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Paper dedicated to Professor Solomon Marcus, on his 65th birthday.

We compare the complexity of generating a language by a context-free grammar or by a parallel
communicating grammar system (PCGS), in the sense of Gruska’s measures V ar, Prod, Symb.
Then we define a specific measure for PCGS, Com, dealing with the number of communication
symbols appearing in a derivation. The results are the expected ones: the PCGS are definitely
more efficient than context-free grammars (the assertion will receive a precise meaning in Sec-
tion 2), the parameter Com introduces an infinite hierarchy of languages, is incomparable with
V ar, Prod, Symb, and cannot be algorithmically computed.

1. PARALLEL COMMUNICATING GRAMMAR SYSTEMS

The main problem of the classical formal language theory is to study the way a lan-
guage can be generated/recognized by a (hence one) grammar/automaton. However,
in the present-day computer science a lot of circumstances there exist when we deal
with more “processors” concerned with the same task: computer nets, distributed
data bases, parallel computers, distributed expert systems, computer conferencing
and so on. Thus, a natural research topic is to consider “systems of grammars”,
working together in a well defined way and generating one language.

Two classes of such grammar systems can be defined, depending on the working
protocol: sequential (in each moment only one grammar is enabled to work), or
parallel (the components work simultaneously, in a synchronized manner). The
former type is considered in [2] (and investigated in a series of subsequent papers).
The later leads to parallel communicating grammar systems (PCGS, for short).
They were introduced in [11] and were investigated in [8], [9], [10], [14], from various
(theoretical) points of view. Details about motivation and a survey of results can be
found in [13].

Informally speaking, a PCGS consist of n usual Chomsky grammars, working
simultaneously, each on its own sentential form, and communicating each other by
sending, on request, the correct sentential form, from one component to another; the
language generated in this way by a “master” component of the system is considered
the language generated by the whole system.

Beside being a natural grammatical model of parallel computing, the PCGS
prove to be also a mathematically appealing topic, rich in (often difficult) theoretical
problems. Here we investigate two basic variants: centralized and non-centralized
query-only systems.

Before presenting their definition, we specify some notations.
For a vocabulary V , denote by V ∗ the free monoid generated by V , by λ the null

element of V ∗, by |x| the length of x and by |x|U the length of the string obtained
by erasing from x all symbols not in U, U ⊆ V ; V + = V ∗ − {λ}. For a Chomsky
grammar G = (VN , VT , S, P ), VN is the nonterminal vocabulary, VT is the terminal
one, S is the axiom and P is the set of rewriting rules; VG = VN ∪ VT .
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For other notions and notations in formal language theory, the reader is referred,
for instance, to [12].

A parallel communicating grammar system (of degree n, n ≥ 1) is an n-tuple

γ = (G1, G2, . . . , Gn)

where each Gi is a Chomsky grammar, Gi = (VN,i, VT,i, Si, Pi) , 1 ≤ i ≤ n, such
that VT,i ∩ VN,j = ∅, 1 ≤ i, j ≤ n and there is a set K ⊆ {Q1, Q2, . . . , Qn}, of

special symbols (called query symbols), K ⊆
n⋃

i=1

VN,i, used in derivations as follows.

For (x1, x2, . . . , xn) , (y1, y2, . . . , yn) , xi, yi ∈ V ∗
Gi

, 1 ≤ i ≤ n, we write (x1, x2, . . . , xn)
=⇒ (y1, y2, . . . , yn) if one of the next two cases holds:

(i) |xi|K = 0, 1 ≤ i ≤ n, and for each i, 1 ≤ i ≤ n, we have xi =⇒ yi in the
grammar Gi or xi ∈ V ∗

T,i, xi = yi;

(ii) If |xi|K > 0 for some i, 1 ≤ i ≤ n, then for each such i we write
xi = z1 Qi1 z2 Qi2 · · · zt Qit

zt+1, t ≥ 1, |zj |K = 0, for 1 ≤ j ≤ t+1; if |xij
|K =

0, 1 ≤ j ≤ t, then yi = z1 xi1 z2 xi2 · · ·xit
zt+1 and yij

= Sij
, 1 ≤ j ≤ t; when,

for some j, 1 ≤ j ≤ t, |xij |K > 0, then yi = xi. For all i, 1 ≤ i ≤ n, for which
yi was not defined as above, we put yi = xi.

