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A VIEW ON FILTERING OF CONTINUOUS
DATA SIGNALS

Ivan Nagy and Miroslav Kárný

A spline approximation of continuous signals and its extension to the piecewise polynomial
functions has been derived. Bayesian identification is used for determining the parameters of the
approximation. The conditions on the smoothness of the approximation are introduced in the form
of prior information about the parameters through so called fictitious data. The approximation can
be used e. g. for spline modelling, filtering of data signals and it enables differentiation of filtered
signals.

1. INTRODUCTION

Adaptive control based on discrete-time models of the controlled plant is widely
spread, simple, theoretically well elaborated and easy to implement on digital com-
puters. Often, especially for slow processes, the digital control with “reasonably”
long period of sampling and a low order model of the plant is fully satisfactory.
Sometimes, however, the information about the controlled system lost between two
sampling instants is non-negligible. An extraction of this information by a continu-
ous or high rate filtering can be of a significant help.

In control problems in which noise and system dynamics are well separated al-
most any of the vast amount of filters available can be used. Situation becomes
more difficult when the dynamics are close each other. Then, filters based on local
modelling of the filtered signal [4, 5] seem to be the only feasible way. Because of the
difficulty of the filtering problem solved quality of the solution depends much on the
prior information fed into the filter. This naturally supports use of Bayesian method-
ology for it and especially new methodology [2] of fictitious data which admits to
incorporate the available information in a systematic way.

Technically, the paper deals with a filtering based on approximation of the mea-
sured noisy signal by a function defined in a piecewise manner. The partial functions
used for creating the approximation are made mutually dependent. For each node
of the approximating-function domain, linkage conditions are set which connect the
partial functions. Each connection is specified with a weight determining the impor-
tance of its precise fulfilling.

Here, a piecewise polynomial approximation is considered with conditions on con-
tinuity of the approximating function and some of its derivatives. For the conditions
precisely fulfilled, a spline approximation is obtained.

In this way, the piecewise linear filtering described in [4] which considered no
relation of generated lines is generalized in two directions:
1) Instead of piecewise lines it generates piecewise polynomials of arbitrary order.
2) The accuracy of connecting adjoint polynomials can be controlled by the intro-
duced weights.

The paper starts with preliminaries with which the explanation of main results
gets rid of the technicalities. The application areas which motivated the reported
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research, namely,

– spline modelling

– filtering of data signals

– differentiation of data signals

are described in Section 3 in detail. The main results are given in Sections 4 (filtering
by spline approximation) and 5 (filtering by piecewise-defined functions). In Section
6, the theory is illustrated by a simple analytical example. Simulation results are
presented in Section 7.

2. PRELIMINARIES

2.1. Spline functions

Consider a finite time interval [0, T ] divided by N nodes Ni, i = 1, . . . , N , N1 =
0, NN = T to N − 1 subintervals. A function x(t), t ∈ [0, T ] is called spline of the
degree m and the defect d (cf. [1], [6]) iff

– x(t) is a polynomial of the degree at most m on each subinterval of the interval
[0, T ],– x(t) possesses continuous derivatives up to the order m− d on the open interval
(0, T ).

As polynomials are naturally continuous with all their derivatives, it is sufficient to
ensure the continuity conditions only at inner nodes of the domain. Thus, by the
definition, a spline x(t)
1) has the form

x(t) = xi(t) =
m∑

j=0

aj,i(t−Ni)j , t ∈ (Ni, Ni+1) (1)

for i = 1, 2, . . . , N − 1
2) with continuity conditions on m− d derivatives

xi(t) = xi−1(t)|t=Ni ,

x
(1)
i (t) = x

(1)
i−1(t)|t=Ni ,

. . . . . . (2)

x
(m−d)
i (t) = x

(m−d)
i−1 (t)|t=Ni ,

for i = 2, 3, . . . , N − 1.
The smoothness conditions can be expressed in terms of the spline parameters

aj,i. They read

a0,i =
m∑

j=0

aj,i−1(Ni −Ni−1)j ,

a1,i =
m∑

j=1

jaj,i−1(Ni −Ni−1)j−1,

. . . . . . (3)

am−d,i =
m∑

j=m−d

(
j

j −m + d

)
aj,i−1(Ni −Ni−1)j−m+d.

