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SENSITIVITY ANALYSIS IN SINGULAR MIXED
LINEAR MODELS WITH CONSTRAINTS1

Eva Fǐserová and Luboḿır Kubáček

The singular mixed linear model with constraints is investigated with respect to an
influence of inaccurate variance components on a decrease of the confidence level. The
algorithm for a determination of the boundary of the insensitivity region is given. It is a
set of all shifts of variance components values which make the tolerated decrease of the
confidence level only. The problem about geometrical characterization of the confidence
domain is also presented.

Keywords: mixed linear model with constraints, confidence region, sensitiveness

AMS Subject Classification: 62J05, 62F10, 62F25

1. INTRODUCTION

Let the singular mixed linear model with constraints with inaccurate variance compo-
nents be under consideration. An attention is focused on a problem of the confidence
region.

Two special problems arise. The first one is how can the confidence domain
be geometrically characterized. In regular linear models confidence regions, in the
case of the normality, are ellipsoids either given by a positive definite matrix (in
models without constraints), or by a positive semidefinite matrix (in models with
constraints). However, in the case of the singularity of models, confidence regions
can have another shape. It will be shown that this shape is a cylinder.

The second problem is connected with inaccurate variance components. Shifts
between true and approximate values of variance components can caused a decrease
of the confidence level. The sensitivity analysis approach can be used in a deter-
mination of a set of admissible shifts of variance components. This set is called an
insensitivity region, which is defined as a set of all shifts of variance components
values which make the tolerated decrease of the confidence level only.

In [2, 5, 6] this sensitivity problem has been studied in the case of the regularity
of the model (the model with or without constraints). In the singular mixed model,

1Presented at the Workshop “Perspectives in Modern Statistical Inference II” held in Brno on
August 14–17, 2002.
The research was supported by the Council of Czech Government under Project J14/98:153100011.
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analogous problems connected with the variance of the estimator have been studied
in [3, 4].

The aim of the paper is to study geometrical characterization of the confidence
domain and to find an algorithm for a determination of the boundary of the insen-
sitivity region for the confidence domain.

2. NOTATIONS AND AUXILIARY STATEMENTS

Let A be an m × n matrix. Let M(A) = {Au : u ∈ Rn} ⊂ Rm and Ker(A) =
{u : u ∈ Rn, Au = 0} ⊂ Rn denote the column space and the null space of the
matrix A, respectively. Let W be an m×m symmetric positive semidefinite matrix
such that M(A) ⊂ M(W). Then PW

A = A(A′WA)−A′W denotes a projector on
M(A) in the W-seminorm. The symbol MW

A means I − PW
A . If W = I (identity

matrix), symbols PA and MA are used. The W-seminorm of x, x ∈ Rm, is given by
‖x‖W =

√
x′Wx. Symbols A− and A+ mean the g-inverse and the Moore–Penrose

inverse of the matrix A, respectively.
Let N be an n × n symmetric positive semidefinite matrix. The symbol A−

m(N)

denotes the minimum N-seminorm g-inverse of the matrix A, i. e., the matrix A−
m(N)

satisfies equations

AA−
m(N)A = A, NA−

m(N)A = A′[A−
m(N)]

′N.

One of representations of the matrix A−
m(N) is

A−
m(N) =

{
N−A′(AN−A′)− if M(A′) ⊂M(N),
(N + A′A)−A′[A(N + A′A)−A′]− otherwise.

In more detail cf. [7].

3. UNIVERSAL MODEL WITH CONSTRAINTS

The universal model with constraints is

Y ∼n

(
Xβ,Σϑ

)
, β ∈ {u : Bu + b = 0} = B, ϑ ∈ ϑ, (1)

where Y is an n-dimensional random vector, Xβ is the mean value of Y and Σϑ

its covariance matrix. X and B are given matrices with the dimension n × k and
q × k, respectively, b is a known q-dimensional vector such that b ∈ M(B), ϑ is an
open set in Rp. The covariance matrix is considered in the form Σϑ =

∑p
i=1 ϑiVi,

where V1, . . . ,Vp are given n× n symmetric matrices and ϑ = (ϑ1, . . . , ϑp)′ ∈ ϑ is
unknown, and it is supposed that Σϑ is positive semidefinite for all ϑ ∈ ϑ.

A special case of the universal model is the mixed model. It is the model (1) if
V1, . . . ,Vp are symmetric positive semidefinite and ϑ1, . . . , ϑp are positive.

