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COMPUTING COMPLEXITY DISTANCES
BETWEEN ALGORITHMS

S. Romaguera, E.A. Sánchez–Pérez and O. Valero1

We introduce a new (extended) quasi-metric on the so-called dual p -complexity space,
which is suitable to give a quantitative measure of the improvement in complexity obtained
when a complexity function is replaced by a more efficient complexity function on all inputs,
and show that this distance function has the advantage of possessing rich topological and
quasi-metric properties. In particular, its induced topology is Hausdorff and completely
regular.

Our approach is applied to the measurement of distances between infinite words over
the decimal alphabet and some advantages of our computations with respect to the ones
that provide the classical Baire metric are discussed.

Finally, we show that the application of fixed point methods to the complexity analysis
of Divide & Conquer algorithms, presented by M. Schellekens (Electronic Notes in Theo-
ret. Comput. Sci. 1 (1995)), can be also given from our approach.

Keywords: invariant extended quasi-metric, complexity function, balanced quasi-metric,
infinite word, Baire metric, contraction mapping, Divide & Conquer algorithm

AMS Subject Classification: 54E50, 5H25, 54H99, 68Q25

1. INTRODUCTION AND PRELIMINARIES

In the sequel the letters R+, ω and N will denote the set of nonnegative real numbers,
the set of nonnegative integer numbers and the set of positive integers numbers,
respectively.

M. Schellekens introduced in [23] the theory of complexity spaces as a part of
the development of a topological foundation for the complexity analysis of programs
and algorithms. Later on, S. Romaguera and M. Schellekens [21] introduced the
so-called dual complexity space and obtained several quasi-metric properties of the
complexity space which are interesting from a computational point of view, via the
analysis of its dual. Recently, it was shown in [22] that the dual complexity space
admits a structure of a (quasi-)normed semilinear space in the sense of [20] (see
Section 2).

In [7], the notion of dual complexity has been extended to the “p -dual” case,
where p > 1, for including in this theoretical approach to computational complexity,

1The authors acknowledge the support of the Spanish Ministry of Science and Technology, Plan
Nacional I+D+I, Grant BFM2003-02302 and FEDER.
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algorithms with running time O(2n/nr), 0 < r ≤ 1 (see Section 2). However, for
all p ∈ [1,+∞), the quasi-pseudo-metric generated in a natural way induces a T0

topology that is not even T1.
In this paper we construct a new distance function on the dual p -complexity

space, namely, an invariant extended quasi-metric, which is suitable to measure
progress made in lowering the complexity by replacing a given program by another
program which is more efficient on all inputs. In particular, it permits us to give a
numerical quantification of progress made in lowering the complexity by replacing
a given program Q by a program P which is more efficient on all inputs. More-
over, this distance function possesses rich topological and quasi-metric properties as
Hausdorffness and complete regularity, among others. We also apply this extended
quasi-metric to the measurement of distances between infinite words over the deci-
mal alphabet and analyze some advantages of our methods with respect to the ones
that use the classical Baire metric. In this way, we partially reconcile the theory
of computational complexity with the corresponding to denotational semantics. Fi-
nally, we show that, similarly to the approach made by Schellekens in [23], Divide
& Conquer algorithms induce contraction mappings for our extended quasi-metric,
and then a Banach-type fixed point theorem is applicable to our context.

Our main reference for general topology is [4] and for quasi-pseudo-metric spaces
they are [6] and [14].

Let us recall that a quasi-pseudo-metric on a set X is a nonnegative real-valued
function d on X ×X such that for all x, y, z ∈ X : (i) d(x, x) = 0, and (ii) d(x, z) ≤
d(x, y) + d(y, z).

If, in addition, d satisfies: (iii) d(x, y) = 0 if and only if x = y, then d is called a
quasi-metric on X.

We will also consider extended quasi-(pseudo-)metrics. They satisfy the three
above axioms, except that we allow d(x, y) = +∞.

If d is a quasi-(pseudo-)metric on X, then the function d−1 defined on X ×X by
d−1(x, y) = d(y, x), is also a quasi-(pseudo-)metric on X, and ds defined on X ×X
by ds(x, y) = max{d(x, y), d−1(x, y)}, is a (pseudo-)metric on X. If d is an extended
quasi-(pseudo-)metric on X, then d−1 and ds are an extended quasi-(pseudo-)metric
and an extended (pseudo-)metric on X, respectively.

Each extended quasi-pseudo-metric d on a set X induces a topology T (d) on X
which has as a base the family of open d -balls {Bd(x, r) : x ∈ X, r > 0}, where
Bd(x, r) = {y ∈ X : d(x, y) < r} for all x ∈ X and r > 0.

If d is an extended quasi-metric on X, then the topology T (d) induced by d is T1.
A quasi-metric space is a pair (X, d) such that X is a (nonempty) set and d is a

quasi-metric on X. The notion of an extended quasi-metric space is defined in the
obvious manner.