In words, an n-tuple (x1, x2, . . . , xn) directly yields (y1, y2, . . . , yn) if either no
query symbol appears in x1, x2, . . . , xn, and then we have a componentwise deriva-
tion, xi =⇒ yi in Gi for each i, 1 ≤ i ≤ n, or, in the case of query symbols appearing,
we perform a communication step, as these query symbols impose: each occurrence
of Qij in xi is replaced by xij , provided xij does not contain query symbols; more ex-
actly, a component xi is modified only when all its occurrences of query symbols refer
to strings without query symbols occurrences. After a communication operation, the
communicated string xij replaces the query symbol Qij whereas the grammar Gij

resumes working from its axiom. The communication has priority over the effective
rewriting. If some query symbols are not satisfied at a given communication step,
then they will be satisfied at the next one (provided they ask for strings without
query symbols in that moment) and so on. No rewriting is possible when at least a
query symbol is present. This implies that when a circular query appears, the work
of the system is blocked. Similarly, the derivation is blocked when no query symbol
appears but some nonterminal component xi cannot be further rewritten in Gi.

The language generated by γ is

L(γ) =
{

x ∈ V ∗
T,1 | (S1, S2, . . . , Sn) ∗=⇒ (x, α2, . . . , αn), αi ∈ V ∗

Gi
, 2 ≤ i ≤ n

}
.

A derivation consists of repeated rewriting and communication steps, starting
from (S1, S2, . . . , Sn); we retain in L(γ) the string generated in this way on the first
component, terminal with respect to G1, without care about the strings generated
by G2, . . . , Gn (G1 is the master grammar of the system).

A PCGS as above is called non-centralized ; when K ∩ VN,i = ∅, 2 ≤ i ≤ n, then
γ is called a centralized PCGS (only G1 may ask for the strings generated by other
grammars in the system).

A further classification can be considered, according to the following criterion:
the PCGS as above are called returning, to the axiom; when in point (ii) of the
above definition we erase the words “and yij = Sij , 1 ≤ j ≤ t”, then we obtain a
non-returning PCGS (after communicating a string xij to some xi, the grammar
Gij does not return to Sij , but continues to process the current string xij ).

Four classes of PCGS are obtained in this way: RCPC, CPC, RPC, PC , where R
stands for returning, C for centralized and PC for parallel communicating grammar
systems. When only systems of degree at most n are considered, we add the subscript
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n: RCPCn, CPCn etc. According to the type of grammars G1, G2, . . . , Gn, a
PCGS can be regular, linear, context-free, λ-free etc. (We can write RCPC (REG),
RCPC (CF ), and so on, for distinguishing such classes.) Here we consider only λ-
free context-free PCGS, hence RCPC, CPC, RPC, PC will refer to such systems.
The family of languages generated by a class X of PCGS is denoted by L(X).

Here are some simple examples, in order to clarify the above definitions and to
point out the considerable generative capacity of PCGS.

γ1 = (G1, G2)
G1 =

({S1, S2, Q2} , {a, b, c} , S1,
{
S1 −→ a S1, S1 −→ a2 Q2, S2 −→ bc

})

G2 = ({S1} , {a, b}, S2, {S2 −→ bS2c}) .

We have a centralized PCGS. The language generated both in the returning and
the non-returning mode is

L(γ1) = {anbncn |n ≥ 2} .

Indeed, let us examine a derivation in γ1:

(S1, S2)
∗=⇒ (

akS1, bkS2c
k
)

=⇒ (
ak+2Q2, bk+1S2c

k+1
)

=⇒ (
ak+2bk+1S2c

k+1, α2

)
=⇒ (

ak+2bk+2ck+2, α′2
)
, k ≥ 0,

with α2 = bk+1S2c
k+1, α′2 = bk+2S2c

k+2 in the non-returning case, α2 = S2, α′2 =
b S2c in the returning case.

Note that G1, G2 are linear grammars and L(γ1) is not a context-free language.

γ2 = (G1, G2)
G1 = ({S1, Q2} , {a, b, c} , S1, {S1 −→ S1, S1 −→ Q2cQ2})
G2 = ({S2} , {a, b}, S2, {S2 −→ aS2, S2 −→ b S2, S2 −→ a, S2 −→ b}) .