The equivalent expression of the universal model (1) is
(

Y
−b

)
∼n+q

[(
X

B

)
β,

(
Σϑ, 0
0, 0

)]
, β ∈ Rk, ϑ ∈ ϑ.



Sensitivity Analysis in Singular Mixed Linear Models with Constraints 319

Lemma 3.1. In the universal model (1) a function h′β, β ∈ B, h ∈ Rk, is unbias-
edly estimable if and only if h ∈M(X′,B′).

P r o o f . Cf. [1], p. 136. 2

Lemma 3.2. Within the universal model (1) the ϑ-LBLUE (ϑ-locally best linear
unbiased estimator) of a function h′β, β ∈ B, h ∈M(X′,B′), is

ĥ′β(ϑ) = h′L′
(

Y
−b

)
,

where

L′ = [L′1,L
′
2] ,

L′1 = (MB′WϑMB′)+X′(Σϑ + XMB′X′)+,

L′2 =
[
I− (MB′WϑMB′)+X′(Σϑ + XMB′X′)+X

]
B′(BB′)−.

Here

Wϑ = MB′X′(Σϑ + XMB′X′)+XMB′ + B′B,

[MB′WϑMB′ ]
+ = W+

ϑ −W+
ϑ B′(BW+

ϑ B′)−BW+
ϑ .

P r o o f . The vector function
(

X
B

)
β, β ∈ B, represents the class of all unbiasedly

estimable functions. The ϑ-LBLUE of
(

X
B

)
β, β ∈ B, is

̂(
X
B

)
β(ϑ) =

(
X
B

)

(X′,B′)−

m

0
@ Σϑ, 0

0, 0

1
A




′
(

Y
−b

)
.

Since

(X′,B′)−

m

0
@ Σϑ, 0

0, 0

1
A




′

=

[
(X′,B′)

(
Σϑ + XX′, XB′

BX′, BB′

)−(
X
B

)]−

×(X′,B′)
(

Σϑ + XX′, XB′

BX′, BB′

)−
(2)

and (cf. [1], p. 446)
(

Σϑ + XX′, XB′

BX′, BB′

)−
=

(
Q11, Q12

Q′
12, Q22

)
,

Q11 = (Σϑ + XMB′X′)−,

Q′
12 = −(BB′)−BX′(Σϑ + XMB′X′)−,

Q22 = (BB′)− + (BB′)−BX′(Σϑ + XMB′X′)−XB′(BB′)−,
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we have

(X′,B′)
(

Σϑ + XX′, XB′

BX′, BB′

)−
= [K1,K2] , (3)

K1 = MB′X′(Σϑ + XMB′X′)+,

K2 = B′(BB′)− −MB′X′(Σϑ + XMB′X′)+XB′(BB′)−

and

(X′,B′)
(

Σϑ + XX′, XB′

BX′, BB′

)−(
X
B

)

= PB′ + MB′X′(Σϑ + XMB′X′)+XMB′ .

Thus

X̂β(ϑ) = X
[
PB′ + MB′X′(Σϑ + XMB′X′)+XMB′

]+

× [
MB′X′(Σϑ + XMB′X′)+Y −B′(BB′)−b

+ MB′X′(Σϑ + XMB′X′)+XB′(BB′)−b
]
,

B̂β(ϑ) = −b.

Further
[
PB′ + MB′X′(Σϑ + XMB′X′)+XMB′

]+

= PB′ +
[
MB′X′(Σϑ + XMB′X′)+XMB′

]+

= PB′ + (MB′WϑMB′)
+

.

Since (MB′WϑMB′)
+ MB′ = (MB′WϑMB′)

+, it holds

X̂β(ϑ) = X (MB′WϑMB′)
+ MB′X′(Σϑ + XMB′X′)+Y

−XB′(BB′)−b

+X (MB′WϑMB′)
+ MB′X′(Σϑ + XMB′X′)+XB′(BB′)−b

= X [L′1,L
′
2]

(
Y
−b

)
,

where

L′1 = (MB′WϑMB′)+X′(Σϑ + XMB′X′)+,

L′2 =
[
I− (MB′WϑMB′)+X′(Σϑ + XMB′X′)+X

]
B′(BB′)−.

Analogously

B̂β(ϑ) = B [L′1,L
′
2]

(
Y
−b

)
= −b.

2

Lemma 3.3. Let h ∈M(X′,B′). Then in the universal model (1) it holds

Varϑ

[
ĥ′β(ϑ)

]
= h′

[
(MB′WϑMB′)+ −MB′

]
h.