A semilinear space on R+ (a cone in the sense of [12]) is a triple (X, +, ·) such
that (X, +) is an Abelian monoid, and · is a function from R+ ×X to X such that
for all x, y ∈ X and r, s ∈ R+:

(i) r · (s · x) = (rs) · x;
(ii) r · (x + y) = (r · x) + (r · y);
(iii) (r + s) · x = (r · x) + (s · x);
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(iv) 1 · x = x.

A norm on a semilinear space (X, +, ·) is a function p : X → R+ such that for all
x, y ∈ X and r ∈ R+:

(i) p(x) = 0 if and only if x = 0;
(ii) p(r · x) = rp(x);
(iii) p(x + y) ≤ p(x) + p(y).

A normed semilinear space is a pair (X, p) such that X is a semilinear space and
p is a norm on X.

The following is a classical and useful example of a normed semilinear space.
For each p ∈ [1,+∞) denote by lp the set of infinite sequences x := (xn)n∈ω of

real numbers such that
∑∞

n=0 | xn |p< +∞.
It is well known that (lp, ‖.‖p) is a Banach space, where ‖ . ‖p is the norm on lp

defined by ‖ x ‖p=(
∑∞

n=0 | xn |p)1/p for all x ∈ lp (see, for instance, [8]).

Let l+p = {x ∈ lp : xn ≥ 0 for all n ∈ ω}, and let ‖.‖+p be the restriction of ‖.‖p to
l+p . It is well known, and easy to see, that (l+p , ‖.‖+p) is a normed semilinear space,
which is called the positive cone of (lp, ‖.‖p).

2. A NEW COMPLEXITY DISTANCE

Let us recall [23] that the complexity (quasi-pseudo-metric) space consists of the
pair (C, dC), where

C =

{
f ∈ (0,+∞]ω :

∞∑
n=0

2−n 1
f(n)

< +∞
}

,

and dC is the quasi-pseudo-metric on C given by

dC(f, g) =
∞∑

n=0

2−n max
{(

1
g(n)

− 1
f(n)

, 0
)}

,

for all f, g ∈ C. (We adopt the convention that 1
+∞ = 0.)

The dual complexity space, introduced in [21], can be directly used for the com-
plexity analysis of algorithms in the case that the running time of computing is the
complexity measure ([21], p. 313). Contrarily to the complexity space (C, dC), it can
be endowed with a structure of normed semilinear space ([22]). Furthermore, the
dual has a definite appeal, since in this context, it has a minimum which corresponds
to the minimum of semantic domains.

Recall that the dual complexity space consists of the pair (C∗, dC∗), where C∗ =
{f ∈ (R+)ω :

∑∞
n=0 2−nf(n) < +∞}, and dC∗ is the quasi-pseudo-metric on C∗

given by dC∗(f, g) =
∑∞

n=0 2−n max{g(n)− f(n), 0}, for all f, g ∈ C∗.
The quasi-pseudo-metric spaces (C∗, dC∗) and (C, dC) are isometric via the inver-

sion mapping Ψ : C∗ → C, i.e., Ψ(f) = 1/f for all f ∈ C∗ (see [21]).
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For p ∈ [1,+∞), the dual p-complexity space, introduced in [7], is the normed
semilinear space (C∗p , qp), where

C∗p =

{
f ∈ (R+)ω :

∞∑
n=0

(2−nf(n))p < +∞
}

,

and qp is the norm on C∗p given by

qp(f) =

( ∞∑
n=0

(2−nf(n))p

)1/p

.

It was proved in [7] that the normed semilinear spaces (C∗p , qp) and (l+p , ‖.‖+p) are
isometrically isomorphic in the following sense: There is a bijective linear mapping
φ : C∗p → l+p such that ‖φ(f)‖+p = qp(f) for all f ∈ C∗p . In fact, the mapping φ is
given by the rule φ(f)(n) = 2−nf(n), f ∈ C∗p , n ∈ ω.

Now, for each f, g ∈ C∗p put

dqp
(f, g) =

( ∞∑
n=0

(2−n max{(g(n)− f(n), 0})p

)1/p

.

Then dqp is a T0 quasi-pseudo-metric on C∗p , which, clearly, is not a quasi-metric
([7]). Note, in particular, that the quasi-pseudo-metric space (C∗1 , dq1) is exactly the
dual complexity space, as defined above.

According to Section 4 of [23], the intuition behind the complexity distance be-
tween two functions f, g ∈ C∗p is that dqp(f, g) measures relative progress made in low-
ering the complexity by replacing any program Q with complexity function g by any
program P with complexity function f . Therefore, if f 6= g, condition dqp(f, g) = 0
can be interpreted as g is “more efficient” than f . In particular qp(f) = dqp(0, f)
measures relative progress made in lowering the complexity by replacing f by the
“optimal” complexity function 0, assuming that the complexity measure is the run-
ning time of computing. Thus, if qp(g) < qp(f), there is an increasing in complexity
when g is replaced by f, i.e., g is “more efficient” than f.

