, Dt
st),

where st can be applied as time series.
The software of Levický described in [9] was modified and used in the present

application. The algorithm based on the works of Neal and McKay was written in
Delphi 5.

The feed-forward neural network calculating the following function y = f(x,w)
(the function f is corresponding to the function f in (9)) was used in the tests:

hidden layer: a
(1)
j =

∑m
l=1 w

(1)
jl xl + θ

(1)
j ; hj = tanh(a(1)

j ), j = 1, . . . , p

output layer: a
(2)
1 =

∑p
j=1 w

(2)
1j hj + θ

(2)
1 ; y1 = a

(2)
1 .
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Table 1. Experimental Results – approximations of GMS.

Data # Iteration #Good #Bad Average Success

Approximations Approximations Error

A 6000 62 74 1.90585 45,59 %

B 6000 101 35 0.48040 74,26 %

A 12000 76 60 1.19665 55,88 %

B 12000 113 23 0.23863 83,09 %

A 18000 86 50 0.77771 63,24 %

B 18000 109 27 0.23801 80,15 %

The vectors x = (x1, . . . , xm) (where m is the dimension of the data representing
a geomagnetic storm) represent neural network inputs. Every vector w stands for
coordinates of one GMS. Values y1, represent outputs of the neural network. It
means the results are values of some function.

The energy function explained by (14) in our problem is the function M(w)
described by (4). The sequence of weights is generated by the energy function as
the Markov chain. The sequence of weights is used to the approximation of values
Dst. It means that the function f in (9) is approximated by (13).

The computed results are in the following Table 1 and Table 2. The model was
at the time in the initial testing stage. In Table 1 we present results computed with
two data sets A and B. The measured and predicted data follow the Dst index in
the interval 0−143 hours, if both values are closed to each other then the prediction
is good in the opposite case it is bad. The prediction performance is measured by
#Good Predictions, #Bad Predictions, Average Error and % of Success. In Table
2 are presented results concerning of the predicted GMS numbers.

Fig. 2. The model of the neural network.
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Table 2. Experimental Results – predictions of GMS.

# Iteration AverageError # Predicted GMS

20000 0.91344 21

60000 0.72604 21

100000 0.64452 19

120000 0.61764 18

Total test samples in testing sets A and B: 272, the number of input neurons in
the neural network: 32 (for each block – Bz, σBz , n, v, 8 input values), the number
of hidden neurons in the neural network: 28, the number of output neurons: 1, as
it is shown in Figure 2.

The computed results are interesting from the following points of view:

— With the increase in the number of iteration the average error decreases. It is
one of the criteria for the evaluation of the model.

– After 18000 iterations the success grows very slowly in the case of the testing
data set A and decreases in the testing data set B (results in Table 1).

— The numbers of predicted Geomagnetic Storms (results in Table 2) are higher
than the numbers of real GMS but after 120000 iterations the numbers of pre-
dicted GMS decrease.

— Bayesian neural networks that we used in the prediction of geomagnetic storms
seems a very good model. They move the weight vector to the most probable
part of the weight space.

— The using method has very slow convergence. It means that the trainig is very
time-consuming.

6. CONCLUSION

In the present paper we dealt with feed-forward neural networks and their training
for the prediction of Geomagnetic Storms. We use Bayesian probability theory
and Monte Carlo methods. Monte Carlo methods provide good approximations
of evaluating high-dimensional integrals which are needed to be computed at the
training of neural networks. Their greatest disadvantage is the fact that they are
extremely time-consuming because they need the high numbers of iteration steps.
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[1] J. Anděl: Mathematical Random Events (in Czech). Matfyzpress, Praha 2002.
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