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DESIGN OF A MODEL FOLLOWING CONTROL
SYSTEM FOR NONLINEAR DESCRIPTOR SYSTEM
IN DISCRETE TIME

SHUJING WU, SHIGENORI OKUBO AND DAZHONG WANG

A model following control system (MFCS) can output general signals following the
desired ones. In this paper, a method of nonlinear MFCS will be extended to be a nonlinear
descriptor system in discrete time. The nonlinear system studied in this paper has the
property of norm constraint ||f(v(k))|| < a4+ B|lv(k)||”, wherea« >0, 8>0,0<~y < 1.
In this case, a new criterion is proposed to ensure the internal states be stable.

Keywords: discrete-time system, descriptor, model following control system, nonlinear con-
trol system, disturbance

AMS Subject Classification: 93E12, 62A10, 62F15

1. INTRODUCTION

This paper studies the design of a model following control system (MFCS) for non-
linear descriptor system in discrete time. In previous studies, a method of nonlinear
model following control system with disturbances was proposed by Okubo [8], and
also a nonlinear model following control system with unstable zero points of the
linear part [10], a nonlinear model following control system with containing inputs
in nonlinear parts [9], and a nonlinear model following control system using sta-
ble zero assignment [11]. In this paper, the method of MFCS will be extended to
discrete-time descriptor systems, and the effectiveness of the method will be verified
by numerical simulation.

2. EXPRESSIONS OF THE PROBLEMS

The controlled object is described below, which is a nonlinear descriptor system in
discrete time:

Ex(k+1) = Ax(k)+ Bu(k)+ By f(v(k)) + d(k) (1)
v(k) = Cra(k) (2)
y(k) = Cu(k) + do(k). 3)
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The reference model is given below, which is assumed controllable and observable:
em(k+1) = Apzm(k) + Bnrm(k) (4)
Ym(k) = Cpam(k) (5)

where z(k) € R", d(k) € R", u(k) € R, y(k) € RY y(k) € RY do(k) € R,
f(v(k)) € R v(k) € RY, rp(k) € Rim, 2,,(k) € R, y(k) is the available states
output vector, v(k) is the measurement output vector, u(k) is the input vector, x(k)
is the internal state vector whose elements are available, d(k),do(k) are bounded
disturbances, y,, (k) is the model output.

The basic assumptions are as follows:

(1) Assume that (C, A, B) is controllable and observable, i.e.
zE—A }

rank [zE — A, B] = n, rank{ c

(2) In order to guarantee the existence and uniqueness of the solution and have
exponential function mode but an impulse one for (1), the following conditions are
assumed:

|zE— Al # 0, rank £ = deg|zF — A| = r <n.
(3) Zeros of C[zE — A]7'B are stable.

In this system, the nonlinear function f(v(k)) is available and satisfies the fol-
lowing constraint:

f@EDI < a+BlloE)]]

where & >0, 3> 0,0 <~ <1, ||| is the Euclidean norm, disturbances d(k), do(k)
are bounded and satisfy

Dq(z)d(k) = 0 (6)
Dg(z)do(k) = 0. (7)

Here, Dy(z) is a scalar characteristic polynomial of disturbances. Output error is
given as

e(k) = y(k) = ym (k). (8)

The aim of the control system design is to obtain a control law which makes the
output error zero and keeps the internal states be bounded.

3. DESIGN OF A NONLINEAR MODEL FOLLOWING CONTROL SYSTEM

Letting z be the shift operator, (1) can be rewritten as follows:

ClzE—A™'B
ClzE — A]"'By

N(2)/D(z)
Ny(2)/D(2)



548 S. WU, S. OKUBO AND D. WANG

where D(z) = |zE — A|, 0;,(N(2)) = 0; and 0,,(Ns(2)) = oy,.
Then, the representations of input-output equation is given as
D(z)y(k) = N(2)u(k) + Ny(2)f(v(k)) + w(k). (9)
Here w(k) = Cadj[zFE — Ald(k) + D(2)do(k), (Cpm, Am, Bm) is controllable and ob-
servable. Hence,
Clz] — Ap) "By, = Np(2)/Dim(2).
Then, we have
Dm(z)ym(k) = Nm(z)rm(k) (10)

where Dy, (2) = |2I — Ap| and Oy, (N (2)) = o, -
Since the disturbances satisfy (6) and (7), and Dg4(z) is a monic polynomial, one
has