We want to show that these computational interpretations are also provided by
the extended quasi-metric eqp which will be constructed below. We also give a nu-
merical quantification of the improvement in complexity obtained when a complexity
function g is replaced by a more efficient complexity function f, via the properties
of eqp .

Similarly to [13], an extended quasi-metric d on a semilinear space (X, +, ·) is
said to be invariant if for each x, y, z ∈ X and r > 0, d(x + z, y + z) = d(x, y) and
d(r · x, r · y) = rd(x, y), where we use the natural convention that r(+∞) = +∞ for
all r > 0.

Theorem 1. For each p ∈ [1, +∞) let eqp : C∗p × C∗p → [0,+∞] be given by

eqp(f, g) = qp(g − f) if f ≤ g, and
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eqp
(f, g) = +∞, otherwise.

Then eqp is an invariant extended quasi-metric on C∗p .

P r o o f . Fix p ∈ [1, +∞). Let f, g ∈ C∗p such that eqp(f, g) = 0. Then f ≤ g and
qp(g − f) = 0 (note that, indeed, g − f ∈ C∗p because f ≤ g). It immediately follows
that f = g.

Now let g, h ∈ C∗p be such that eqp
(f, h) < +∞ and eqp

(h, g) < +∞. Then f ≤ h
a nd h ≤ g. So eqp

(f, g) = qp(g − f) ≤ qp(g − h) + qp(h− f) = eqp
(h, g) + eqp

(f, h).
Therefore eqp is an extended quasi-metric on C∗p .
It remains to show that eqp

is invariant. To this end, let f, g, h ∈ C∗p and let
r > 0. If eqp

(f, g) = +∞, it clearly follows that eqp
(f + h, g + h) = +∞ and

eqp
(rf, rg) = +∞. Otherwise, we have f ≤ g, and thus f + h ≤ g + h. So

eqp(f + h, g + h) = qp((g + h)− (f + h)) = qp(g − f) = eqp(f, g),

and
eqp

(rf, rg) = qp(fg − rf) = rqp(g − f) = reqp
(f, g).

The proof is complete. 2

Remark 1. Given the dual p-complexity space (C∗p , qp), we show that (dqp
)s ≤ eqp .

Indeed, let f, g ∈ C∗p . If eqp(f, g) = +∞, the conclusion is obvious; otherwise, we
have f ≤ g, and thus dqp(g, f) = 0. Therefore eqp(f, g) = qp(g − f) = dqp(f, g) =
(dqp

)s(f, g).
Consequently (C∗p , T (eqp)) is a submetrizable topological space. (Let us recall that

a topological space (X, T ) is said to be submetrizable if there is a metric topology
on X weaker than T ).

Balanced (extended) quasi-metric spaces were introduced by D. Doitchinov [3]
in order to obtain a satisfactory theory of quasi-metric completion that preserves
complete regularity.

Recall that an extended quasi-metric space (X, d) is said to be balanced if given
r, s > 0, (xk)k∈N, (yk)k∈N sequences in X with limm,k→+∞ d(ym, xk) = 0, and points
x, y ∈ X with d(x, xk) ≤ r and d(yk, y) ≤ s for all k ∈ N, then d(x, y) ≤ r + s.

It is well known that each balanced extended quasi-metric space is Hausdorff and
completely regular (see [3]).

Theorem 2. For each p ∈ [1,+∞) the extended quasi-metric space (C∗p , eqp) is
balanced.

P r o o f . Let r, s > 0, (fk)k∈N, (gk)k∈N be sequences in C∗p with limm,k→+∞ eqp(gm, fk) =
0, and f, g ∈ C∗p with eqp(f, fk) ≤ r and eqp(gk, g) ≤ s for all k ∈ N. Thus f ≤ fk

and gk ≤ g for all k ∈ N. Moreover gm ≤ fk eventually.
We first note that f ≤ g. Indeed, let n0 ∈ N. For an arbitrary ε > 0 there is

k ∈ N such that ( ∞∑
n=0

(2−n(fk(n)− gk(n))p

)1/p

< ε.
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Thus fk(n0)− gk(n0) < 2n0ε. Hence

f(n0) ≤ fk(n0) < 2n0ε + gk(n0) ≤ 2n0ε + g(n0).

