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Demlová, Jan Flusser, Petr Hájek, Vladimı́r
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Petr Lachout, Friedrich Liese, Jean-Jacques
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PV Press, Pod vrstevnićı 5, 140 00 Prague 4. — Orders and subscriptions should be placed
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DESIGN OF A MODEL FOLLOWING CONTROL
SYSTEM FOR NONLINEAR DESCRIPTOR SYSTEM
IN DISCRETE TIME

Shujing Wu, Shigenori Okubo and Dazhong Wang

A model following control system (MFCS) can output general signals following the
desired ones. In this paper, a method of nonlinear MFCS will be extended to be a nonlinear
descriptor system in discrete time. The nonlinear system studied in this paper has the
property of norm constraint ||f(v(k))|| ≤ α + β||v(k)||γ , where α ≥ 0 , β ≥ 0 , 0 ≤ γ < 1.
In this case, a new criterion is proposed to ensure the internal states be stable.

Keywords: discrete-time system, descriptor, model following control system, nonlinear con-
trol system, disturbance

AMS Subject Classification: 93E12, 62A10, 62F15

1. INTRODUCTION

This paper studies the design of a model following control system (MFCS) for non-
linear descriptor system in discrete time. In previous studies, a method of nonlinear
model following control system with disturbances was proposed by Okubo [8], and
also a nonlinear model following control system with unstable zero points of the
linear part [10], a nonlinear model following control system with containing inputs
in nonlinear parts [9], and a nonlinear model following control system using sta-
ble zero assignment [11]. In this paper, the method of MFCS will be extended to
discrete-time descriptor systems, and the effectiveness of the method will be verified
by numerical simulation.

2. EXPRESSIONS OF THE PROBLEMS

The controlled object is described below, which is a nonlinear descriptor system in
discrete time:

Ex(k + 1) = Ax(k) + Bu(k) + Bff(v(k)) + d(k) (1)
v(k) = Cfx(k) (2)
y(k) = Cx(k) + d0(k). (3)
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The reference model is given below, which is assumed controllable and observable:

xm(k + 1) = Amxm(k) + Bmrm(k) (4)
ym(k) = Cmxm(k) (5)

where x(k) ∈ Rn, d(k) ∈ Rn, u(k) ∈ Rl, y(k) ∈ Rl, ym(k) ∈ Rl, d0(k) ∈ Rl,
f(v(k)) ∈ Rlf , v(k) ∈ Rlf , rm(k) ∈ Rlm , xm(k) ∈ Rnm , y(k) is the available states
output vector, v(k) is the measurement output vector, u(k) is the input vector, x(k)
is the internal state vector whose elements are available, d(k), d0(k) are bounded
disturbances, ym(k) is the model output.

The basic assumptions are as follows:

(1) Assume that (C,A,B) is controllable and observable, i. e.

rank [zE − A,B] = n, rank
[

zE − A
C

]
= n.

(2) In order to guarantee the existence and uniqueness of the solution and have
exponential function mode but an impulse one for (1), the following conditions are
assumed:

|zE − A| 6≡ 0, rankE = deg|zE − A| = r ≤ n.

(3) Zeros of C[zE − A]−1B are stable.

In this system, the nonlinear function f(v(k)) is available and satisfies the fol-
lowing constraint:

||f(v(k))|| ≤ α + β||v(k)||γ

where α ≥ 0, β ≥ 0, 0 ≤ γ < 1, || · || is the Euclidean norm, disturbances d(k), d0(k)
are bounded and satisfy

Dd(z)d(k) = 0 (6)
Dd(z)d0(k) = 0. (7)

Here, Dd(z) is a scalar characteristic polynomial of disturbances. Output error is
given as

e(k) = y(k) − ym(k). (8)

The aim of the control system design is to obtain a control law which makes the
output error zero and keeps the internal states be bounded.