We obtain
(S1, S2)

∗=⇒ (S1, y) =⇒ (Q2cQ2, x) =⇒ (xcx, z)

for z ∈ {S2, x}. If x ∈ {a, b}∗, then the derivation is terminal, hence both in the
returning and the non-returning case we have

L (γ2) =
{
xcx |x ∈ {a, b}+}

again a non-context-free language. (A similar PCGS can be written for {(xc)r |x ∈ {a, b}+},
r ≥ 1: replace S1 −→ Q2cQ2 in G1 by the rule S1 −→ (Q2c)r.)

2. THE EFFICIENCY OF PCGS

Given a PCGS γ = (G1, G2, . . . , Gn) as above, we can define the complexity mea-
sures V ar, Prod, Symb in the similar way as for context-free grammars [4], [5],
[6]:

V ar (γ) =
n∑

i=1

card VN,i

Prod (γ) =
n∑

i=1

card Pi

Symb (γ) =
n∑

i=1

Symb (Pi), Symb (Pi) =
∑

r∈Pi

Symb (r), and

Symb (r) = |x|+ 2 for r : A −→ x.
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For a complexity measure M : X −→ N, defined for a class of generative
mechanisms X, we define MX : L(X) −→ N by

MX(L) = inf {M(G) |G ∈ X, L = L(G)} .

Clearly, when X1 ⊆ X2, we have MX1(L) ≥ MX2(L), for all L ∈ L(X1). Following
[7], if there are languages L ∈ L(X1) such that MX1(L) > MX2(L), provided X1 ⊂
X2 is a proper inclusion, then we say that M is a honest measure. The following
refinements of this notion are considered in [7]:

(i) MX1 >1 MX2 iff there is L ∈ L(X1) such that MX1(L) > MX2(L)

(ii) MX1 >2 MX2 iff for every integer p there is L ∈ L(X1) such that
MX1(L)−MX2(L) > p (arbitrarily large difference)

(iii) MX1 >3 MX2 iff there is a sequence Ln, n ≥ 1 of languages in L(X1) such
that

lim
n→∞

MX1(Ln)
MX2(Ln)

= ∞

(supra-linear difference)

(iv) MX1 >4 MX2 iff there is a constant p such that for any integer q there is a
language L ∈ L(X1) such that MX1(L) > q and MX2(L) ≤ p (bounded by no
mapping difference).

Clearly >j implies >j−1 for each j = 2, 3, 4.
Here we are interested in comparing V ar, Prod, Symb with respect to CF ,

the class of context-free grammars, with RCPC, CPC, RPC, PC (we have the
inclusions CF ⊂ RCPC ⊂ RPC, CF ⊂ CPC ⊂ PC).

Theorem 1. V arCF >4 V arX , X ∈ {RCPC, RPC, CPC, PC }.

P r o o f . Let us consider the PCGS γn = (G1, G2) with

G1 = ({S1, Q2} , {a, b}, S1,

{S1 −→ S1} ∪
{
S1 −→ Qk

2 bk Q2 | 1 ≤ k ≤ n
})

G2 = ({S2} , {a}, S2, {S1 −→ aS2, S2 −→ a}) .

Each derivation can contain only one communication step, hence γn can be viewed
both as a returning and a non-returning PCGS, centralized or non-centralized.
When using the rule S1 −→ Qk

2 bk Q2, the string generated in G2 must be a terminal
one (G1 cannot rewrite the symbol S2); moreover, that string is of arbitrary length.
Therefore,

L (γn) =
n⋃

k=1

{
aki bk ai | i ≥ 1

}

and we have V arX (L (γn)) ≤ 3 (and ProdX (L (γn)) ≤ n + 3),
X ∈ {RCPC, RPC, CPC, PC }.

Consider now a reduced context-free grammar G = (VN , VT , S, P ) generating
L (γn) and suppose there is a symbol A ∈ VN such that A

∗=⇒ uAv, uv 6= λ, in
G. None of u, v can contain the symbol b (otherwise strings with arbitrarily many
occurrences of b can be produced). If A

∗=⇒ w, w ∈ {a}∗, then uwv ∈ {a}∗, hence
this is a substring of the prefix akib or of the suffix bai of some string akibkai in L (γn).
But urwvr is such a substring too, for all r ≥ 1. If akibkai = xuwvybkai, then, for
r > ni, |xurwvry| > ni, hence xurwvrybkai /∈ L (γn). If akibkai = akibkxuwvy,
then, for r > ki, |xurwvry| > ki, hence akibkxurwvry /∈ L (γn). Consequently,
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w = arbkas for all such derivations A
∗=⇒ uAv