The formulas (3) imply that m− d + 1 parameters of the polynomial at each inter-
val (Ni, Ni+1) are deterministic functions of parameters from the previous interval
(Ni−1, Ni).



496 I. NAGY AND M. KÁRNÝ

As splines of given order and defect form a linear space, any spline x(t) can be
expressed in terms of a space basis

x(t) =
N∑

i=1

xiqx,i(t) = xTqx(t), (4)

where qx,i(t) are the base functions of the spline space, T denotes transposition, xi

are coefficients of the spline approximation and

xT = [x1, x2, . . . , xN ], qT
x (t) = [qx,1(t), qx,2(t), . . . , qx,N (t)].

As the basis we shall use the fundamental splines which are defined by the following
property

qx,i(Nj) = δi,j =
{

1 for i = j
0 for i 6= j

for i, j = 1, . . . , N . For the base considered, the coefficients xi are values of the
spline x(t) at its nodes Ni

xi = x(Ni), i = 1, 2, . . . , N.

2.2. Bayesian estimation of regression model

Consider a linear stochastic regression model

y(t) = PTz(t) + ε(t) (5)

where
y is modelled variable (regressand),
PT = (P0, P1, . . . , Pm) is vector of regression coefficients,
zT = (z0, z1, . . . , zm) is data regressor and
ε(t) is noise term of the model which is supposed to be white and Gaussian with
zero mean and variance r.

The unknown parameters of the model to be estimated are Θ = (P, r).
Suppose that at a time instant t we have at disposal the measured data y(t), z(t)

and the conditional probability density function (p.d.f.) p(Θ|Dt−1) from the previous
time instant t− 1. Dt−1 denotes the data y(τ), z(τ), τ = 1, 2, . . . , t− 1. Then, the
posterior p.d.f. p(Θ|Dt) in which the piece of information from y(t) and z(t) is
included can be computed as follows

p(Θ|Dt) ∝ p(y(t)|Θ, z(t))p(Θ|Dt−1)

where the p.d.f. p(y(t)|Θ, z(t)) is determined by the system model (5) as Gaussian
p.d.f. with mean PTz(t) and variance r.

It can be shown that the prior p.d.f. p(Θ) determining a proper Gauss-inverse-
Wishart distribution reproduces for the model assumed. Thus, the conditional p.d.f.
p(Θ|Dt) has a fixed functional form determined by statistics P̂ , C, ν, r̂ which evolve
according to the following formulas

ep = y − P̂Tz, P̂n = P̂ +
Cz

1 + ζ
ep,

Cn = C − CzzTC

1 + ζ
, (6)

νn = ν + 1, r̂n =
1
νn

[
e2
p

1 + ζ
− r̂

]

where index n denotes new (updated) statistics, no index means old one,
y is the value of the approximated signal (regressand) measured at time instant t,



A View on Filtering of Continuous Data Signals 497

z denotes data vector (regressor) at the same time instant t,
P̂ coincides with the least square estimate of the identified parameters,
C is proportional to the covariance matrix of P ,
ν denotes a positive scalar counting the number of measurements,
r̂ coincides with a point estimate of the noise variance r,
ζ = zTCz.

The above formulas coincide formally with famous recursive least squares [7] but
they have fruitful (at least to the studied case) Bayesian interpretation which admits
to built in prior information available (see the next paragraph).

For detailed discussion of Bayesian view point see e. g. [8].

2.3. Additional conditions in Bayesian estimation

Suppose that at a time instant t we have the p.d.f. p(Θ|Dt−1). Instead of building
in a new piece of information from the measured data y(t) and z(t) we are to build
in some additional condition. The condition carries a piece of information (denoted
by I) concerning Θ, for instance, that some of the parameters is more or less known:
i. e. its mean is known and its variance is zero or small. An example of this type is
given in Section 6.

Suppose that the condition can be expressed in the following form

E [PTz̄ − ȳ|Dt−1, I] = 0, E [(PTz̄ − ȳ)2|Dt−1, I] = r̄ (7)

where ȳ, z̄ are so called fictitious data.
Another form of (7) is

ȳ = PTz̄ + ē

ē is a fictitious noise with the conditional mean E[ē|Dt−1, I] = 0 and the given
variance E[(ē)2|Dt−1, I] = r̄.