3. DESIGN OF A NONLINEAR MODEL FOLLOWING CONTROL SYSTEM

Letting z be the shift operator, (1) can be rewritten as follows:

C[zE − A]−1B = N(z)/D(z)
C[zE − A]−1Bf = Nf (z)/D(z)
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where D(z) = |zE − A|, ∂ri(N(z)) = σi and ∂ri(Nf (z)) = σfi .
Then, the representations of input-output equation is given as

D(z)y(k) = N(z)u(k) + Nf (z)f(v(k)) + w(k). (9)

Here w(k) = Cadj[zE − A]d(k) + D(z)d0(k), (Cm, Am, Bm) is controllable and ob-
servable. Hence,

Cm[zI − Am]−1Bm = Nm(z)/Dm(z).

Then, we have

Dm(z)ym(k) = Nm(z)rm(k) (10)

where Dm(z) = |zI − Am| and ∂ri(Nm(z)) = σmi .
Since the disturbances satisfy (6) and (7), and Dd(z) is a monic polynomial, one

has

Dd(z)w(k) = 0. (11)

The first step of design is that a monic and stable polynomial T (z), which has
the degree of ρ(ρ ≥ nd + 2n − nm − 1 − σi), is chosen. Then, R(z) and S(z) can be
obtained from

T (z)Dm(z) = Dd(z)D(z)R(z) + S(z) (12)

where the degree of each polynomial is: ∂T (z) = ρ, ∂Dd(z) = nd, ∂Dm(z) =
nm, ∂D(z) = n, ∂R(z) = ρ + nm − nd − n and ∂S(z) ≤ nd + n − 1.

From (8)∼ (12), the following form is obtained:

T (z)Dm(z)e(k) = Dd(z)R(z)N(z)u(k)
+ Dd(z)R(z)Nf (z)f(v(k)) + S(z)y(k) − T (z)Nm(z)rm(k).

The output error e(k) is represented as

e(k) =
1

T (z)Dm(z)
{[Dd(z)R(z)N(z) − Q(z)Nr]u(k) + Q(z)Nru(k)

+ Dd(z)R(z)Nf (z)f(v(k)) + S(z)y(k) − T (z)Nm(z)rm(k)}. (13)

Suppose Γr(N(z)) = Nr, where Γr(·) is the coefficient matrix of the element with
maximum of row degree, as well as |Nr| 6= 0. The next control law u(k) can be
obtained by making the right-hand side of (13) be equal to zero. Thus,

u(k) = −N−1
r Q−1(z){Dd(z)R(z)N(z) − Q(z)Nr}u(k)

− N−1
r Q−1(z)Dd(z)R(z)Nf (z)f(v(k))

− N−1
r Q−1(z)S(z)y(k) + um(k) (14)

um(k) = N−1
r Q−1(z)T (z)Nm(z)rm(k). (15)

Here, Q(z) = diag[zδi ], δi = ρ + nm − n + σi (i = 1, 2, . . . , n), and u(k) of (14) is
obtained from e(k) = 0. The model following control system can be realized if the
system internal states are bounded.
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4. PROOF OF THE BOUNDED PROPERTY OF INTERNAL STATES

System inputs are both reference input signal rm(k) and disturbances d(k), d0(k),
which are all assumed to be bounded. The boundedness can be easily proved if there
is no nonlinear part f(v(k)). But if f(v(k)) exists, the bound has a relation with it.
The state space expression of u(k) is

u(k) = −H1ξ1(k) − E2y(k) − H2ξ2(k)
− E3f(v(k)) − H3ξ3(k) + um(k) (16)

um(k) = E4rm(k) + H4ξ4(k). (17)

The followings must be satisfied:

ξ1(k + 1) = F1ξ1(k) + G1u(k) (18)
ξ2(k + 1) = F2ξ2(k) + G2y(k) (19)
ξ3(k + 1) = F3ξ3(k) + G3f(v(k)) (20)
ξ4(k + 1) = F4ξ4(k) + G4rm(k). (21)

Here,

|zI − Fi| = |Q(z)|, (i = 1, 2, 3, 4).