P r o o f . The proof can be found in [1], p. 158. 2
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4. CONFIDENCE REGION

In what follows let the observation vector Y be normally distributed. According to
Lemma 3.1

h ∈M(X′,B′) ⇔ h′β is unbiasedly estimable.

Any vector h ∈ Rk can be considered in the form h = h1+h2, where h1 ∈M(X′,B′)
and h2 ∈ [M(X′,B′)]⊥ = {Ker(X) ∩Ker(B)}. If h′β is not unbiasedly estimable,
i. e., h = h2, then we put Varϑ

[
ĥ′2β(ϑ)

]
= ∞. If h′β is unbiasedly estimable, three

following cases come into consideration

1. h ∈M(B′) ⇒ Varϑ

[
ĥ′β(ϑ)

]
= 0,

2. h ∈M(X′) ∧ h ∈M(B′) ⇒ Varϑ

[
ĥ′β(ϑ)

]
= 0,

3. h ∈M(X′) ∧ h /∈M(B′) ⇒

Varϑ

[
ĥ′β(ϑ)

]
= h′

[
(MB′WϑMB′)+ −MB′

]
h.

Summarizing this, the space M(X′,B′) can be divided into three disjoint subspaces
M(X′

1), M(X′
2) and M(B′

1) such that

M(X′,B′) = M(X′
1,X

′
2,B

′
1) = M(X′

1,B
′),

M(X′
2) = M(X′) ∩M(B′).

Hence, from the variance of the estimator viewpoint the whole parametric space Rk

is divided into three subspaces

Rk = M(X′
1) ∨ M(B′) ∨ {Ker(X) ∩Ker(B)} ,

where the symbol ∨ is defined as follows

M(X′
1) ∨M(B′) ∨ {Ker(X) ∩Ker(B)}

= {p + q + r : p ∈M(X′
1), q ∈M(B′), r ∈ {Ker(X) ∩Ker(B)}} .

Consequently, the (1− α)-confidence interval for the function h′β, β ∈ B,

E1−α(h′β) =

{
u : u ∈ R1,

∣∣∣u− ĥ′β(ϑ)
∣∣∣ ≤ u

(
1− α

2

) √
Varϑ

[
ĥ′β(ϑ)

]}
,

where the symbol u
(
1− α

2

)
denotes

(
1− α

2

)
-quantile of N(0, 1) distribution, is rep-

resented by a point if h ∈M(B′) and by the whole real line R1 if h ∈ {Ker(X)∩
Ker(B)}.

It remains to analyse the space M(X′
1). In the following, the universal model (1)

will be considered in the partitioned form (after the suitable reindexing)



Y 1

Y 2

−b


 ∼n1+n2+q1







X1

X2

B1


β,




Σϑ,11, Σϑ,12, 0
Σϑ,21, Σϑ,22, 0

0, 0, 0





 , (4)

n1 + n2 + q1 = n + q, n1 ≤ n, q1 ≤ q.
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Lemma 4.1. The dimension of the space M(X′
1) is equal to r(XMB′). Here the

symbol r(XMB′) means the rank of the matrix XMB′ .

P r o o f . The proof follows from the following relations

r

(
X
B

)
= r(XMB′) + r(B),

M(X′,B′) = M(X′
1,X

′
2,B

′
1), M(X′

1), M(X′
2), M(B′

1) disjoint,
Ker(B) = M(MB′)

(cf. [7], p. 137). 2

Lemma 4.2. Within the universal model (1) it holds

r

(
Varϑ

[
̂(
X
B

)
β(ϑ)

])
= r

(
MB′X′[Σϑ + XMB′X′]−Σϑ

)
.

P r o o f . With respect to Lemma 3.2 it holds

Varϑ

[
̂(
X
B

)
β(ϑ)

]
=

(
X
B

)
L′

(
Σϑ, 0
0, 0

)
L(X′,B′),

where

L′ =


(X′,B′)−

m

0
@ Σϑ, 0

0, 0

1
A




′

(cf. (2)). It implies

r

(
Varϑ

[
̂(
X
B

)
β(ϑ)

])
= r

[(
X
B

)
L′

(
Σϑ, 0
0, 0

)]

≥ r

[
(X′,B′)

(
Σϑ + XX′, XB′

BX′, BB′

)−(
X
B

)
L′

(
Σϑ, 0
0, 0

)]

= r

[
(X′,B′)

(
Σϑ + XX′, XB′

BX′, BB′

)−(
Σϑ, 0
0, 0

)]

≥ r

[(
X
B

)
L′

(
Σϑ, 0
0, 0

)]
.

