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OPTIMUM CHEMICAL BALANCE WEIGHING

DESIGNS FOR v + 1 OBJECTS1

BronisÃlaw Ceranka and MaÃlgorzata Graczyk

The paper studies the estimation problem of individual weights of objects
using a chemical balance weighing design under the restriction on the number
times in which each object is weighed. Conditions under which the existence
of an optimum chemical balance weighing design for p = v objects implies the
existence of an optimum chemical balance weighing design for p = v + 1 objects
are given. The existence of an optimum chemical balance weighing design for
p = v+1 objects implies the existence of an optimum chemical balance weighing
design for each p < v + 1. The new construction method for optimum chemical
balance weighing design for p = v + 1 objects is given. It uses the incidence
matrices of ternary balanced block designs for v treatments.

Keywords: chemical balance weighing design, ternary balanced block design

AMS Subject Classification: 62K15

1. INTRODUCTION

Let us consider the problem of determining the weights of p objects in n
measurement operations (weighings). The manner of allocation of objects
on the pans is described through columns of the n × p matrix X. Its
elements are equal to −1, 1 or 0 if the object is kept on the left pan,
right pan or is not included in the particular measurement operation,
respectively. For estimation of the unknown weights of objects we use
the least squares method and we get

ŵ = (X′X)−1X′y, (1)

and the variance–covariance matrix of ŵ is

V ar(ŵ) = σ2(X′X)−1 (2)

1Presented at the Workshop “Perspectives in Modern Statistical Inference II” held in Brno on
August 14–17, 2002.



334 B. CERANKA AND M. GRACZYK

provided X′X is nonsingular, where w and y are column vectors of the
unknown weights of p objects and of the recorded results in n weighings,
respectively.

Various aspects of chemical balance weighing designs (CBWD) have
been studied by Raghavarao [9], Banerjee [1] and Shah and Sinha [11].
Hotelling [8] has shown that the minimum attainable variance for each of
the estimated weights for a CBWD is σ2/n and proved the theorem that
each of the variance of the estimated weights attains the lower bound
if and only if X′X = nIp. This design is called the optimum chemical
balance weighing design (OCBWD). In other words, the matrix X of the
OCBWD has as elements −1 and 1, only. In this case several methods of
construction OCBWD are available in the literature. Saha and Kageyama
[10] have constructed OCBWD for p = v+1 objects in n = 4(r−λ) weighings
from the incidence matrices of the balanced incomplete block designs for
v treatments. In the same case, Ceranka and Katulska [5] have studied
another method of construction.

Swamy [12], Ceranka, Katulska and Mizera [7] and Ceranka and Katul-
ska [6] have given some results of construction CBWD under the restric-
tion on the number of objects placed on the either pan.

In the present paper we study another method of construction of an
OCBWD in the case when the design matrix X has elements −1, 0 or 1.
This method uses the incidence matrices of the ternary balanced block
design (TBBD) for v treatments to form the design matrix of OCBWD
for p = v + 1 objects.

2. VARIANCE LIMIT OF ESTIMATED WEIGHTS

Ceranka and Graczyk [4] showed that the minimum attainable variance
for each of the estimated weights for a CBWD is σ2/m, i. e. V ar(ŵj) ≥
σ2/m, j = 1, 2, . . . , p, where m = max{m1,m2, . . . , mp}, mj is the number of
times in which the jth object is weighed (number of elements equal to
−1 and 1 in jth column of matrix X).

Definition 2.1. A nonsingular CBWD is called optimal for the estimated
individual weights if V ar(ŵj) = σ2/m, j = 1, 2, . . . , p.

Ceranka and Graczyk [4] proved the following theorem.

Theorem 2.1. A nonsingular CBWD is optimal if and only if

X′X = mIp. (3)

In particular case, when m = n the theorem was given in Hotelling [8].
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3. OPTIMUM CHEMICAL BALANCE WEIGHING DESIGNS
FOR p + 1 OBJECTS

Let Xi be the ni × p matrix of CBWD for p = v objects, i = 1, 2. Based on
that matrices we want to construct the design matrix X of CBWD for
p = v + 1 objects. Let assume that this matrix is given in the form

X =
[

X1 1n1

X2 0n2

]
, (4)

where 1n1 is the n1 × 1 column vector of the units and 0n2 is the n2 × 1
column vector of zeros. In this design we have p = v + 1 objects and
n = n1 + n2 weighing operations.