Dy(z)w(k) = 0. (11)
The first step of design is that a monic and stable polynomial T'(z), which has
the degree of p(p > ng + 2n — n,, — 1 — 0;), is chosen. Then, R(z) and S(z) can be
obtained from
T(2)Dm(2) = Dg(2)D(2)R(z) + S(2) (12)
where the degree of each polynomial is: 9T(z) = p, 0D4(z) = ng, IDn(z) =
Nm, 0D(z) =n, OR(2) =p+nm —ng—n and 9S(z) <ng+n — 1.
From (8) ~ (12), the following form is obtained:
T(2)Dp(2)e(k) = Dg(z)R(z2)N(z)u(k)
+ Da(2)R(2)Ny(2) f(v(k)) + S(2)y(k) = T(2) N (2)7m (k).
The output error e(k) is represented as
e(k) = W{[Dd(z)R(z)N(z) — Q(2)N;Ju(k) + Q(2) Nru(k)
+ Da(2)R(2)Ny(2) f(v(k)) + S(2)y(k) = T(2)Nim(2)rm (k) }. (13)

Suppose I',.(N(z)) = N,, where T',.(+) is the coefficient matrix of the element with
maximum of row degree, as well as |N,| # 0. The next control law u(k) can be
obtained by making the right-hand side of (13) be equal to zero. Thus,

u(k) = —N'Q7H(2){Da(2)R(2)N(2) — Q(2)N; }u(k)

= N7'Q7 1 (2)Da(2)R(2) Ny (2) f (v(k))

= N7'Q7H(2)S(2)y(k) + um (k) (14)

um (k) = Nle_l(Z)T(Z)Nm(Z)Tm(k)~ (15)

Here, Q(z) = diag[2%], §; = p+nm —n+0; (i = 1,2,...,n), and u(k) of (14) is

obtained from e(k) = 0. The model following control system can be realized if the
system internal states are bounded.
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4. PROOF OF THE BOUNDED PROPERTY OF INTERNAL STATES

System inputs are both reference input signal 7, (k) and disturbances d(k), do(k),
which are all assumed to be bounded. The boundedness can be easily proved if there
is no nonlinear part f(v(k)). But if f(v(k)) exists, the bound has a relation with it.
The state space expression of u(k) is

u(k) = —Hi&i(k) — Eqy(k) — Haa(k)
— Esf(v(k)) — Hs&s(k) + um (k) (16)
Um (k) = Eyrm(k) + Hy&y(k). (17)

The followings must be satisfied:

§&(k+1) = Fi&(k) + Guu(k) (18)
Gk +1) = Fotalk) + Cay(h) (19)
&k +1) = F3&(k) + Gaf(v(k)) (20)
§a(k+1) = Fulu(k) + Garm (k). (21)

Here,

Note that there are connections between the polynomial matrices and the system
matrices, as follows:

N;lel(z){Dd(z)R(z)N(z) Q(2)N,} = Hy(zI - F)'Gy (22)
“(2)8(2) = Hy(zl — F)'Ga+ By (23)

1@ () () (2)Nj(2) = Ha(2I —F3) "Gy + B3 (24)

NQ Y (2)T(2) N (2) = Hu(zl — Fy) Gy + Ey. (25)

Firstly, remove u(k) from (1) ~ (3) and (18) ~ (21). Then, the representation of

the overall system can be obtained as follows:

E 0 0 0 z(k+1)
0 I 00 &(k+1)
0 010 &k +1)
0 0 0 I &(k+1)
A— BEQC —BH1 —BH2 —BH3 ZL'(]C)
_ -G1E,C Fy—-GiHy —-GiHy —-G1Hs &1(k)
- G,C 0 F 0 &a(k)
I 0 0 0 F; &3(k)
BH, B; — BE;
G H ~G\E
+ 104 §a(k) + 013 f(u(k))

0 Gs
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BE, d(k) — BEydy (k)
R T L
0 0
= Fula(k) + Garm(k) (27)
(k)
=[C 00 0] 283 (28)
&3(k)
(k)
=[C 00 0] égg + do(k) (29)
&s(k)

In equation (27), the &4(k) are bounded, because [2I — Fy| = |Q(z)] is a stable
polynomial and r,,(k) is reference input. Let z(k), As, E,ds(k), Bs,C,,Cs be as
follows, respectively:

o]