Thus

r

(
Varϑ

[
̂(
X
B

)
β(ϑ)

])

= r

[
(X′,B′)

(
Σϑ + XX′, XB′

BX′, BB′

)−(
Σϑ, 0
0, 0

)]

and the proof is finished by using the relation (3). 2
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Corollary 4.3.

r
(
Varϑ

[
X̂1β(ϑ)

])
= r

(
MB′X′[Σϑ + XMB′X′]−Σϑ

)
.

P r o o f . The statement is an obvious consequence of Lemma 4.2 since

(
X
B

)
=




X1

X2

B1


 , Varϑ

[
X̂2β(ϑ)

]
= 0, Varϑ

[
B̂1β(ϑ)

]
= 0. 2

The vector function X1β represents the class of all unbiasedly estimable functions
h′β in the subspace M(X′

1). The (1 − α)-confidence region for the function X1β,
β ∈ B, is given by the expression

E1−α(X1β) =
{

u : u ∈M(X1), χ2
s(0, 1− α) ≥

(
X̂1β(ϑ)− u

)′

× (
X1

[
(MB′WϑMB′)+ −MB′

]
X′

1

)− (
X̂1β(ϑ)− u

)}
,

where
s = r

(
MB′X′[Σϑ + XMB′X′]−Σϑ

)

and χ2
s(0, 1−α) means the (1−α)-quantile of chi-square distribution with s degrees

of freedom.
From Lemma 4.1 and Corollary 4.3 it follows k ≥ dimM(X′

1) ≥ s and the
rank s depends on Σϑ. Hence, a confidence region for the function X1β is an s-
dimensional domain in the space M(X′

1). It cannot be characterized as an regular
ellipsoid. There exist directions f i ∈ M(X′

1), i = 1, . . . , dimM(X′
1) − s, such

that a confidence interval for the function f ′iβ is degenerated into a point and it
holds Varϑ

[
f̂ ′iβ(ϑ)

]
= 0, i = 1, . . . , dimM(X′

1)− s. These vectors f i generate the
subspace N ⊂ M(X′

1) and M(X′
1) = N ⊕ F . In the subspace N the estimator of

PNβ, where PN is the Euclidean projector matrix on the subspace N , is the vector
P̂Nβ with the property P

{
P̂Nβ = PNβ

}
= 1, i. e., Varϑ

(
P̂Nβ

)
= 0. Here a

vector PNβ represents all unbiasedly estimable linear functions of the parameter β
in the subspace N . In the subspace F the confidence region of PFβ is a regular
s-dimensional ellipsoid.

Summarizing all results from this section, the confidence region for the function(
X
B

)
β is a cylinder Z ⊕ {Ker(X) ∩Ker(B)} with a basis Z in the subspace

M(X′,B′). The basis is an ellipsoid in the subspace F with the center given by the
vector

P̂B′β + P̂Nβ = −B′(BB′)−b + P̂Nβ.

Sometimes, it is necessary to determine confidence intervals for several functions
of the parameter β simultaneously. The following theorem, due to Scheffé is useful
in such cases.
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Lemma 4.4 (Scheffé theorem) Let V be any n×n symmetric positive semidefinite
matrix, k > 0 and x ∈M(V). Then

∀y ∈ Rn : |y′x| ≤ k
√

y′Vy ⇔ x′V−x ≤ k2.

P r o o f . It is an obvious generalization of the statement for a symmetric positive
definite matrix V which can be found in [8], p. 69. 2

Theorem 4.5. Consider a subclass K of estimable functions of β characterized by
a k × l matrix K with the properties

h′β ∈ K ⇔ h ∈M(K) ⊂M(X′,B′).

Then for all h ∈M(K) confidence intervals of functions h′β, β ∈ B, are given by

1− α = P
{
∀h′β ∈ K :
∣∣∣h′β − ĥ′β(ϑ)

∣∣∣ ≤
√

χ2
f (0, 1− α)

√
h′ [(MB′WϑMB′)+ −MB′ ] h

}
,

where degrees of freedom are

f = r
{
K′(MB′WϑMB′)+X′[Σϑ + XMB′X′]+Σϑ

}
.

P r o o f . Let h ∈ K, i. e., ∃f ∈ Rl : h = Kf . Thus
∣∣∣h′β − ĥ′β(ϑ)

∣∣∣ =
∣∣∣f ′

(
K′β − K̂′β(ϑ)

)∣∣∣ .