We deduce that f(n0) ≤ g(n0) for all n0 ∈ N, i.e. f ≤ g.
Finally, choose k ∈ N such that gk ≤ fk. Then for any m ∈ N, we obtain

(
m∑

n=0

(2−n(g(n)− f(n)))p

)1/p

≤
(

m∑
n=0

(2−n(g(n)− gk(n) + fk(n)− f(n)))p

)1/p

≤
(

m∑
n=0

(2−n(g(n)− gk(n)))p

)1/p

+

(
m∑

n=0

(2−n(fk(n)− f(n)))p

)1/p

.

We immediately deduce that
eqp

(f, g) ≤ eqp
(gk, g) + eqp

(f, fk) ≤ s + r.
Therefore (C∗p , eqp

) is a balanced extended quasi-metric space. 2

Corollary. For each p ∈ [1, +∞) the extended quasi-metric space (C∗p , eqp
) is Haus-

dorff and completely regular.

Note that Hausdorffness of (C∗p , eqp) also follows immediately from the fact noted
in Remark 1 that (C∗p , T (eqp)) is a submetrizable topological space.

Theorem 3. Let p ∈ [1, +∞), let (fk)k∈N be a decreasing sequence in the dual p-
complexity space (C∗p , qp) and let f : ω → R+ given by

f(n) = infk∈N fk(n) for all n ∈ ω.

Then the following statements hold.
(1) f ∈ C∗p and limk→+∞ eqp(f, fk) = 0. So limk→+∞ qp(fk − f) = 0.

(2) qp(f) = infk∈N qp(fk).

P r o o f . We first show that f ∈ C∗p and that (fk)k∈N converges to f in (C∗p , eqp).
Indeed, let ε > 0. Since f1 ∈ C∗p there is nε ∈ ω such that

∞∑
n=nε+1

(2−nf1(n))p < ε/3.

So
∑∞

n=nε+1(2
−nf(n))p < ε/3, and, hence, f ∈ C∗p .

Furthermore, since fk ≤ f1 for all k > 1, it follows that

∞∑
n=nε+1

(2−nfk(n))p < ε/3

for all k ∈ N.
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By definition of f and the fact that fk+1 ≤ fk for all k ∈ N, there is k1 ∈ N such
that for each k ≥ k1, (2−n(fk(n)− f(n)))p < ε/3, n = 0, 1, ..., nε. Hence for k ≥ k1,

eqp(f, fk) ≤
∞∑

n=0

(2−n(fk(n)− f(n)))p

≤
nε∑

n=0

(2−n(fk(n)− f(n)))p +
∞∑

n=nε+1

(2−nfk(n))p

<
ε

3

( ∞∑
n=0

2−n

)
+

ε

3
= ε.

We conclude that (fk)k∈N converges to f in (C∗p , eqp
). So, by Remark 1,

limk→+∞ qp(fk − f) = 0. Therefore, statement (1) holds.
Finally, for each ε > 0 there is kε ∈ N such that for k ≥ kε, qp(fk − f) < ε, so

qp(fk) < qp(f) + ε. Thus, statement (2) is satisfied. 2

As we have noted above, if f, g ∈ C∗p , f 6= g, satisfy f ≤ g, then there is an
improvement in the running time of computing when g is replaced by f. In this
case the positive number qp(g − f) provides a numerical quantification of such an
improvement.

Furthermore, if (fk)k∈N is a decreasing sequence in C∗p , Theorem 3 shows that
f represents the infimum of all running time of computing corresponding to the
complexity functions fk, k ∈ N, where f = infk∈N fk.

This interesting computational fact can be formulated in the framework of the
so-called right K -sequentially complete quasi-metric spaces.

Similarly to [19], a sequence (xn)n∈N in an extended quasi-metric space (X, d)
is called right K -Cauchy if for each ε > 0 there is n0 ∈ N such that d(xk, xn) < ε
whenever k ≥ n ≥ n0. The extended quasi-metric space (X, d) is called right K -
sequentially complete quasi-metric if every right K -Cauchy sequence is convergent.

Right K-sequential completeness plays a crucial role in the study of completeness
of hyperspaces and function spaces on quasi-metric spaces (see, for instance, [15]
and Section 9 of [14]).

Theorem 4. For each p ∈ [1,+∞) the extended quasi-metric space (C∗p , eqp) is
right K-sequentially complete.

P r o o f . Fix p ∈ [1, +∞). Let (fk)k∈N be a right K -Cauchy sequence in (C∗p , eqp).
For ε = 1, there is n0 ∈ N such that eqp(fk, fn) < 1 whenever k ≥ n ≥ n0.
Consequently, fk ≤ fn whenever k ≥ n ≥ n0, and thus, the sequence (fk)k≥n0 is
decreasing. By Theorem 3, (fk)k∈N converges in (C∗p , eqp) to the function f ∈ C∗p
defined by f(n) = infk≥n0 fk(n) for all n ∈ ω. We conclude that (C∗p , eqp) is right
K -sequentially complete. 2

As we indicated above the quasi-pseudo-metric space (C∗p , dqp) is a T0 non T1

space, and hence, dqp is not balanced. Next, we shall show that completeness prop-
erties of (C∗p , dqp) are quite different to completeness properties of (C∗p , eqp). In fact,
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it was proved in [7] (see also [21]), that (C∗p , dqp
) is Smyth complete. (Let us recall

that a T0 (extended) quasi-pseudo-metric space (X, d) is Smyth complete provided
that every rigth K -Cauchy sequence in (X, d−1) converges in the (extended) metric
space (X, ds)). The following example shows that (C∗p , dqp

) is not right K -sequentially
complete.