Thus, the fictitious data express the information I in the form similar to that of
the system model (5).

It has been shown recently in [2] that the additional condition can be built in to
the p.d.f. p(Θ|·) in the way of regular recursion (6). The data y, and z used in the
recursion are computed from the fictitious data ȳ, and z̄ mentioned above simply by
multiplying and shifting them

y = αȳ + β, z = αz̄ (8)

where constant coefficients α and β depend on the values of the statistics (6) resulting
from the previous identification and the variance r̄ of the fictitious noise ē.

3. MOTIVATION FOR PIECEWISE FILTRATION

3.1. Spline-based modelling

Spline models (see [3]) belong to the class of so called hybrid models. They describe
continuous reality in the sense that the modelled continuous variable can be predicted
in an arbitrary (continuous) time instant but they have the form suitable for digital
(discrete) treating. They have been developed mainly to improve discrete control
with high sampling rate.

The starting point of spline-based modelling is the continuous convolution model
∫ t

0

g(t− τ)y(τ)dτ =
∫ t

0

h(t− τ)u(τ)dτ + ε(t), (9)

where the finite-support kernels g, h and the signals y (output) and u (input) are
considered to be splines, ε(t) is a noise term of the model. The finite supports of the
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kernels determine the length of the history of signals y and u necessary for the model
to remember. They assure that the integrations in the model (9) are performed over
a finite path even if the time t goes to infinity.

For the description of the splines g, h, y, u in the model, the form (4) has been
chosen. After substituting into the convolution model (9) and integrating over the
functions depending on time (the base functions) we obtain the discrete form of the
model

gTP (t)y = hTQ(t)u + ε(t), (10)

where
g, h are vectors of model coefficients (samples of kernels g(t), h(t) at their nodes),
y, u are output and input data vectors (for finite support kernels they are finite
vectors of samples of the signals y(t) and u(t) at their nodes).
P, Q are matrices of integrals of base functions products

P (t) =
∫ t

0

qT
g (t− τ)qy(τ)dτ , Q(t) =

∫ t

0

qT
h (t− τ)qu(τ)dτ. (11)

For given base functions they can be computed off-line and used as fixed filter ma-
trices.

For identification of the parameters g, h , the model can be written as a regression
one with filtered data gTỹ = hTũ + ε, where ỹ = Py, ũ = Qu.

For control design, the model with filtered parameters g̃Ty = h̃Tu + ε, is used
with g̃T = gTP , h̃T = hTQ.

Further details can be found in [3].

3.2. Filtering of data signals

Let us list other cases where filtering of measured noisy data signals is indispensable.
– Smoothing, which removes high frequency noise from the data signals, is known

to be necessary in almost all practical control problems.
– Equidistant sampling of data signals is supposed in the digital control. If the

data are measured irregularly the filtering helps to recover continuous ap-
proximation of the measured data which can be sampled with a fixed desired
period.

– Discrete control with low model order requires relatively long period of sampling.
In order to utilize the information between sampling instants it is reasonable
to use continuous or high rate measuring of data for the filtering. The low rate
discrete data can be either simply sampled on the filtered signal or generated
in some other more sophisticated way (e. g. as in the spline-based control).

3.3. Differentiation of data signals

The filtered data signal in the form of a piecewise-defined function which is composed
of known smooth functions (e. g. polynomials) can also be differentiated. If, for
instance, the approximation (4) is considered

x(t) =
N∑

i=1

xiqx,i(t)

then its k th derivative x(k)(t) is

x(k)(t) =
N∑

i=1

xiq
(k)
x,i (t) =

N∑

i=1

xipx,i(t)

where px,i(t) = q
(k)
x,i (t), i = 1, 2, . . . , N are fixed known functions. Thus, knowing

the samples xi of x(t) signal values and derivatives can be computed at any selected
point.
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4. SPLINE APPROXIMATION OF DATA SIGNALS

For spline approximation of measured data signals, we shall consider the following
arrangement

t1,i t2,i . . .