∗=⇒ uwv. Assume u = ap, v = aq

and consider a derivation S
∗=⇒ agAah ∗=⇒ agapiAaqiah ∗=⇒ agapiarbkasaqiah

for an arbitrary i ≥ 1. We must have g+pi+r = k(s+qi+h), hence p = kq and the
derivation A

∗=⇒ uAv
∗=⇒ uwv is of the form Ak

∗=⇒ akqarbkasaq. As each set{
akibkai | i ≥ 1

}
is infinite, when generating it we have to use recursive derivations,

hence a nonterminal Ak and a derivation as above there exists in G. Suppose now
that Ak = Ak′ , for k 6= k′, 1 ≤ k, k′ ≤ n. We can obtain a derivation

S
∗=⇒ at1Akat2 ∗=⇒ at1akqrAkaqrat2

∗=⇒ at1akqrak′q′sAk aq′saqrat2

∗=⇒ at1akqrak′q′sat3bk′at4aq′saqrat2

for arbitrary r, s. Therefore, t1 + kqr + k′q′s + t3 = k′ (t4 + q′s + qr + t2), for
arbitrary r, s, which implies kqr + k′q′s = k′ (q′s + qr). However, this leads to
k = k′, contradiction.

For each k, 1 ≤ k ≤ n, we have a distinct Ak as above, therefore V ar (G) ≥ n+1
(no one of Ak can be the axiom of G), V arCF (L(γn)) ≥ n+1, and the proof is over.
2

Corollary. ProdCF >2 ProdX , SymbCF >1 SymbX , X as above.

P r o o f . In the above proof we obtain Prod (G) ≥ 3n: we need a derivation
S

∗=⇒ xAky, one Ak
∗=⇒ uAkv, and a terminal one, Ak

∗=⇒ w, each of them
involving at least a rule, for each k, 1 ≤ k ≤ n. Consequently, ProdCF (L(γn)) ≥ 3n,
hence ProdCF >2 ProdX (as we have pointed out, ProdX (L(γn)) ≤ n + 3).

In the case n = 2, the above PCGS γ2 has Symb (γ2) = 22, hence SymbX (L(γ2)) ≤
22. However, as it easily follows from the previous proof, a context-free grammar
G for L(γ2) must contain at least six rules, of the forms S −→ x1A2y1, S −→
x2A2y2, A1 −→ aiA1a

i, i ≥ 1, A2 −→ a2iA2a
i, i ≥ 1, A1 −→ u1bv1, A2 −→ u2b

2v2.
Consequently, Symb (G) ≥ 24, that is SymbCF >1 SymbX , X as above. 2

For Prod we can find a stronger result.

Theorem 2. ProdCF >4 ProdX , X ∈ {RCPC, RPC }.

P r o o f . In [1] it is proved that ProdCF (Ln) ≥ log2(n+1) for Ln =
{
aibaj | i + j ≤ n− 1

}
.

However, ProdX(Ln) ≤ 11 for all n, as Ln is generated by the PCGS γ = (G1, G2, G3),
with

G1 = ({S1, T, Q2} , {a, b}, S, {S1 −→ b, S1 −→ ab, S1 −→ ba,

S1 −→ S1, S1 −→ Q2T, T −→ T, T −→ bQ2})
G2 = ({S2} , {a}, S2, {S1 −→ aS2, S2 −→ a})
G3 =

({S3, A, B} , {a}, S3,
{
S3 −→ An−2, A −→ B

})
.

Excepting the one-step derivations S1 =⇒ x, x ∈ {a, ab, ba}, all derivations
in G1 are of the form S1

∗=⇒ S1 =⇒ Q2T
∗=⇒ Q2T =⇒ Q2bQ2. As G1 cannot

rewrite S2, the communicated strings must be of the form ai, aj , hence one generates
strings of the form aibaj . However, the derivations in G3 can have at most n − 1
derivations steps, hence also G2 can perform at most n− 1 derivation steps, which
implies i + j ≤ n− 1, that is L(γ) = Ln, which completes the proof. 2

For the non-returning case, also the relation for Symb can be (slightly) improved.
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Theorem 3. ProdCF >4 ProdX , SymbCF >2 SymbX , X ∈ {CPC, PC}.