Since
P

{(
K′β − K̂′β(ϑ)

)
∈M

(
Varϑ[K̂′β(ϑ)]

)}
= 1,

according to Lemma 4.4 it holds

∀f ∈ Rl :
∣∣∣f ′

(
K′β − K̂′β(ϑ)

)∣∣∣ ≤ k

√
f ′Varϑ[K̂′β(ϑ)]f ⇔

(
K′β − K̂′β(ϑ)

)′ (
Varϑ[K̂′β(ϑ)]

)− (
K′β − K̂′β(ϑ)

)
≤ k2.

Hence

1− α = P
{
∀h′β ∈ K :
∣∣∣h′β − ĥ′β(ϑ)

∣∣∣ ≤
√

χ2
f (0, 1− α)

√
h′ [(MB′WϑMB′)+ −MB′ ] h

}

where
f = r

{
Varϑ[K̂′β(ϑ)]

}
.
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Further, since M(K) ⊂ M(X′,B′), there exist matrices U1, U2 such that K =
X′U1 + B′U2. Now, using Lemma 3.2 we obtain

r
{

Varϑ[K̂′β(ϑ)]
}

= r

{
(U′

1,U
′
2)

(
X
B

)
L′

(
Σϑ, 0
0, 0

)}

= r

{
(U′

1,U
′
2)

(
X
B

) [
(MB′WϑMB′)+X′(Σϑ + XMB′X′)+Σϑ,0

]}

= r
{
U′

1X(MB′WϑMB′)+X′(Σϑ + XMB′X′)+Σϑ

}

= r
{
K′(MB′WϑMB′)+X′(Σϑ + XMB′X′)+Σϑ

}
,

since

MB′(MB′WϑMB′)+ = (MB′WϑMB′)+, K′MB′ = U′
1XMB′ . 2

5. INSENSITIVITY REGION

In this section, let the mixed linear model with constraints (1) be under considera-
tion, i. e., Vi, i = 1, . . . , p, are symmetric positive semidefinite and ϑi are positive.
Authors have not been able to solve the problem in the model with variance com-
ponents, i. e., in the case that Vi, i = 1, . . . , p, is symmetric only and ϑi can be
negative. The problem is to derive g-inverse of matrices depending on parameters
ϑ1, . . . , ϑp. In mixed linear model it is valid the relationship (6) from the proof of
Lemma 5.1, i. e.,

M
(

∂

∂ϑi

p∑

i=1

ϑiVi

)
= M(Vi) ⊂M

(
p∑

i=1

ϑiVi

)
,

what is not true in the case of models with variance components.
Let the observation vector Y be normally distributed. Let ϑ∗ be true value of

the parameter ϑ. The small change of ϑ∗ into ϑ∗ + ∆ causes a change of the ϑ∗-
LBLUE ĥ′β(ϑ∗) of the function h′β, β ∈ B. Analogously, this change influences the
confidence level of the confidence region, the risk of the test, etc. In the following,
the problem with the confidence level will be studied. Here an analogous procedure
is used as in the regular mixed model with constraints (cf. [5]).

According to the previous section, it is sufficient to study the problem of the
sensitivity for functions X1β, β ∈ B, only.

Denote by η(ϑ∗ + ∆) the random variable

η(ϑ∗ + ∆)

=
(
X̂1β(ϑ∗ + ∆)−X1β

)′ (
X1

[
(MB′Wϑ∗+∆MB′)+ −MB′

]
X′

1

)−

×
(
X̂1β(ϑ∗ + ∆)−X1β

)
.
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Then η(ϑ∗) ∼ χ2
s(0), s = r (MB′X′[Σϑ∗ + XMB′X′]−Σϑ∗) and the random variable

ξ =
p∑

i=1

∆i
∂η(ϑ)
∂ϑi

∣∣∣∣
ϑ=ϑ∗

describes the change of η(ϑ∗) caused by the shift ∆ of the parameter ϑ around
ϑ∗. Omitting the second and higher derivatives in the Taylor series, the variable
η(ϑ∗ + ∆) can be linearly approximated by

η(ϑ∗ + ∆) ≈ η(ϑ∗) + ξ.

Lemma 5.1. Let the mixed model (1) be under consideration. Then the mean
value of ξ is

E[ξ] = −
p∑

i=1

∆iTr (UVi) ,

where Tr (UVi) means the trace of the matrix UVi and

U = (Σϑ∗ + XMB′X′)+ X [MB′Wϑ∗MB′ ]
+ X′

1

×
[
X1

(
[MB′Wϑ∗MB′ ]

+ −MB′
)
X′

1

]+

×X1 [MB′Wϑ∗MB′ ]
+ X′ (Σϑ∗ + XMB′X′)+ .