. . .

tni,i

Ni−1 Ni Ni+1 Ni+2

x(t)

where
x is the signal to be approximated,
Ni are nodes of the approximating spline and
tj,i are time instants at which the continuous signal is measured and the spline
approximation is fitted (tj,i denotes j th point in the i th interval (Ni, Ni+1)). The
distance between tj,i and tj+1,i is arbitrary.

Note, that the domain [0, T ] of the filtered signals is usually potentially infinite.
Then, N increases with T .

The data measured on the i th interval are

{y(t1,i), y(t2,i), . . . , y(tni,i)} (12)

where ni is the number of measurements on the i th interval.
The observed data are assumed to be related to the approximated signal x(t) by

y(tj,i) = x(tj,i) + e(tj,i), j = 1, 2, . . . , ni (13)

where
e(tj,i) represents a combination of random and approximation errors and it is sup-
posed to be white with normal distribution, zero mean and variance r,
x(t) is m th order spline i. e.

x(t) = xi(t) =
k∑

j=0

aj,i(t−Ni)j for t ∈ (Ni, Ni+1)

and i = 1, 2, . . . , N , i. e. on each interval (Ni, Ni+1), x(t) is an m th order polynomial.
We require x(t) to be a spline of a defect d. Thus, each pair of the adjoin polynomials
xi−1(t) and xi(t) is coupled by the conditions (3). The coupling restrict the m −
d + 1 parameters related to the interval (Ni, Ni+1) aj,i, j = 0, 1, . . . , m − d to be
deterministic functions of the parameters from the previous interval.

Our task is to identify the parameters {a0,i, a1,i, . . . , am,i} of the polynomial xi(t)
on the i th interval (Ni, Ni+1) using the data (12).

In order to reach recursive filtering we shall restrict ourselves by identifying the
parameters a separately in separate intervals. Just smoothness conditions (3) will
be used as additional information when starting the identification on a new interval.

We formulated the knowledge of a parameter subset on the given interval as
additional conditions of Section 2. Clearly, we shall proceed more generally than
necessary for the task solved. But it offers the direct hint for the task generalization
treated in the next section.
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For the interval (Ni, Ni+1) the model relating the measured data and unknown
parameters has the form

yi(t) = xi(t) + ei(t) =
m∑

j=0

aj,i(t−Ni)j + ei(t) = PT
i zi(t) + ei(t)

where
PT

i = (a0,i, a1,i, . . . , am,i)
zT
i (t) = (1, (t−Ni), . . . , (t−Ni)m).

Thus, the gained model has the form (5) and the recursive least squares algorithm
(6) is directly applicable.

The additional conditions for x(t) to be a spline in the node Ni are (3). They
can be written as the sequence of conditions having the form (7) with

z̄li = [0, . . . , 1︸ ︷︷ ︸
l

, . . . , 0] (14)

ȳli = E




m∑

j=l

(
j

j − l

)
al,i−1 (Ni −Ni−1)j−l|Di−1, I




= E




m∑

j=l

(
j

j − l

)
al,i−1 (Ni −Ni−1)j−l|Di−1


 (15)

for l = 0, 1, . . . ,m − d. In the equation (15) Di−1 denotes the information about
the approximated signal extracted from the data measured on the previous (i −
1)th interval and the additional (continuity) information concerning the interval. I
denotes the additional information concerning the ith interval. The second equality
in (15) is a formal expression of our assumption that the information I from the ith
interval does not influence the parameter estimates from the interval (i − 1) which
are used for computing the continuity conditions on the ith interval.

The exact meeting of the conditions (3) will be reached when

r̄ = 0.

The conditions are built in to the identified parameters according to (8).

5. PIECEWISE APPROXIMATION OF DATA SIGNALS

In the previous section, the conditions (3) determining the identified signal x(t) to
be a spline have been considered in a deterministic way, i. e. the variances of their
fictitious models have been set to zero. However, the experiments with the designed
algorithm show that even splines (especially those with defect 1) are not flexible
enough to follow suitably the approximated signal. Especially, at the very beginning
of the experiment, the initial value x(0) and the derivatives x(l)(0), l = 1, . . . ,m−d
have to be chosen very close to those of the approximated signal x. If not, the
approximation error damps rather slowly.