P r o o f . We consider the PCGS γn = (G1, G2, G3), with

G1 = ({S1, D, Q2, Q3} , {a, b}, S1, {S1 −→ S1, S1 −→ DQ3, D −→ Q2D,

D −→ Q2bQ2, C −→ b})
G2 = ({S2} , {a}, S2, {S1 −→ aS2, S2 −→ a})
G3 = ({S3, B, C, E} , {a}, S3, {S3 −→ S3, S3 −→ Cn, C −→ B, B −→ E}) .

Each derivation in G1 starts by S1
∗=⇒ S1 =⇒ DQ3. As G1 cannot rewrite

the symbols S3, B, E, in the moment of introducing DQ3 in G1 we must introduce
Cn in G3 too. Thus we have (S1, S2, S3)

∗=⇒ (S1, α2, S3) =⇒ (DQ3, α
′
2, C

n),
α2, α′2 ∈

{
ai, aiS2 | i ≥ 1

}
. Now, in G3 we can use at most n times the rule C −→ B

and at most n times the rule B −→ E, therefore the derivation will have at most 2n
further rewriting steps. In G1, each C must be replaced by b (n rewriting steps); thus
at most n steps can be performed using the rules D −→ Q2D and D −→ Q2bQ2. At
the first use of the rule D −→ Q2D, the string α′2 generated in G2 must be terminal
(G1 cannot rewrite S2), that is of the form ai. Consequently, all subsequent symbols
Q2 will be replaced by the same string ai. In conclusion,

L (γn) =
n⋃

k=1

{
akibaibn | i ≥ 1

}

hence V arX (L(γn)) ≤ 9, P rodx (L(γn)) ≤ 11, SymbX (L(γn)) ≤ n + 37.
Consider now a context-free grammar for L(γn). As in the proof of Theo-

rem 1, we can find that a derivation Ak
∗=⇒ akqAkaq there is for each k, that

is V arCF (L(γn)) ≥ n + 1, P rodCF (L(γn)) ≥ 3n, SymbCF (L(γn)) ≥ 9n, and the
proof is over. 2

Open problem. Improve the above results for the measure Symb.

3. A SPECIFIC MEASURE

The above measures are borrowed from context-free grammars area; we consider now
a specific complexity measure for PCGS, which can be interpreted as a dynamical
one, as it refers to derivations, not to the “hardware” of a system.

Consider a PCGS γ = (G1, G2, . . . , Gn) and a derivation D : (S1, S2, . . . , Sn) =⇒
(w1,1, w1,2, . . . , w1,n) =⇒ (w2,1, w2,2, . . . , w2,n) · · · =⇒ (wk,1, wk,2, . . . , wk,n) in γ.
Denote

Com (wi,1, . . . , wi,n) =
n∑

j=1

|wi,j |K

Com (D) =
k∑

i=1

Com (wi,1, . . . , wi,n) .

For x ∈ L(γ) define

Com (x, γ) = min
{

Com (D) |D : (S1, . . . , Sn) ∗=⇒ (x, α2, . . . , αn)
}

.

Then
Com (γ) = sup {Com (x, γ) |x ∈ L(γ)}

and, for a language L and a class X of PCGS,

ComX(L) = inf {Com (γ) |L = L(γ), γ ∈ X} .
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In what follows, we consider only centralized PCGS returning to axiom after
each communication, hence we do not specify the class X of PCGS (it is always
RCPC).

The parameter Com evaluates the number of query symbols appearing in a deriva-
tion (a sort of cost of producing a string in γ).

A measure M : L(X) −→ N is called connected if for each n ≥ n0, n0 a given
constant, there is Ln ∈ L(X) such that M(Ln) = n (cf. [6]).

Theorem 4. Com is a connected measure.

P r o o f . Consider the languages

Ln =
{

b
(
aibai

)2n+1
b | i ≥ 1

}
, for n ≥ 1.

They can be generated by the PCGS γn = (G1, G2), with

G1 = ({S1, S
′
1, S

′
2, Q2} , {a, b}, S1, {S1 −→ bS′1b,

S′1 −→ aS′1a, S′1 −→ a(bQ2)nba, S′2 −→ b})
G2 =

({S2, S
′
2} , {a}, S2,

{
S1 −→ S′2, S′2 −→ a2S′2a

2
})

.