The variance of ξ is

Varϑ∗ [ξ] = ∆′A∆,

where

A = 2SU + 4CU,T , (5)
{SU}i,j = Tr (UViUVj) , i, j = 1, . . . , p,

{CU,T }i,j = Tr (UViTVj) ,

T = − (Σϑ∗ + XMB′X′)+ X [MB′Wϑ∗MB′ ]
+ X′

× (Σϑ∗ + XMB′X′)+ + (Σϑ∗ + XMB′X′)+ .

Further, the explicit expression of the term ∂η(ϑ∗)
∂ϑi

, i = 1, . . . , p, is

∂η(ϑ∗)
∂ϑi

= −2
(
X̂1β (ϑ∗)−X1β

)′ [
X1

(
[MB′Wϑ∗MB′ ]

+ −MB′
)
X′

1

]+

×X1 [MB′Wϑ∗MB′ ]
+ X′ (Σϑ∗ + XMB′X′)+ Vi

× (Σϑ∗ + XMB′X′)+ υ1 (ϑ∗)

−
(
X̂1β (ϑ∗)−X1β

)′ [
X1

(
[MB′Wϑ∗MB′ ]

+ −MB′
)
X′

1

]+

×X1 [MB′Wϑ∗MB′ ]
+ X′ (Σϑ∗ + XMB′X′)+ Vi

× (Σϑ∗ + XMB′X′)+ X [MB′Wϑ∗MB′ ]
+ X′

1

×
[
X1

(
[MB′Wϑ∗MB′ ]

+ −MB′
)
X′

1

]+ (
X̂1β (ϑ∗)−X1β

)
,
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where
υ1(ϑ∗) = Y 1 − X̂1β(ϑ∗).

P r o o f . The explicit expression of ∂η(ϑ∗)
∂ϑi

can be derived by using the relation

M
(

∂A+(t)
∂t

)
⊂M(A(t)) ⇒ ∂A+(t)

∂t
= −A+(t)

∂A(t)
∂t

A+(t), (6)

which can be easily proved. Then

∂X̂1β(ϑ∗)
∂ϑi

= −X1 [MB′Wϑ∗MB′ ]
+ X′ (Σϑ∗ + XMB′X′)+ Vi

× (Σϑ∗ + XMB′X′)+ υ1(ϑ∗),
∂Wϑ∗

∂ϑi
= −MB′X′ (Σϑ∗ + XMB′X′)+ Vi

× (Σϑ∗ + XMB′X′)+ XMB′ ,

∂
[
X1

(
[MB′Wϑ∗MB′ ]

+ −MB′
)
X′

1

]

∂ϑi

= X1 [MB′Wϑ∗MB′ ]
+ X′ (Σϑ∗ + XMB′X′)+ Vi

× (Σϑ∗ + XMB′X′)+ X [MB′Wϑ∗MB′ ]
+ X′

1.

In the next step we use the notation

Fi =
[
X1

(
[MB′Wϑ∗MB′ ]

+ −MB′
)
X′

1

]+

X1 [MB′Wϑ∗MB′ ]
+

×X′ (Σϑ∗ + XMB′X′)+ Vi (Σϑ∗ + XMB′X′)+ ,

Di =
[
X1

(
[MB′Wϑ∗MB′ ]

+ −MB′
)
X′

1

]+

X1 [MB′Wϑ∗MB′ ]
+

×X′ (Σϑ∗ + XMB′X′)+ Vi (Σϑ∗ + XMB′X′)+

×X [MB′Wϑ∗MB′ ]
+ X′

1

[
X1

(
[MB′Wϑ∗MB′ ]

+ −MB′
)
X′

1

]+

and
ζ(ϑ∗) = X̂1β(ϑ∗)−X1β.

Then

ζ(ϑ∗) ∼ Nn1

[
0,X1

(
[MB′Wϑ∗MB′ ]

+ −MB′
)
X′

1

]
,

υ1(ϑ∗) ∼ Nn1

[
0,Σϑ∗,11 −X1

(
[MB′Wϑ∗MB′ ]

+ −MB′
)
X′

1

]
,

where Σϑ∗,11 is the submatrix from (4) and ζ, υ1 are stochastically independent.