Note that there are connections between the polynomial matrices and the system
matrices, as follows:

N−1
r Q−1(z){Dd(z)R(z)N(z) − Q(z)Nr} = H1(zI − F1)−1G1 (22)

N−1
r Q−1(z)S(z) = H2(zI − F2)−1G2 + E2 (23)

N−1
r Q−1(z)Dd(z)R(z)Nf (z) = H3(zI − F3)−1G3 + E3 (24)

N−1
r Q−1(z)T (z)Nm(z) = H4(zI − F4)−1G4 + E4. (25)

Firstly, remove u(k) from (1)∼ (3) and (18)∼ (21). Then, the representation of
the overall system can be obtained as follows:

E 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I




x(k + 1)
ξ1(k + 1)
ξ2(k + 1)
ξ3(k + 1)



=


A − BE2C −BH1 −BH2 −BH3

−G1E2C F1 − G1H1 −G1H2 −G1H3

G2C 0 F2 0
0 0 0 F3




x(k)
ξ1(k)
ξ2(k)
ξ3(k)



+


BH4

G1H4

0
0

 ξ4(k) +


Bf − BE3

−G1E3

0
G3

 f(v(k))
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+


BE4

G1E4

0
0

 rm(k) +


d(k) − BE2d0(k)
−G1E2d0(k)

G2d0(k)
0

 (26)

ξ4(k + 1) = F4ξ4(k) + G4rm(k) (27)

v(k) =
[

Cf 0 0 0
] 

x(k)
ξ1(k)
ξ2(k)
ξ3(k)

 (28)

y(k) =
[

C 0 0 0
] 

x(k)
ξ1(k)
ξ2(k)
ξ3(k)

 + d0(k). (29)

In equation (27), the ξ4(k) are bounded, because |zI − F4| = |Q(z)| is a stable
polynomial and rm(k) is reference input. Let z(k), As, Ẽ, ds(k), Bs, Cv, Cs be as
follows, respectively:

z(k) =
[

xT (k) ξT
1 (k) ξT

2 (k) ξT
3 (k)

]T

As =


A − BE2C −BH1 −BH2 −BH3

−G1E2C F1 − G1H1 −G1H2 −G1H3

G2C 0 F2 0
0 0 0 F3



Ẽ =


E 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I



ds(k) =


Bum(k) + d(k) − BE2d0(k)

G1um(k) − G1E2d0(k)
G2d0(k)

0



Bs =


Bf − BE3

−G1E3

0
G3


Cv =

[
Cf 0 0 0

]
Cs =

[
C 0 0 0

]
.



Design of a Model Following Control System 551

With the consideration that ξ4(k) is bounded, the necessary parts to an easy
proof of the bounded property are arranged as

Ẽz(k + 1) = Asz(k) + Bsf(v(k)) + ds(k) (30)
v(k) = Cvz(k) (31)
y(k) = Csz(k) + d0(k) (32)

where the contents of As, Ẽ, ds(k), Bs, Cv, Cs are constant matrices, and f(v(k)), ds(k)
are bounded. Thus, the internal states are bounded if z(k) can be proved to be
bounded. So, it needs to prove that |zẼ − As| is a stable polynomial. The charac-
teristic polynomial of As is calculated next.

From (26), |zẼ − As| can be shown as

|zẼ − As| =

∣∣∣∣∣∣∣∣
zE − A + BE2C BH1 BH2 BH3

G1E2C zI − F1 + G1H1 G1H2 G1H3

−G2C 0 zI − F2 0
0 0 0 zI − F3

∣∣∣∣∣∣∣∣ . (33)

Prepare the following formulas:∣∣∣∣ X Y
W Z

∣∣∣∣ = |Z||X − Y Z−1W |, (|Z| 6= 0)

I − X(I + Y X)−1Y = (I + XY )−1

|I + XY | = |I + Y X|.