The simple and very efficient way how to increase flexibility of the signal x(t) is
to release deterministic (precisely zero error variance) conditions on smoothness and
to consider them in the probabilistic way in the form (15) with nonzero variances r̄.

The approximation x(t) we obtain in this way is not a spline but only a piecewise
polynomial function. It has not the smoothness required for splines. Even, it need
not be continuous if the variance of the condition requiring continuity of x(t) is
greater than zero. On the other hand such curve is very flexible and approximates
acceptably not only values of x(t) but gives us also some information about its
derivatives which can be computed almost everywhere (not in the nodes).
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6. EXAMPLE

To exemplify the results derived we shall consider the signal x(t) to be approximated
on two intervals with nodes N1, N2, N3 as it is indicated in the following diagram.

t1,2 t2,2 t3,2

N1 N2 N3

x1(t) x2(t)

The model of the signal x(t) (2) is

x(t) = x1(t) + e(t) t ∈ (N1, N2),
x(t) = x2(t) + e(t) t ∈ (N2, N3).

The spline approximation is of the order m = 2 with defect d = 1. For the 2nd order
the polynomials x1 and x2 are

x1(t) = a0,1 + a1,1(t−N1) + a2,1(t−N1)2,
x2(t) = a0,2 + a1,2(t−N2) + a2,2(t−N2)2.

We suppose the parameters on the first interval have already been estimated and we
are to compute the smoothness conditions and to perform identification for the sec-
ond interval using the data measured at time instants {t1,2, t2,2, t3,2} and respecting
the smoothness conditions. For m = 2 and d = 1 we demand 2 − 1 = 1 continuous
derivative of the approximating spline. With the condition on the continuity of the
spline itself we have two conditions on smoothness

x2(N2) = x1(N2) and x′2(N2) = x′1(N2),

which according to (3) gives
a0,2 = a0,1 + a1,1(N2 −N1) + a2,1(N2 −N1)2 = ā0,2

a1,2 = a1,1 + 2a2,1(N2 −N1) = ā1,2 (16)

The regression model (5) for the second interval has the form
y(t) = PT

2 z2(t) + e t ∈ (N2, N3)where
PT

2 z2(t) = x2(t), PT
2 = [a0,2, a1,2, a2,2], zT

2 = [1, (t−N2), (t−N2)2]

for all measured t, i. e. t ∈ {t1,2, t2,2, t3,2}.
The fictitious data for introducing the conditions (16) are

ȳ = ā0,2, z̄ = [1, 0, 0] for the first condition, and
ȳ = ā1,2, z̄ = [0, 1, 0] for the second one.

7. EXPERIMENTAL RESULTS

For illustration of experimental results, the second order piecewise polynomial filter-
ing has been chosen. The typical results are shown on the previous figures. Here the
dashed lines represent the noisy signal to be filtered, the solid lines are the deter-
ministic signals (derivatives of the signals) i. e. the signals without noise, the dotted
lines are the filtered signals. Figure 1 shows the filtering by spline with defect d = 1
i. e. both the filtered signal and its derivative are continuous. It can be clearly seen
that the spline approximation is not able to follow the signal. The improvement of
approximation, attained in Figure 2, is caused by increasing the defect of the spline
used for approximation to d = 3 (to discontinuity). It means that, now, both the
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approximation and its derivative are not forced to be continuous at nodes. The
approximation is performed by a piecewise polynomial function.

Fig. 1. The second order spline approximation.

Fig. 2. The second order piecewise approximation.



A View on Filtering of Continuous Data Signals 503

8. CONCLUSIONS

A spline approximation of continuous signals and its extension to the piecewise poly-
nomial functions has been derived. The extension of spline approximation consists
in releasing strict conditions on spline smoothness in the nodes (i. e. continuity of
some derivatives). Instead, only approximate conditions admitting some errors in
fulfilling the required conditions are introduced. As a result, an approximation in
the form of a piecewise (polynomial) function is obtained. This function need not
even be continuous but it is more flexible than splines. It can better approximate
both the function itself and also some of its derivatives (with the nodes avoided).

The approximation is a starting point for so called spline models, but, it can also
be considered a suitable filtering for noisy measured data.

(Received December 13, 1991.)
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tomatizace ČSAV (Institute of Information Theory and Automation – Czechoslo-
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