T

[ 2T(k) & (k) & (k) & (k) ]
[ A— BE,C —BH,; —BH, —BH;

_GlEQC F1 — G1H1 —G1H2 —G1H3

GoC 0 Fy 0

0 0 0 Fy
E 0 0 0

0 I 0 0

0 0 I O

0 0 0 I

G1um(k‘) - GlEQdO(k)
Gado(k)
0

By — BEs
~G1E;
0
Gs

[C; 0 0 0]

[C 0 0 0].
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With the consideration that £4(k) is bounded, the necessary parts to an easy
proof of the bounded property are arranged as

Ez(k+1) = Agz(k)+ Bof(v(k)) + ds(k) (30)
v(k) = Cyz(k) (31)
y(k) = Csz(k)+ do(k) (32)

where the contents of A, E, d,(k), Bs, Cy, Cs are constant matrices, and f(v(k)), ds(k)
are bounded. Thus, the internal states are bounded if z(k) can be proved to be
bounded. So, it needs to prove that |zE — A,l is a stable polynomial. The charac-
teristic polynomial of A, is calculated next.

From (26), |2E — A,| can be shown as

2E—A+BEQC BH1 BH2 BH3
G1E>C zI — Fy + G{H, G1H, G1Hj;
—GQC 0 ZI—FQ 0
0 0 0 21— Fy

|2E — Aq| = (33)

Prepare the following formulas:

_ _ -1

w7 | = ZIIX=YZT W] (]Z] #0)

I-X(I+YX)"'V = (I+XY)™!
I+ XY| = [I+YX]|.

XY‘

Using the above formulas, |2E — A,| is described as

lZE_As|

= |2 — Bs||2] — Fyl|2] — Fy||T + Hy[2] — F1] 7' Gy

2B — A+ B{I — Hi[z] — F, + G1H,] "G4}

A By + Ha[2I — F5] 7' G} O
|Q(2)P|T + Hy[2I — F1]'Gy|[2E — A

+ B{I + Hy[z] — 1|7 G} H{Ey + Ha[2I — F»] 7G5} C|
= [Q)PINizE — Al + BJ; o [2E — A] 7Y
= |Q(2)|P|2E — A||J; + J2[2E — A] 7' B]. (34)

Here

Ji = I+ Hzl - ]Gy (35)
Jo = {EQ + HQ[ZI — FQ]_IGQ}C. (36)

From (22), (23), (35) and (36), we have

Ji = N7'Q7H(2)Da(2)R(2)N(2) (37)
Jo = N7'Q7'(2)S(2)C. (38)
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Using C[2E — A]"'B = N(z)/D(z) and D(z) = |2E — A|, furthermore, |2E — A,|
is shown as

) - [N ()N |
|zE — A,| = Tl(Z)Dfn(z”Q(z)FW

and V(z) is the zeros polynomial of C[zE — A]™1B = N(2)/D(z) = U 1(2)V(2)
(left coprime decomposition), |U(z)| = D(z), that is, [N(2)| = D'7'(z)|[V(2)]. So
|zE — Ag| can be rewritten as

2E — As| = IN|7'T'(2) D1 (2)|Q(2) PV (2). (39)

As |N.|71, T(2), Di(2), |Q(2)|, |V (2)] are all stable polynomials, A is a stable
system matrix.
Consider the following:

Using (40), one obtains
PEQz(k+1) = PAQz(k) + PB,f(v(k)) + Pdy(k).

Namely,

I SCIE Al

+ { o } (k) + [ Z;EZ% } | (41)

One can rewritten (41) as
Zl(k’ + 1) = Aslil(k) + Bélf(’U(k’)) + dél(k’) (42)
0 = Z(k) + Bsaf(v(k)) + dsa(k) (43)

where z(k), Pds(k), PAsQ, PBs can be represented by

=[] o= [0F]
PAQ = {Aosl H PB, = [gz;] (44)
Let C,Q@ = [Cot, Cua, (|Cut] # 0). Then
v(k) = Cunzi(k) + CuoZa(k). (45)

From (43) and (45), we have

U(k) 4+ CUQBSQf(U(k)) = Ovlfl(k) — Cvgdsg(k). (46)