Using the above formulas, |zẼ − As| is described as

|zẼ − As|
= |zI − F3||zI − F2||zI − F1||I + H1[zI − F1]−1G1|

· |zE − A + B{I − H1[zI − F1 + G1H1]−1G1}
· {E2 + H2[zI − F2]−1G2}C|

= |Q(z)|3|I + H1[zI − F1]−1G1||zE − A

+ B{I + H1[zI − F1]−1G1}−1{E2 + H2[zI − F2]−1G2}C|
= |Q(z)|3|J1||zE − A||I + BJ−1

1 J2[zE − A]−1|
= |Q(z)|3|zE − A||J1 + J2[zE − A]−1B|. (34)

Here

J1 = I + H1[zI − F1]−1G1 (35)
J2 = {E2 + H2[zI − F2]−1G2}C. (36)

From (22), (23), (35) and (36), we have

J1 = N−1
r Q−1(z)Dd(z)R(z)N(z) (37)

J2 = N−1
r Q−1(z)S(z)C. (38)
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Using C[zE−A]−1B = N(z)/D(z) and D(z) = |zE−A|, furthermore, |zẼ−As|
is shown as

|zẼ − As| = T l(z)Dl
m(z)|Q(z)|2 |N(z)||Nr|−1

Dl−1(z)

and V (z) is the zeros polynomial of C[zE − A]−1B = N(z)/D(z) = U−1(z)V (z)
(left coprime decomposition), |U(z)| = D(z), that is, |N(z)| = Dl−1(z)|V (z)|. So
|zẼ − As| can be rewritten as

|zẼ − As| = |Nr|−1T l(z)Dl
m(z)|Q(z)|2|V (z)|. (39)

As |Nr|−1, T (z), Dm(z), |Q(z)|, |V (z)| are all stable polynomials, As is a stable
system matrix.

Consider the following:

z(k) = Qz̄(k) = Q

[
z̄1(k)
z̄2(k)

]
. (40)

Using (40), one obtains

PẼQz̄(k + 1) = PAsQz̄(k) + PBsf(v(k)) + Pds(k).

Namely, [
I 0
0 0

] [
z̄1(k + 1)
z̄2(k + 1)

]
=

[
As1 0
0 I

] [
z̄1(k)
z̄2(k)

]
+

[
Bs1

Bs2

]
f(v(k)) +

[
ds1(k)
ds2(k)

]
. (41)

One can rewritten (41) as

z̄1(k + 1) = As1z̄1(k) + Bs1f(v(k)) + ds1(k) (42)
0 = z̄2(k) + Bs2f(v(k)) + ds2(k) (43)

where z̄(k), Pds(k), PAsQ,PBs can be represented by

z̄(k) =
[

z̄1(k)
z̄2(k)

]
, Pds(k) =

[
ds1(k)
ds2(k)

]
,

PAsQ =
[

As1 0
0 I

]
, PBs =

[
Bs1

Bs2

]
. (44)

Let CvQ = [Cv1, Cv2], (|Cv1| 6= 0). Then

v(k) = Cv1z̄1(k) + Cv2z̄2(k). (45)

From (43) and (45), we have

v(k) + Cv2Bs2f(v(k)) = Cv1z̄1(k) − Cv2ds2(k). (46)
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From(46), we have

∂

∂vT (k)
(v(k) + Cv2Bs2f(v(k))) = I + Cv2Bs2

∂f(v(k))
∂vT (k)

.

Existing condition of v(k) is

|I + Cv2Bs2
∂f(v(k))
∂vT (k)

| 6= 0. (47)

From (44), we have

|P ||zẼ − As||Q| = αPQ|zẼ − As|

= αPQ

∣∣∣∣ zI − As1 0
0 −I

∣∣∣∣
= αI |zI − As1|. (48)

Here, αPQ and αI are fixed. So, from (39), As1 is a stable system matrix. Consider
a quadratic Lyapunov function candidate

V (k) = z̄T
1 (k)Psz̄1(k). (49)

The difference of V (k) along the trajectories of system (42) is given by

∆V (k) = z̄T
1 (k + 1)Psz̄1(k + 1) − V (k)

= [As1z̄1(k) + Bs1f(v(k)) + ds1(k)]T Ps

· [As1z̄1(k) + Bs1f(v(k)) + ds1(k)] − V (k) (50)

AT
s1PsAs1 − Ps = −Qs (51)

where Qs and Ps are symmetric positive definite matrices defined by (51). If As1 is
a stable matrix, we can get a unique Ps from (51) when Qs is given. As ds1(k) is
bounded and 0 ≤ γ < 1, ∆V (k) satisfies