The random variable ∂η(ϑ∗)
∂ϑi

can be rewritten in the form

∂η(ϑ∗)
∂ϑi

= −2ζ′(ϑ∗)Fiυ1(ϑ∗)− ζ′(ϑ∗)Diζ(ϑ∗).
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Now the proof can be finished by using the following relations

E
[
ζ′(ϑ∗)Diζ(ϑ∗)

]
= Tr (DiVarϑ∗ [ζ(ϑ∗)]) ,

E
[
ζ′(ϑ∗)Fiυ1(ϑ∗)

]
= 0

and

Varϑ∗
[
ζ′(ϑ∗)Diζ(ϑ∗)

]
= 2Tr (DiVarϑ∗ [ζ(ϑ∗)]DiVarϑ∗ [ζ(ϑ∗)]) ,

E
[
υ′1(ϑ

∗)F′iζ(ϑ∗)ζ′(ϑ∗)Fiυ1(ϑ∗)
]

= Tr (F′iVarϑ∗ [ζ(ϑ∗)]FiVarϑ∗ [υ1(ϑ∗)]) ,

E
[
υ′i(ϑ

∗)F′iζ(ϑ∗)ζ′(ϑ∗)Diζ(ϑ∗)
]

= 0. 2

Let ε be a chosen probability expressing the maximum tolerable decrease of the
confidence level caused by the fact that the true value ϑ∗ of the parameter ϑ is
unknown. The notation

a = [Tr(UV1), . . . , Tr(UVp)]
′ (7)

will be used.

Definition 5.2. Let

Kε = {∆ : ∆ ∈ Rp, ∆i + ϑ∗i > 0, i = 1, . . . , p, Φ(∆) ≤ δε} ,

where

Φ(∆) = −∆′a + t
√

∆′A∆,

δε = χ2
s(0, 1− α)− χ2

s(0, 1− α− ε).

The set Kε is called the insensitivity region for the confidence domain.

Theorem 5.3. Let A and a be given by (5) and (7). The boundary of the insen-
sitivity region for the (1− α)-confidence domain of the function X1β, β ∈ B, is the
set

Kε =

{
∆ : ∆ ∈ Rp, ∆i + ϑ∗i > 0, i = 1, . . . , p,

(∆− u0)′(t2A− aa′)(∆− u0) =
δ2
ε t2

t2 − a′A−a

}
,

where ε, t are chosen positive numbers and

u0 =
δε

t2 − a′A−a
A−a,

δε = χ2
s(0, 1− α)− χ2

s(0, 1− α− ε),
s = r

(
MB′X′(Σϑ∗ + XMB′X′)+Σϑ∗

)
.

P r o o f . The statement can be proved in the following steps
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1. matrices SU and CU,T from Lemma 5.1 are positive semidefinite,

2. a ∈M(SU ) ⊂M(A),

3. solving the equation Φ(∆) = δε.

(in more detail cf. [2, 5]). 2

6. NUMERICAL DEMONSTRATION

Example 6.1. The problem is to determine two straight lines p1 and p2 in a plane.
Straight line p1 has to intersect the point [2, T ] and analogously p2 has to intersect
the point [2, T + 1], where T is unknown. Moreover, p1 intersects the point [0, 0].
We have only one measurement for each straight line at our disposal; y1 = 2.00 at
the point x = 1 with the accuracy (standard deviation) σ1 = 0.01 for the straight
line p1 and y2 = 1.50 at the point x = 3 with the accuracy σ2 = 0.02 for the p2.
Both measurements are linearly dependent (correlation coefficient ρ = 1).

Let us denote

p1 : y = β1x,

p2 : y = β2 + β3x,

i. e., the vector of unknown parameters is β = (β1, β2, β3)′. Constraints on the model
are

2β1 = T,

β2 + 2β3 = T + 1,

hence
2β1 − β2 − 2β3 + 1 = 0, (8)

i. e., B = (2,−1,−2) and b = 1.
Let us put the true value ϑ∗i equal to the certificate value σ2

i , i = 1, 2. The
acceptability of this equality we verify by using sensitivity region. Then

ϑ∗1 = 0.0001, ϑ∗2 = 0.0004,

Σϑ∗ =
(

0.0001, 0.0002
0.0002, 0.0004

)
,

V1 =
(

0.5, 1.0
1.0, 2.0

)
, V2 =

(
0.125, 0.250
0.250, 0.500

)
.

Stochastic model describing the process of measurement is given by
(

Y1

Y2

)
∼ N2[Xβ,Σϑ∗ ], β ∈ {

u : u ∈ R3, Bu + b = 0
}

= B,

X =
(

1, 0, 0
0, 1, 3

)
.
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Then

M(X′) =




1, 0
0, 1
0, 3


 , Ker(X) =




0
3

−1


 ,

M(B′) =




2
−1
−2


 , Ker(B) =




4, 5
−2, 2

5, 4


 .