A derivation in γ proceeds as follows:

(S1, S2) =⇒ (bS′1b, S′2)
∗=⇒ (

baiS′1a
ib, a2iS′2a

2i
)

=⇒
(
bai+1(bQ2)nbai+1b, a2(i+1)S′2a

2(i+1)
)

=⇒
(
bai+1

(
ba2(i+1)S′2a

2(i+1)
)n

bai+1b, S2

)

∗=⇒
(
bai+1

(
ba2(i+1)ba2(i+1)

)n

bai+1b, a2(n−1) S2a
2(n−1)

)
,

hence L(γn) = Ln indeed, and consequently Com (Ln) ≤ n.
Consider now a PCGS γ = (G1, G2, . . . , Gm) generating this language. Each

string in Ln contains 2n + 3 occurrences of the symbol b, hence 2n + 2 substrings
of the form ai, a2i bounded by such symbols. Each Gi is a context-free grammar,
hence cannot generate strings of the form x1ba

ibx2ba
ibx3ba

ibx4 for arbitrarily many
i. Two substrings ai can be generated in G1, for the other 2n such substrings we need
communication steps. Each communication can bring to G1 at most two substrings
ai, with arbitrarily large i. Therefore n communication steps are necessary, that is
Com (γ) ≥ n, Com (L(γn)) ≥ n hence Com (L(γn)) = n.

Clearly, the parameters V ar, Prod, Symb can be computed for an arbitrary
PCGS by a simple counting. The situation is different for the measure Com due
to its dynamical character (it is evaluated on an infinite set, that of all terminal
derivations).

Theorem 5. Com (γ) and Com (L(γ)) cannot be algorithmically computed for an
arbitrarily given (context-free, centralized and returning) PCGS.

P r o o f . In fact, a more general assertion is true, namely “the context-free-ness
of L(γ), for an arbitrarily given PCGS γ, is undecidable”. On the other hand, L(γ)
is context-free if and only if Com (L(γ)) = 0.

For, consider an arbitrary context-free grammar G = (VN , VT , S, P ), with VT =
{a, b}, and the non-context-free language

L = {cndmcem |m ≥ n ≥ 1}
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and construct the language

L′ = L(G) {c, d, c}+ ∪ {a, b}+L.

If L(G) = {a, b}+, then L′ = {a, b}+ {c, d, e}+, hence it is a regular language.
If L(G) 6= {a, b}+, then let w ∈ {a, b}+ − L(G) be an arbitrary string. We have
L′ ∩ {w} {c, d, e}+ = {w}L, and this is not a context-free language. Consequently,
L′ is context-free (even regular) if and only if L(G) = {a, b}+. The equality L(G) =
{a, b}+ is undecidable for arbitrary context-free grammars, hence it is undecidable
whether L′ is context-free or not.

On the other hand, L′ is generated by the PCGS γ = (G1, G2), with

G1 = ({S1, A, B, C, T,Q2} ∪ VN , {a, b, c, d, e} , S1,

{S1 −→ T} ∪ P ∪ {T −→ Tα |α ∈ {c, d, e}}∪
{T −→ Sα |α ∈ {c, d, e}}∪
{S1 −→ AB} ∪ {A −→ αA |α ∈ {a, b}}∪
{A −→ α |α ∈ {a, b}}∪
{B −→ cB, B −→ cQ2, C −→ c})

G2 = ({S2, C} , {d, e}, S2, {S2 −→ C, C −→ dCe}) .

(Starting with the rule S1 −→ T we produce a string in L(G) {c, d, e}+ and starting
with S1 −→ AB we obtain a string in {a, b}+ L.) Consequently, Com (L(γ)) = 0 if
and only if L(γ) is regular, which is undecidable.

Moreover, let us remark that when L(G) = {a, b}+, then the derivations starting
with S1 −→ T produce all strings in L(γ), without involving communications. When
L(G) 6= {a, b}+, as the language L(γ) is not context-free, at least a communication
step is done. In conclusion, Com (γ) = 0 if and only if L(G) = {a, b}+, hence also
the equality Com (γ) = 0 is undecidable. 2

Corollary. It is not decidable whether Com (γ) = Com (L(γ)), for an arbitrarily
given PCGS γ.