Example 1. Let (fk)k∈N be the sequence of functions defined on ω by fk(n) = k
whenever n ∈ ω. Clearly (fk)k∈N is a right K -Cauchy sequence in (C∗p , dqp

), for each
p ∈ [1, +∞), because dqp(fk, fj) = 0 whenever k ≥ j. Since for each f ∈ C∗p and
each k ∈ N, fk ≤ f + max{(fk − f), 0}, it follows that

k

(
2p

2p − 1

)1/p

= qp(fk) ≤ qp(f) + qp(max{(fk − f), 0}) = qp(f) + dqp
(f, fk).

So, (fk)k∈N does not converges in (C∗p , dqp
).

Next we show that (C∗p , eqp) is not Smyth complete.

Example 2. Let (fk)k∈N be the sequence in C∗p given by fk(n) = 1−2−k, whenever
n ∈ ω. Then, for k ≤ j, we have

eqp(fk, fj) ≤ 2−k

(
2p

2p − 1

)1/p

,

and, therefore, (fk)k∈N is right K -Cauchy in (C∗p , (eqp
)−1) for each p ∈ [1,+∞).

Clearly (fk)k∈N is not convergent in (C∗p , (eqp)s), because (eqp)s(f, g) = +∞ for all
f, g ∈ C∗p with f 6= g.

As an application of the theory developed above we shall measure distances be-
tween some infinite words over the decimal alphabet via the complexity extended
quasi-metric eqp and we shall compare our computations with the ones that provide
the classical Baire metric.

Let Σ = {0, 1, 2, ..., 9} and let Σω be the set of all infinite words over Σ. Each
w ∈ Σω will be denoted by w0w1w2....

Let us recall ([11], [17], [1], [16]) that the Baire metric is given by

D(v, w) = 2−`(v,w) if v 6= w and D(w,w) = 0,

for all v, w ∈ Σω, where `(v, w) is defined as the length of the nonempty common
prefix of v and w if it exists, and `(v, w) = 0 otherwise.

It is clear that we may identify Σω with the subset C∗p,Σ of C∗p defined by C∗p,Σ =
{f ∈ C∗p : f(n) ∈ Σ for all n ∈ ω}.

The following result illustrates the relationship between the complexity extended
quasi-metric eqp and the Baire metric.
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Proposition 1. Let f, g ∈ C∗p,Σ be such that f ≤ g. If eqp
(f, g) < 2−k for some

k ∈ ω, then D(f, g) ≤ 2−(k+1).

P r o o f . Since

eqp
(f, g) =

( ∞∑
n=0

(2−n(g(n)− f(n)))p

)1/p

,

it follows from our assumption that g(n) = f(n) for n = 0, 1, ..., k. Therefore `(f, g) ≥
k + 1. So D(f, g) ≤ 2−(k+1). 2

Corollary. Let (fj)j∈N be a sequence in C∗p,Σ such that limj→+∞ eqp(f, fj) = 0 for
some f ∈ C∗p,Σ. Then limj→+∞D(f, fj) = 0.

Remark 2. It follows from the preceding corollary that the topology induced by
the Baire metric is weaker than T (eqp) on C∗p,Σ.

Now let Σω
0 = {w ∈ Σω : w0 = 0}. Then, we may identify Σω

0 with the subset
C∗p,Σ0

of C∗p,Σ, defined by C∗p,Σ0
= {f ∈ C∗p,Σ : f(0) = 0}.

Next we compute a paradigmatic particular case in the realm of C∗p,Σ0
. Let f :=

0000... and let us consider the sequence (fj)j∈N given by

f1 := 01111...
f2 := 00111...
· · · · · · · · · · · · · · ·

fj :=

j-times︷︸︸︷
0000 111...