Design of a Model Following Control System 553

From(46), we have

0 (v(k) + Co2Bsa f(v(k))) = I+ 0112B32M

ovT (k) T (k)
Existing condition of v(k) is
Of(v(k))
I Bgo—++~ . 4
‘ +C’U2 s2 aUT(lﬂ) | 7é 0 ( 7)
From (44), we have
|P||ZE —AllQ| = aPQ|ZE — Al
2zl — Asl 0
- el o
= Ot[|ZI—A51|. (48)

Here, apg and «; are fixed. So, from (39), A, is a stable system matrix. Consider
a quadratic Lyapunov function candidate

V(k) = z{ (k)P:zi(k). (49)
The difference of V (k) along the trajectories of system (42) is given by

AV (k) = Z'(k+1)Pzi(k+1) — V(k)
[As1Z1(k) + B f(v(k ))+dsl(k7)]TP8
[Aaz21(k) + B f(v(k)) + dsa (K)] — V (k) (50)

AT P, Ay — Py = —Q, (51)

where Qs and P, are symmetric positive definite matrices defined by (51). If Ay is
a stable matrix, we can get a unique Ps from (51) when Q; is given. As dg1(k) is
bounded and 0 < v < 1, AV (k) satisfies

AV(k) < —z (k)Qsz1(k) + X1z (B[] £ (w(k))]]
+ Xoll2 (B[] + p2llf (0B + Xl f (I + Xa. (52)

From(31), (43) and (45), we have
lz (Rl < M]lz(k)Il. (53)
Here, M is positive constant. From (52), (53), we have

AV(k) < —pallz(R)]]* + Xs[z(R)|[77 + Xo
—pellz(R)[* + X
—peal| 2 (R)|* + X

—pmV (k) + X (54)

VAN VAN VAN VAN
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where 0 < g1 = Anin(Q@s), p2 > 0 and 0 < py < pe < min(pg,1).  Also,

p1, 2, X; (i =1 ~ 6) and X are positive constants. As a result of (54), V (k)
is bounded:

V(k) <V(0) + X/ tom. (55)

Hence, zi(k) is bounded. From (43), z2(k) is also bounded. Therefore, z(k) is

bounded. The above result is summarized as Theorem.

Theorem. In the nonlinear system

Ex(k+1) = Ax(k)+ Bu(k)+ By f(v(k)) + d(k)
v(k) = Cra(k)

y(k) = Cu(k) +do(k)

where z(k) € R™, y(k) € RLv(k) € R d(k) € R", do(k) € R!, f(v(k)) € RY, d(k)
and do(k) are assumed to be bounded. All the internal states are bounded and the
output error e(k) = y(k) — yn (k) asymptotically converges to zero in the design
of the model following control system for a nonlinear descriptor system in discrete
time, if the following conditions are held:

1. Both the controlled object and the reference model are controllable and ob-
servable.

2. |N,| #0.
3. Zeros of C[zE — A]7'B are stable.
AN fEDI < a+ BB, (@=0,820,0 <y <1).

5. Existing condition of v(k) is |I 4+ Cvnggm #0.
v

6. [2E — A| # 0 and rank F = deg|zE — A| =r < n.

5. NUMERICAL SIMULATION

An example is given as follows:

1 0 1 0 1 0
01 1 |zk+1) = 0 0 1 | xz(k)
1 01 0.2 —-0.5 0.6
0 0 1 0 0
vl oo fuk)r |1 0| fwm)+] 1 |dk)
0 1 0 1 1
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w0 = | oy % o ew ] e
Fo(k) = 3v(k)3 + 4v(k) + 1

Fig. Responses of the system for nonlinear descriptor system in discrete time.

Reference model is given by

rm(k+1) = { —00.12 0%7 } (k) + [ (1) } rm (F)

Ym(k) = [ 1 0 ]Jan(k)
rm(k) = sin(km/16).
In this example, disturbances d(k) and do(k) are step and ramp disturbances,
respectively. Then, d(k) and dy(k) are given as
do(k) = 1.2,(20 < k < 50)
d(k) = 0.05(k — 85), (85 < k < 100).

We show a result of simulation in Figure. It can be concluded that the output
signal follows the reference even if disturbances exist in the system.

6. CONCLUSION

In the responses (Figure) of the nonlinear discrete-time descriptor model following
control system, the output signal follows the reference even though disturbances
exist in the system. The effectiveness of this method has thus been verified. This is
a topic in the future that the condition of nonlinear parameter which is bigger than
~v > 1 will be proved and analyzed.

(Received September 30, 2007.)
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