∆V (k) ≤ −z̄T
1 (k)Qsz̄1(k) + X1||z̄1(k)||||f(v(k))||
+ X2||z̄1(k)|| + µ2||f(v(k))||2 + X3||f(v(k))|| + X4. (52)

From(31), (43) and (45), we have

||z̄1(k)|| ≤ M ||z(k)||. (53)

Here, M is positive constant. From (52), (53), we have

∆V (k) ≤ −µ1||z(k)||2 + X5||z(k)||1+γ + X6

≤ −µc||z(k)||2 + X

≤ −µc1||z̄1(k)||2 + X

≤ −µmV (k) + X (54)
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where 0 < µ1 = λmin(Qs), µ2 ≥ 0 and 0 < µm < µc < min(µ1, 1). Also,
µ1, µ2, Xi (i = 1 ∼ 6) and X are positive constants. As a result of (54), V (k)
is bounded:

V (k) ≤ V (0) + X/µm. (55)

Hence, z̄1(k) is bounded. From (43), z̄2(k) is also bounded. Therefore, z(k) is
bounded. The above result is summarized as Theorem.

Theorem. In the nonlinear system

Ex(k + 1) = Ax(k) + Bu(k) + Bff(v(k)) + d(k)
v(k) = Cfx(k)
y(k) = Cx(k) + d0(k)

where x(k) ∈ Rn, y(k) ∈ Rl, v(k) ∈ Rlf , d(k) ∈ Rn, d0(k) ∈ Rl, f(v(k)) ∈ Rlf , d(k)
and d0(k) are assumed to be bounded. All the internal states are bounded and the
output error e(k) = y(k) − ym(k) asymptotically converges to zero in the design
of the model following control system for a nonlinear descriptor system in discrete
time, if the following conditions are held:

1. Both the controlled object and the reference model are controllable and ob-
servable.

2. |Nr| 6= 0.

3. Zeros of C[zE − A]−1B are stable.

4. ||f(v(k))|| ≤ α + β||v(k)||γ , (α ≥ 0, β ≥ 0, 0 ≤ γ < 1).

5. Existing condition of v(k) is
∣∣∣∣I + Cv2Bs2

∂f(v(k))
∂vT (k)

∣∣∣∣ 6= 0.

6. |zE − A| 6≡ 0 and rankE = deg|zE − A| = r ≤ n.

5. NUMERICAL SIMULATION

An example is given as follows: 1 0 1
0 1 1
1 0 1

 x(k + 1) =

 0 1 0
0 0 1

0.2 −0.5 0.6

x(k)

+

 0 0
1 0
0 1

u(k) +

 1 0
1 0
0 1

 f(v(k)) +

 0
1
1

 d(k)

v(k) =
[

0 0.1 0
0 0 0.1

]
x(k)
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y(k) =
[

0 0.1 0
0.1 0 0.1

]
x(k) +

[
1
1

]
d0(k)

f(v(k)) =
3v(k)3 + 4v(k) + 1

1 + v(k)4
.

Fig. Responses of the system for nonlinear descriptor system in discrete time.

Reference model is given by

xm(k + 1) =
[

0 1
−0.12 0.7

]
xm(k) +

[
0
1

]
rm(k)

ym(k) =
[

1 0
]
xm(k)

rm(k) = sin (kπ/16).

In this example, disturbances d(k) and d0(k) are step and ramp disturbances,
respectively. Then, d(k) and d0(k) are given as

d0(k) = 1.2, (20 ≤ k ≤ 50)
d(k) = 0.05(k − 85), (85 ≤ k ≤ 100).

We show a result of simulation in Figure. It can be concluded that the output
signal follows the reference even if disturbances exist in the system.

6. CONCLUSION

In the responses (Figure) of the nonlinear discrete-time descriptor model following
control system, the output signal follows the reference even though disturbances
exist in the system. The effectiveness of this method has thus been verified. This is
a topic in the future that the condition of nonlinear parameter which is bigger than
γ ≥ 1 will be proved and analyzed.

(Received September 30, 2007.)
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