Obviously (fj)j∈N is a decreasing sequence in C∗p,Σ0
. Since f(n) = infj∈N fj(n)

for all n ∈ ω, it follows from Theorem 3 that (fj)j∈ω converges to f with respect
to T (eqp), and thus it converges to f with respect to the Baire metric D by the
corollary of Proposition 1. In particular, we have D(f, fj) = 2−j and

eqp(f, fj) =




∞∑

n=j

(2−n)p




1/p

=
(

2−(j−1)p

2p − 1

)1/p

=
2

(2p − 1)1/p
D(f, fj).

for all j ∈ N.
In general, the sequence (gj)j∈N given by

g1 := 0kkkk...
g2 := 00kkk...
· · · · · · · · · · · · · · ·

gj :=

j-times︷︸︸︷
0000 kkk...,
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with 1 < k ≤ 9, converges to f with respect to T (eqp
) and hence with respect to

the Baire metric. However, a direct computation shows that D(f, gj) = D(f, fj)
but eqp

(f, gj) = keqp
(f, fj) for all j ∈ N. This fact makes evident an interesting

computational advantage of our complexity distance eqp
with respect to the Baire

metric. Indeed, while the Baire metric does not distinguish between the distances
from gj to f and from fj to f, the (extended) quasi-metric eqp

is sensitive to such
differences in a satisfactory way. For instance, if we consider the sequence (hj)j∈ω

where

h1 := 0mmmm...
h2 := 00mmm...
· · · · · · · · · · · · · · ·

hj :=

j-times︷︸︸︷
0000 mmm...,

with 1 ≤ m < k ≤ 9, we obtain eqp
(f, hj) = m

k eqp
(f, gj) < eqp

(f, gj) for all j ∈ ω, as
it was desirable.

Next, we extend this approach to discuss, in our context, the problem of the
approximation for any real number ω ∈ (0, 1), which admits a rational decimal
expansion, i.e. ω := 0ω1ω2...ωi0000...., where ωi > 0.

In this case, we consider the sequence (gj)j∈N given by

g1 := 0ω1ω2...ωi0kkkk...
g2 := 0ω1ω2...ωi00kkk...
· · · · · · · · · · · · · · ·

gj := 0ω1ω2...ωi

j-times︷︸︸︷
0000 kkk...,

with 1 < k ≤ 9. Then D(ω, gj) = 2−(i+j+1) and

eqp(ω, gj) =




∞∑

n=i+j+1

(2−nk)p




1/p

=
2k

(2p − 1)1/p
D(ω, gj),

for all j ∈ N.

Finally, let (hj)j∈ω be the sequence given by

h1 := 0ω1ω2...ωi0mmmm...
h2 := 0ω1ω2...ωi00mmm...
· · · · · · · · · · · · · · ·

hj := 0ω1ω2...ωi

j-times︷︸︸︷
0000 mmm...,

with 1 ≤ m < k ≤ 9. Therefore D(ω, hj) = 2−(i+j+1) = D(ω, gj); however
eqp(ω, hj) = m

k eqp(ω, gj) for all j ∈ ω, as it was desirable.
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3. A BANACH FIXED POINT THEOREM: APPLICATION TO
DIVIDE & CONQUER ALGORITHMS

Motivated in part for applications of quasi-metric structures to computer science,
there exist several generalizations of the classical Banach fixed point theorem to the
setting of quasi-metric spaces in the literature ([2], [5], [9], [10], [17], [18], [23], etc.).

Similarly to the metric case, by a contraction mapping from an extended quasi-
metric spaces (X, d) to an extended quasi-metric space (Y, d′) we mean a mapping
T : X → Y such that there is 0 < α < 1 with d′(Tx, Ty) ≤ αd(x, y) for all x, y ∈ X.
In this case, we say that α is a contraction constant of T (see, for instance, [23]).

Our next result, that generalizes Banach’s fixed point theorem to extended right
K -sequentially complete quasi-metric spaces, will be useful later on.

Theorem 5. Let (X, d) be a Hausdorff right K-sequentially complete extended
quasi-metric space and let T be a contractive mapping from X into itself. If there
is x0 ∈ X such that d(Tx0, x0) < +∞, then T has a fixed point.

P r o o f . (We sketch the proof since it follows from standard arguments).
For each n ∈ N let Tnx0 = xn. Clearly d(xn+1, xn) ≤ αnd(Tx0, x0) for all n ∈
ω, where α is a contraction constant for T. By the triangle inequality it easily follows
that for each k, n ∈ N,

d(xn+k, xn) <
αn

1− α
d(Tx0, x0),

and, consequently, (xn)n∈N is a right K -Cauchy sequence in (X, d). Let y ∈ X such
that limn→+∞ d(y, xn) = 0. By continuity of T, limn→+∞ d(Ty, Txn) = 0. Since for
each n, Txn = xn+1, it follows from Hausdorffness of (X, d), that y = Ty. Hence y
is a fixed point of T. 2

The following easy example deals with some natural questions that one can con-
sider in the light of Theorem 5.

Example 3. Let X = {x, y}. Define d(x, y) = d(y, x) = +∞ and d(x, x) =
d(y, y) = 0. Then (X, d) is a Hausdorff right K -sequentially complete extended
quasi-metric space. (Note that actually d is an extended metric on X.)