Since M(X′,B′) = R3, all functions h′β, h ∈ R3, are unbiasedly estimable
and thus the vector β is also unbiasedly estimable. The ϑ∗-LBLUE of the whole
parameter β is β̂(ϑ∗) = (2.00, 12.00,−3.50)′ (cf. Lemma 3.2). The (1−α)-confidence
region of β is given as

E1−α(β) =
{

β : β ∈ Ker(B) + β0,

[
β − β̂(ϑ∗)

]′ [
Varϑ∗

(
β̂(ϑ∗)

)]− [
β − β̂(ϑ∗)

]
≤ χ2

s(1− α)
}

,

where β0 is a vector satisfying the relation (8), e. g. β0 = (0.5, 6.0,−2.0)′, and

s = r
(
Varϑ∗

(
β̂(ϑ∗)

))
= r

(
MB′X′[Σϑ∗ + XMB′X′]−Σϑ∗

)
= 1.

(cf. Corollary 4.3).
The covariance matrix Varϑ∗

(
β̂(ϑ∗)

)
is

Varϑ∗
(
β̂(ϑ∗)

)
= (MB′Wϑ∗MB′)+ −MB′ =




0.0001, 0.0002, 0
0.0002, 0.0004, 0

0, 0, 0


 .

Since its spectral decomposition is given by

Varϑ∗
(
β̂(ϑ∗)

)
= 0.0005




0.4472
0.8944

0


 (0.4472, 0.8944, 0),

the subspace Ker(B) can be expressed, in our case, in a more suitable form as

Ker(B) =




0.4472, −0.5963
0.8944, 0.2981

0, 0.7454


 .

Thus 0.95-confidence region of β is the set characterized by the abscissa [−0.0438, 0.0438]
(0.0438 =

√
0.0005χ2

1(0.95), χ2
1(0.95) = 3.84), which center is shifted to the point

β̂(ϑ∗) = (2.00, 12.00,−3.50)′ and its direction is given by the vector (0.4472, 0.8944, 0)′

(cf. Figure 1).
Now, let us consider the problem of the sensitivity. Let the tolerable decrease

of the 0.95-confidence level be 10 % , i. e., ε = 0.1. Let t = 4. The center of
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Fig. 1. 0.95-confidence region E0.95(β) in the linear manifold B.

the insensitivity region K0.1 for the confidence domain E0.95(β) is u0 = (−0.3328 ·
10−3,−0.0832 · 10−3)′. Eigenvalues and eigenvectors of the matrix t2A− aa′ are

λ1 = 0, v1 = (0.2425,−0.9701)′,
λ2 = 2.6603 · 107, v2 = (−0.9701,−0.2425)′.

Hence, the insensitivity region is the band in the direction v1 and its width γ is
equal to

γ = 2

√
δ2
εt2

(t2 − a′A−a)λ2
= 0.9702 · 10−3.

Moreover, tolerable shifts (δϑ1, δϑ2)′ must satisfy δϑ1 > −0.0001 and δϑ2 > −0.0004.
Thus, the insensitivity region is not the whole band but the triangle P1P2P3 only
(see Figure 2). Here P1 = (−0.0001,−0.0004)′, P2 = (0.0011,−0.0004)′ and P3 =
(−0.0001, 0.0042)′.

From the practical viewpoint it is more important to determine tolerable shifts
δσ =

√
δϑ of the parameter σ around its true value σ∗. Evidently, the shift δσ

is tolerable iff the shift δϑ is tolerable. The tolerable shifts δσ are given by the
equation

δσi =
√

ϑ∗i + δϑi − σ∗i , i = 1, 2.

The region Q1Q2Q3 of all tolerable shifts (δσ1, δσ2)′ is shown in Figure 2. Here
Q1 = (−0.01,−0.02)′, Q2 = (0.0246,−0.02)′ and Q3 = (−0.01, 0.0478)′.

The maximum tolerable shift δσ1 is 0.0246 if the measurement Y2 is exact. Anal-
ogously, the maximum tolerable shift δσ2 is 0.0478 if the measurement Y1 is exact.
In both cases, standard deviation σi can increase approximately by 240 % . Tol-
erable shifts δσ are large enough therefore we can put the true values σ∗ equal to
the certificate values. Further, both measurements are equally important from the
aspect of the accuracy of the estimator β̂.
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Fig. 2. Insensitivity regions K0.1. Left: tolerable shifts δϑ around ϑ∗,
right: tolerable shifts δσ around σ∗.
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ment of Mathematical Analysis and Applied Mathematics, Faculty of Science, Palacký
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