Theorem 3.1. If Xi is the matrix of the ni×p OCBWD for p = v objects,
i = 1, 2, then the n × p matrix X given in the form (3.1) is the matrix of
the OCBWD for p = v+1 objects and n = n1 +n2 measurement operations
if and only if

X′
11n1 = 0p. (5)

P r o o f . The proof is straightforward when using Theorem 2.1. 2

Let notice that the existence of the OCBWD for p = v + 1 objects
implies the existence of the OCBWD for each p < v + 1 objects.

In the present paper we study some methods of construction the design
matrix X of the OCBWD for p = v + 1 objects using the matrices X1 and
X2 of the OCBWD for p = v objects. It is based on the incidence matrices
of the TBBD for p = v treatments.

4. TERNARY BALANCED BLOCK DESIGNS

Let TBBD be a design consisting of b blocks, each of size k, chosen from a
set of size v in such a way that each of v elements occurs r times altogether
and 0, 1 or 2 times in each block and each of the distinct pairs of elements
occurs λ times. Any TBBD is regular, that is, each element occurs singly
in ρ1 blocks and is repeated ρ2 blocks, where ρ1 and ρ2 are constant for
the design. Accordingly we write the parameters of the TBBD in the
form v, b, r, k, λ, ρ1, ρ2. Let N be the incidence matrix of the TBBD. It is
easy to verify that

vr = bk,

r = ρ1 + 2ρ2,

λ(v − 1) = ρ1(k − 1) + 2ρ2(k − 2) = r(k − 1)− 2ρ2,

NN′ = (ρ1 + 4ρ2 − λ)Iv + λ1v1′v = (r + 2ρ2 − λ)Iv + λ1v1′v.
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5. CONSTRUCTION OF THE DESIGN MATRIX

Let Ni be the incidence matrix of the TBBD with the parameters v, bi,
ri, ki, λi, ρ1i, ρ2i, i = 1, 2. Now we define the matrix X of the CBWD as

X =
[

N′
1 − 1b11

′
v 1b1

N′
2 − 1b21

′
v 0b2

]
. (6)

In this design we have p = v + 1 and n1 = b1, n2 = b2. Thus, each of
v first column of X will contain ρ21 + ρ22 elements equal to 1, b1 + b2 −
ρ11− ρ12− ρ21− ρ22 elements equal to −1 and ρ11 + ρ12 elements equal to 0.
The last column of X will contain b1 elements equal to 1 and b2 elements
equal to 0. Clearly, such a design implies that the ith object is weighed
b1 + b2 − ρ11 − ρ12 times, i = 1, 2, . . . , v, and the (v + 1)th object is weighed
b1 times in the n = b1 + b2 weighing operations.

From Theorems 2.1 and 3.1 we have

Theorem 5.1. A nonsingular CBWD with the matrix X given in the
form (5.1) is optimal if and only if

b1 = r1, (7)
b2 = ρ11 + ρ12 (8)

and
λ1 − b1 + b2 − 2r2 + λ2 = 0. (9)

P r o o f . The proof is straightforward when using Theorems 2.1 and
3.1. 2

If the CBWD given by the matrix X in the form (5.1) is optimal then

V ar(ŵj) =
σ2

b1
, j = 1, 2, . . . , v + 1.

Now we consider the matrices X1 and X2 of OCBWD for p = v objects

X1 =
[

N′
1 − 1b11

′
v

1b11
′
v −N′

1

]

and
X2 = N′

2 − 1b21
′
v.

Then the design matrix X of CBWD in the form

X =




N′
1 − 1b11

′
v 1b1

1b11
′
v −N′

1 1b1

N′
2 − 1b21

′
v 0b2


 . (10)



Optimum Chemical Balance Weighing Designs for v + 1 Objects 337

permits for estimation p = v + 1 objects using n = 2b1 + b2 weighing opera-
tions. Thus, each of v first column of X will contain b1−ρ11 +ρ22 elements
equal to 1, b1+b2−ρ11−ρ12−ρ22 elements equal to −1 and 2ρ11+ρ12 elements
equal to 0 and the last column of X will contain 2b1 elements equal to 1
and b2 elements equal to 0.