Let Tx = x and Ty = y. Clearly T satisfies all conditions of Theorem 5 and x
and y are fixed points of T, so it does not have a unique fixed point.

Now let Tx = y and Ty = x. Then T is a contractive mapping without fixed point
and d(Tx, x) = d(Ty, y) = +∞. This shows that condition “d(Tx0, x0) < +∞, for
some x0 ∈ X”, cannot be omitted in the statement of Theorem 5.

In Section 6 of [23], Schellekens applied his theory of complexity spaces to the
complexity analysis of Divide & Conquer algorithms. In particular, he proved that
Divide & Conquer algorithms induce contraction mappings from the complexity
space (C, dC) into itself. Via the inversion mapping Ψ defined in Section 2, it was
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shown in [21] that these applications can be also obtained based on the dual complex-
ity space (C∗1 , dq1). Here we shall prove that Divide & Conquer algorithms also induce
contraction mappings for any extended quasi-metric space (C∗p , eqp

), p ∈ [1, +∞).
Let a, b, c ∈ N with a, b ≥ 2, let n range over the set {bk : k ∈ ω} and let h ∈ C. A

functional Φ corresponding to a Divide & Conquer algorithm in the sense of [23], is
typically defined by Φ(f)(1) = c, and Φ(f)(n) = af(n/b) + h(n) if n ∈ {bk : k ∈ N}.

This functional intuitively corresponds to a Divide & Conquer algorithm which
recursively splits a given problem in a subproblems of size n/b and which takes h(n)
time to recombine the separately solved problems into the solution of the original
problem (see Section 6 of [23]).

Extending Theorem 6.1 of [23], it was shown in Section 4 of [21] , that for the
dual complexity space (C∗1 , dq1), the functional Φ∗ given by

Φ∗(f)(n) =

{
1/c if n = 1

f(n/b)
a+f(n/b)h(n) if n ∈ {bk : k ∈ N},

is a contraction mapping with contraction constant 1/a.
In our context, for each p ∈ [1,+∞), define
C∗p |b,c= {f : f is the restriction to arguments n of the form bk, k ∈ ω,
of f ′ ∈ C∗p such that f ′(1) = 1/c}.
Observe that each f ∈ C∗p |b,c can be considered as an element of C∗p , by defining

f(n) = 0 whenever n /∈ {bk : k ∈ ω}. Thus, if for each f ∈ C∗p |b,c, Φ∗(f) is defined
as above, we obtain the following contraction mapping theorem.

Theorem 6. Let f, g ∈ C∗p |b,c . Then the following statements hold.
(1) Φ∗(f), Φ∗(g) ∈ C∗p |b,c;
(2) Φ∗(f) ≤ Φ∗(g) whenever f ≤ g;
(3) eqp(Φ∗(f), Φ∗(g)) ≤ 1

aeqp(f, g).

P r o o f . Since statements (1) and (2) follow directly from the definitions we only
show (3). If eqp(f, g) = +∞, the conclusion is obvious. If eqp(f, g) < +∞, we have
f ≤ g, and by (2), Φ∗(f) ≤ Φ∗(g). Therefore
(
eqp(Φ∗(f), Φ∗(g))

)p = (qp(Φ∗(g)− Φ∗(f)))p

=
∞∑

n=0

(2−n((Φ∗(g)− Φ∗(f))(n)))p

=
∑

n∈{bk:k∈N}

(
2−n(

g(n/b)
a + g(n/b)h(n)

− f(n/b)
a + f(n/b)h(n)

)
)p

≤
∑

n∈{bk:k∈N}

(
2−n(

a(g(n/b)− f(n/b))
a2

)
)p

≤ 1
ap

∞∑
n=0

(2−n(g(n)− f(n))p =
1
ap

(eqp(f, g))p.

Hence eqp(Φ∗(f), Φ∗(g)) ≤ 1
aeqp(f, g). This completes the proof. 2
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Theorem 7. Let p ∈ [1, +∞). Then the mapping Φ∗ : C∗p |b,c→ C∗p |b,c has a
unique fixed point.

P r o o f . We shall apply Theorem 5. To this end, first note that (C∗p |b,c, eqp) is a
Hausdorff extended quasi-metric space because C∗p |b,c is a subset of C∗p .

Next we show that (C∗p |b,c, eqp
) is right K -sequentially complete. Indeed, let

(fj)j∈N be a right K -Cauchy sequence in (C∗p |b,c, eqp). By Theorem 4, (fj)j∈N con-
verges to a function f ∈ C∗p . Moreover, there is n0 ∈ N such that f(n) = infj≥n0 fj(n)
for all n ∈ ω (see the proof of Theorem 4). Since each fj is in C∗p |b,c, it follows that
f(n) = 0 for all n /∈ {bk : k ∈ ω}, and thus f ∈ C∗p |b,c .