P r o o f . For the above considered language L′, construct the PCGS γ = (G1, G2, G3),
with

G1 = ({S1, A, B, C, T,Q2, Q3} ∪ VN , {a, b, c, d, e}, S1,

{S1 −→ ST, T −→ Q3} ∪ {T −→ αT |α ∈ {c, d, e}} ∪ P∪
{S1 −→ AB, B −→ cB, B −→ cQ2, C −→ c}∪
{A −→ αA |α ∈ {a, b}} ∪ {A −→ α |α ∈ {a, b}})

G2 = ({S2, C} , {d, e}, S2, {S2 −→ C, C −→ dCe})
G3 = ({S3} , {c, d, e}, S3, {S3 −→ α |α ∈ {c, d, e}}) .

As it easily can be seen, L(γ) = L′ and each derivation in γ must use either the
rule B −→ cQ2 or the rule T −→ Q3, hence Com (γ) = 1. On the other hand,
Com (L(γ)) = 0 or Com L(γ)) = 1, depending on the equality L(G) = {a, b}+,
which is undecidable.

Consider now the compatibility question [6]: given a measure M : X −→ N and
a language L ∈ L(X), denote

M−1(L) = {G ∈ X |M(G) = M(L), L = L(G)}
(the set of minimal generative mechanisms for L, with respect to M). Two measures
M1, M2 are said to be incompatible if there is a language L such that

M−1
1 (L) ∩M−1

2 (L) = ∅
(they cannot be simultaneously minimized for at least one language). 2
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Theorem 6. The measure Com is incompatible with each of V ar, Prod, Symb.

P r o o f . Consider the language

L = {anbncbncbncan |n ≥ 1} .

It can be generated by the PCGS γ = (G1, G2, G3), with

G1 = ({S1, S3, S3, Q2, Q3} , {a, b, c}, S1,

{S1 −→ aS1a, S1 −→ aQ2cQ3a, S2 −→ c, S3 −→ c})
G2 = ({S2} , {b}, S2, {S2 −→ bS2b})
G3 = ({S3} , {b}, S3, {S3 −→ bS3}) .

Consequently, Com (L) ≤ 2.
Consider a PCGS γ such that L = L(γ), Com (γ) ≤ 2. Suppose γ = (G1, G2).

Each of G1, G2 is context-free and each string in L contains five substrings an, bn

with related lengths. This implies Com (γ) ≥ 2. If two communications are per-
formed from G2 to G1, then they must be allowed to bring to G1 strings of the same
form (after a communication, the grammar G2 resumes working from S2). However,
we cannot distinguish in anbncbncbncan two substrings, both of the form an or of the
form bnc or cbn and so on, such that the string obtained by removing them to can
be generated in the context-free grammar G1. In conclusion, either Com (γ) ≥ 3, or
γ is of degree at least 3, contradiction.

As we assumed Com (γ) ≤ 2, we have γ of degree at least 3. However, this
implies V ar (γ) ≥ 5 (we have to use at least S1, S2, S3, Q2, Q3), Prod (γ) ≥ 5
(each Gi contains at least a rule, whereas G1 must contain a terminal rule, one
introducing Q2, Q3 and a recursive one, which is different from the above two), and
Symb (γ) ≥ 19 (in each Gi we have a nonterminal rule, also introducing a symbol a, b
– we obtain Symb ≥ 12 for them – but also c must be introduced by a non-recursive
rule, as well as Q2, Q3 – two further rules, with Symb ≥ 7).

On the other hand, V ar (L) ≤ 4, P rod (L) ≤ 4, Symb (L) ≤ 17, as L can be
generated by the PCGS γ′ = (G1, G2), with

G1 = ({S1, S2, Q2} , {a, b, c}, S1,

{S1 −→ aS1a, S1 −→ Q2Q2Q2, S2 −→ c})
G2 = ({S2} , S2, {S2 −→ bS2})

having Com (γ′) = 3.

4. FINAL REMARKS

Of course, the complexity of PCGS must be more investigated, both considering
for them measures used for context-free grammars (grammatical level, index etc.
[6]) and defining specific measures. For instance, a natural idea is to consider the
number of simultaneously used query symbols: for a derivation D as in the beginning
of Section 3, define

SCom (wi,1, . . . , wi,n) = max
{|xi,j |K : 1 ≤ j ≤ n

}

and then define SCom (D), SCom (x, γ), SCom (γ), SCom (L) as for Com. Similar
results as for Com are expected also for this measure. Other such measures can be
the maximum length of a communicated string, the degree of non-centralization (the
number of grammars introducing query symbols) and so on.

As we already said, the PCGS area seems to be both “practically” motivated
and rich in theoretical problems.

(Received October 10, 1990.)
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