It is obvious that for this design condition (3.2) holds and we have:

Theorem 5.2. A nonsingular CBWD with the matrix X given in the
form (5.5) is optimal if and only if

b2 = 2ρ11 + ρ12 (11)

and
2(b1 − 2r1 + λ1) + (b2 − 2r2 + λ2) = 0. (12)

P r o o f . The proof is straightforward when using Theorems 2.1 and
3.1. 2

If the CBWD given by the matrix X of the form (5.5) is optimal then

V ar(ŵj) =
σ2

2b1
, j = 1, 2, . . . , v + 1.

Finally, one can easily show that if X is the matrix of the OCBWD
then X∗ = DXE is also optimal for D = diag(±1, . . . ,±1) of order n× n and
E = diag(±1, . . . ,±1) of order p× p.

6. THE TERNARY BALANCED BLOCK DESIGNS LEADING
TO OPTIMAL DESIGNS

We have seen in Theorems 5.1 and 5.2 that if parameters of two TBBD
satisfy the conditions (5.2), (5.3), (5.4) and (5.6), (5.7) then a CBWD with
the design matrices X given by (5.1) and (5.5) are optimal. Under these
conditions we have formulated a theorem following the papers of Billing-
ton and Robinson [3] and Billington [2].

Theorem 6.1. The existence of two TBBD with the parameters

(i) v = 5, b1 = 4(s+4), r1 = 4(s+4), k1 = 5, λ1 = 2(2s+7), ρ11 = 4(s+2), ρ21 = 4
and v = 5, b2 = 5(s + 4), r2 = 3(s + 4), k2 = 3, λ2 = s + 6, ρ12 = s + 12,
ρ22 = s, s = 1, 2, . . . ,

(ii) v = 5, b1 = 4(s+2), r1 = 4(s+2), k1 = 5, λ1 = 4s+7, ρ11 = 4(s+1), ρ21 = 2
and v = 5, b2 = 5(s + 2), r2 = 3(s + 2), k2 = 3, λ2 = s + 3, ρ12 = s + 6,
ρ22 = s, s = 1, 2, . . . ,



338 B. CERANKA AND M. GRACZYK

(iii) v = 6, b1 = 3(s+5), r1 = 3(s+5), k1 = 6, λ1 = 3s+13, ρ11 = 3s+5, ρ21 = 5
and v = 6, b2 = 2(s + 5), r2 = s + 5, k2 = 3, λ2 = 2, ρ12 = 5− s, ρ22 = s, s =
1, 2, 3, 4,

(iv) v = 7, b1 = 27, r1 = 27, k1 = 7, λ1 = 25, ρ11 = 15, ρ21 = 6 and v = 7, b2 =
21, r2 = 12, k2 = 4, λ2 = 5, ρ12 = 6, ρ22 = 3,

(v) v = 9, b1 = 3(s + 4), r1 = 3(s + 4), k1 = 9, λ1 = 3s + 11, ρ11 = 3s + 4,
ρ21 = 4 and v = 9, b2 = 3(s + 4), r2 = 2(s + 4), k2 = 6, λ2 = s + 5,
ρ12 = 8, ρ22 = s, s = 1, 2, . . . ,

(vi) v = 11, b1 = 16, r1 = 16, k1 = 11, λ1 = 15, ρ11 = 6, ρ21 = 5 and
v = 11, b2 = 11, r2 = 7, k2 = 7, λ2 = 4, ρ12 = 5, ρ22 = 1,

(vii) v = 15, b1 = 5(s+4), r1 = 5(s+4), k1 = 15, λ1 = 5s+19, ρ11 = 5s+6, ρ21 = 7
and v = 15, b2 = 3(s + 4), r2 = 2(s + 4), k2 = 10, λ2 = s + 5, ρ12 = 6 − 2s,
ρ22 = 2s + 1, s = 1, 2

implies the existence of the OCBWD with the design matrix X given by
(5.1).