Now let f0 ∈ C∗p |b,c defined by f0(bk) = 1/c for all k ∈ ω and f0(n) = 0 otherwise.
We show that Φ∗(f0) ≤ f0. Indeed, for n /∈ {bk : k ∈ ω},we have Φ∗(f0)(n) = 0. On
the other hand Φ∗(f0)(1) = 1/c = f0(1). Finally, for n = bk, k ∈ N,we have

Φ∗(f0)(n) =
f0(bk−1)

a + f0(bk−1)h(bk)
≤ f0(bk−1) =

1
c

= f0(n).

Therefore Φ∗(f0) ≤ f0, so eqp
(Φ∗(f0), f0) < +∞. Since by Theorem 6, Φ∗ is a

contraction mapping from (C∗p |b,c, eqp) into itself, we may apply Theorem 5, and
thus Φ∗ has a fixed point, namely, g. Suppose that g1 ∈ C∗p |b,c satisfies Φ∗(g1) = g1.
We shall prove, by induction over k, that g = g1. In fact, g(1) = Φ∗(g)(1) = 1/c and
g1(1) = Φ∗(g1)(1) = 1/c. Moreover

g(b) = Φ∗(g)(b) =
g(1)

a + g(1)h(b)
=

1
ac + h(b)

,

and, similarly,

g1(b) = Φ∗(g1)(b) =
1

ac + h(b)
.

So g(b) = g1(b).
Now let g(bk−1) = g1(bk−1), where k ≥ 2. Then

g(bk) = Φ∗(g)(bk) =
g(bk−1)

a + g(bk−1)h(bk)
= Φ∗(g1)(bk) = g1(bk).

Hence g = g1, and consequently Φ∗ has a unique fixed point. 2

(Received February 3, 2003.)
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asymmetric norms in the theory of computational complexity. Math. Comput. Mod-
elling 36 (2002), 1–11.

[8] J. R. Giles: Introduction to the Analysis of Metric Spaces. (Austral. Math. Soc. Lecture
Series no. 3.) Cambridge Univ. Press, Cambridge 1987.

[9] T. L. Hicks: Fixed point theorems for quasi-metric spaces. Math. Japon. 33 (1988),
231–236.

[10] J. Jachymski: A contribution to fixed point theory in quasi-metric spaces. Publ. Math.
Debrecen 43 (1993), 283–288.

[11] G. Kahn: The semantics of a simple language for parallel processing. In: Proc. IFIP
Congress, Elsevier and North-Holland, Amsterdam 1974, pp. 471–475.

[12] K. Keimel and W. Roth: Ordered Cones and Approximation. Springer–Verlag, Berlin
1992.

[13] R.D. Kopperman: Lengths on semigroups and groups. Semigroup Forum 25 (1982),
345–360.

[14] H. P.A. Künzi: Nonsymmetric distances and their associated topologies: About the
origin of basic ideas in the area of asymmetric topology. In: Handbook of the History
of General Topology, Volume 3 (C.E. Aull and R. Lowen eds.), Kluwer, Dordrecht
2001, pp. 853–968.

[15] H. P.A. Künzi and C. Ryser: The Bourbaki quasi-uniformity. Topology Proc. 20
(1995), 161–183.

[16] P. Lecomte and M. Rigo: On the representation of real numbers using regular lan-
guages. Theory Comput. Systems 35 (2002), 13–38.

[17] S.G. Matthews: Partial metric topology. In: Proc. 8th Summer Conference on General
Topology and Applications, Ann. New York Acad. Sci. 728 (1994), 183–197.

[18] I. L. Reilly and P.V. Subrahmanyam: Some fixed point theorems. J. Austral. Math.
Soc. Ser. A 53 (1992), 304–312.

[19] I. L. Reilly, P.V. Subrahmanyam, and M.K. Vamanamurthy: Cauchy sequences in
quasi-pseudo-metric spaces. Monatsh. Math. 93 (1982), 127–140.

[20] S. Romaguera and M. Sanchis: Semi-Lipschitz functions and best approximation in
quasi-metric spaces. J. Approx. Theory 103 (2000), 292–301.

[21] S. Romaguera and M. Schellekens: Quasi-metric properties of complexity spaces.
Topology Appl. 98 (1999), 311–322.

[22] S. Romaguera and M. Schellekens: Duality and quasi-normability for complexity
spaces. Appl. Gen. Topology 3 (2002), 91–112.

[23] M. Schellekens: The Smyth completion: a common foundation for denotational seman-
tics and complexity analysis. In: Proc. MFPS 11, Electronic Notes Theoret. Comput.
Sci. vol. 1 (1995), URL: http://www.elsevier.nl/locate/entcs/volume1.html

Prof. Dr. Salvador Romaguera, Prof. Dr. Enrique A. Sánchez-Pérez, and Dr. Oscar
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