P r o o f . It is easy to prove that the parameters of TBBD satisfy the
conditions (5.2), (5.3) and (5.4). 2

Theorem 6.2. The existence of two TBBD with the parameters

(i) v = 5, b1 = 5(s + 1), r1 = 4(s + 1), k1 = 4, λ1 = 3s + 2, ρ11 = 4s,
ρ21 = 2 and v = 5, b2 = 10(s + 1), r2 = 6(s + 1), k2 = 3, λ2 = 2(s + 2),
ρ12 = 2(s + 5), ρ22 = 2(s− 1), s = 2, 3, . . . ,

(ii) v = 5, b1 = 2(s + 4), r1 = 2(s + 4), k1 = 5, λ1 = 2s + 7, ρ11 = 2(s + 2),
ρ21 = 2 and v = 5, b2 = 5(s + 4), r2 = 3(s + 4), k2 = 3, λ2 = s + 6,
ρ12 = s + 12, ρ22 = s, s = 1, 2, . . .,

(iii) v = 9, b1 = 3(s + 4), r1 = 2(s + 4), k1 = 6, λ1 = s + 5, ρ11 = 8, ρ21 = s, s =
1, 2, . . . and v = 9, b2 = u+17, r2 = u+17, k2 = 9, λ2 = u+15, ρ12 = u+1,
ρ22 = 8, u = 1, 2, . . .

implies the existence of the OCBWD with the design matrix X given by
(5.5).

P r o o f . It is easy to prove that the parameters of TBBD satisfy the
conditions (5.6) and (5.7). 2
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7. THE EXAMPLE

Let use consider the experiment in that we determine unknown measure-
ment of p = 6 objects using n = 27 weighing operations under the assump-
tion that each object is weighed at least m = 12 times. To construct the
design matrix X of the OCBWD we use two incidence matrices of TBBD
with parameters v = 5, b1 = 12, r1 = 12, k1 = 5, λ1 = 11, ρ11 = 8, ρ21 = 2

N1 =




1 2 0 0 2 1 1 1 1 1 1 1
2 1 2 0 0 1 1 1 1 1 1 1
0 2 1 2 0 1 1 1 1 1 1 1
0 0 2 1 2 1 1 1 1 1 1 1
2 0 0 2 1 1 1 1 1 1 1 1




v = 5, b2 = 15, r2 = 9, k2 = 3, λ2 = 4, ρ12 = 7, ρ22 = 1

N2 =




1 1 0 0 1 1 0 0 1 1 2 0 0 0 1
1 1 1 1 0 0 1 1 0 0 1 2 0 0 0
0 0 1 1 1 1 0 0 1 1 0 1 2 0 0
1 1 0 0 1 1 1 1 0 0 0 0 1 2 0
0 0 1 1 0 0 1 1 1 1 0 0 0 1 2




.

Then we built the design matrix X of the OCBWD in the form (5.1)
and we have

X =
[

X(1)

X(2)

]
and

X′
(1) =




0 1 −1 −1 1 0 0 0 0 0 0 0
1 0 1 −1 −1 0 0 0 0 0 0 0

−1 1 0 1 −1 0 0 0 0 0 0 0
−1 −1 1 0 1 0 0 0 0 0 0 0

1 −1 −1 1 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1




X′
(2) =




0 0 −1 −1 0 0 −1 −1 0 0 1 −1 −1 −1 0
0 0 0 0 −1 −1 0 0 −1 −1 0 1 −1 −1 −1

−1 −1 0 0 0 0 −1 −1 0 0 −1 0 1 −1 −1
0 0 −1 −1 0 0 0 0 −1 −1 −1 −1 0 1 −1

−1 −1 0 0 −1 −1 0 0 0 0 −1 −1 −1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




.

(Received September 30, 2002.)
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Poznań. Poland.

e-mails: bronicer@owl.au.poznan.pl, magra@owl.au.poznan.pl


	INTRODUCTION
	VARIANCE LIMIT OF ESTIMATED WEIGHTS
	OPTIMUM CHEMICAL BALANCE WEIGHING DESIGNSFOR p + 1 OBJECTS
	TERNARY BALANCED BLOCK DESIGNS
	CONSTRUCTION OF THE DESIGN MATRIX
	THE TERNARY BALANCED BLOCK DESIGNS LEADINGTO OPTIMAL DESIGNS
	THE EXAMPLE

