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Motivation

The instabilities of a 3-layered flow are investigated:
change in velocity across one interface;
change in density across the other interface.

This study of stratified flow originated from an
unexpected effect of confinement on homogeneous
mixing layers.

(First presented here last year, now published in J. Fluid
Mech., 2009).

Likely applications in atmospheric and oceanic flows.
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Homogeneous mixing layers

Unconfined counter-flow Confined co-flow
mixing layer mixing layer
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Linearized waves

Add a small disturbance to a parallel shear layer:

ũ = U(y) + εu(y) exp i(αx − ωt)

ṽ = εv(y) exp i(αx − ωt)

p̃ = εp(y) exp i(αx − ωt)

where ε � 1.

Substitute into the Navier–Stokes equations.

Neglect O(ε2) terms (linearize), and viscosity.

Eliminate u and p to give the Rayleigh equation:

(U − c)(v′′ − α2v) − U ′′v = 0

where c = ω/α and v = 0 on boundaries.
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Temporal instability

A spatially localized initial condition can be expressed
as a superposition of normal modes with real α.

Each normal mode evolves with an ω satisfying the
dispersion relation.

If there exists a real α with ωi > 0, then there is growth
in time:

exp(−iωt) = (exp−iωrt)(expωit).

A destabilizing effect of stable stratification – p.5



But isn’t confinement stabilizing?

Boundary conditions for Rayleigh equation:
Unconfined flow: v → 0 as y → ±∞ .
Confined flow with plates at y = ±h: v(±h) = 0.
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Absolute and convective instabilities

Convective instability:
z

x
Absolute instability:

z

x
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Space-time diagrams

Convective instability
t

x
Disturbance grows as it
propagates away, eventually
leaving flow undisturbed.

Flow acts as spatial amplifier
of transients.

Absolute instability
t

x
Disturbance grows in time
everywhere.

Flow can act as
self-excited oscillator.
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Impulse calculations

A wavepacket is constructed from a superposition of
normal modes v(y) exp i[αx − ω(α)t] of the form:

v̂(x, y, t) =

∫

A

v(y) expφt dα

where

φ(α) = i
[

α
x

t
− ω(α)

]

.

In the limit t → ∞ this integral is dominated by the
contribution from a saddle-point, at which

dφ

dα
= 0 ⇒

dω

dα
=

x

t
.

There is absolute instability if Im(ω) > 0 at the dominant
saddle (pinch-point) for x/t = 0.
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Saddle point for an unconfined flow
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Basic flow: U = 1 + r tanh(y/2), with r = 1.25.

Huerre & Monkewitz (1985) found absolute instability for
r > 1.315.
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Confinement saddle points

Confinement creates an infinite number of saddle points
near imaginary axis, e.g. at h = 40 and r = 1.25:

0.1 0.2 0.3 0.4 0.5

-0.4

-0.3

-0.2

-0.1

0
Im(α)

Im(ω) > 0

Im(ω) < −0.0122

Re(α)

A destabilizing effect of stable stratification – p.11



A more confined flow
h = 13, r = 1.25
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Flow has been made absolutely unstable by confinement.
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Asymmetric confinement

Asymmetric confinement can create co-flow absolute
instability:

h1

h2 = 2.53h1

Substantial destabilization of absolute instability can
also occur with only a single plate.
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The basic flow

Classic two-layered stratified
Kelvin-Helmholtz flow:

A three-layered model:

ρ1 U1

ρ1 U1

ρ1 U2

ρ2 U2

ρ2 U2

Coincident velocity and
density interfaces.

Distinct velocity and
density interfaces.
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Stratified Kelvin-Helmholtz instability

We shall only consider stable stratification: ρ2 ≥ ρ1.

Special cases:
Internal gravity waves: U1 = U2,

c = U2 ±

√

g(ρ2 − ρ1)

α(ρ1 + ρ2)
.

Homogeneous Kelvin-Helmholtz instability: ρ1 = ρ2,

c =
1

2
(U1 + U2) ±

i

2
(U1 − U2).

A destabilizing effect of stable stratification – p.15



Stratified Kelvin-Helmholtz instability
General case:

c =
(ρ1U1 + ρ2U2)

(ρ1 + ρ2)
±

√

g(ρ2 − ρ1)

α(ρ1 + ρ2)
−

ρ1ρ2

(ρ1 + ρ2)2
(U1 − U2)2.

Instability for short enough waves.

Short waves, long waves,

c ∼ Ū ± i

√
ρ1ρ2

(ρ1 + ρ2)
(U1 − U2), c ∼ Ū ±

√

g(ρ2 − ρ1)

α(ρ1 + ρ2)
.

where

Ū =
(ρ1U1 + ρ2U2)

(ρ1 + ρ2)
.
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Three-layered model

Dispersion relation is fourth order in c.

Nondimensionalize so that limiting cases can be
examined:

lengths by h, velocities by (U1 + U2)/2, density by ρ1.

Introduce dimensionless parameters:

r =
(U1 − U2)

(U1 + U2)
, b =

4gh(ρ2 − ρ1)

(U1 + U2)2(ρ1 + ρ2)
= F−2,

ρ =
ρ2

ρ1

≥ 1.
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Three-layered model

Short waves, α � 1, (thick middle layer):

c ∼ 1 ± ir, 1 − r ±
√

b

α

or in dimensional form:

c ∼
1

2
(U1 + U2) ±

i

2
(U1 − U2), U2 ±

√

g(ρ2 − ρ1)

α(ρ1 + ρ2)
.

Homogeneous Kelvin-Holmholtz instability on the
velocity interface.

Internal gravity waves on the density interface.

(As expected).
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Three-layered model

Long waves, α � 1, (thin middle layer):

c ∼ 1 − r
(ρ − 1)

(ρ + 1)
±

√

b

α
, 1 − r ± 2ir

√
α,

or in dimensional form:

c ∼ Ū ±

√

g(ρ2 − ρ1)

α(ρ1 + ρ2)
, U2 ± i(U1 − U2)

√
hα.

Internal gravity waves, like the two-layered case.

Instability, NOT like the two-layered case!
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Three-layered model

Long waves, α � 1, in zero buoyancy limit, b = 0:

c ∼ 1 − r
(ρ − 1)

(ρ + 1)
± 2i

√
ρ

(ρ + 1)
r, c = 1 − r, 1 − r,

or in dimensional form:

c ∼ Ū ± i

√
ρ1ρ2

(ρ1 + ρ2)
(U1 − U2), c = U2, U2,

as in short-wave limit of two-layered case.
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Three-layered model
Long waves, α � 1, and small buoyancy, b = b0α:

c ∼ 1−r
(ρ − 1)

(ρ + 1)
±

√

b0 −
4ρr2

(1 + ρ)2
, 1−r±2

√

b0(ρ + 1)r2α

4r2 − b0(ρ + 1)

or in dimensional form:

c ∼ Ū ±

√

g(ρ2 − ρ1)

α(ρ1 + ρ2)
−

ρ1ρ2

(ρ1 + ρ2)2
(U1 − U2)2,

c ∼ U2 ± (U1 − U2)

√

αhg(ρ2 − ρ1)

αρ1(U1 − U2)2 − g(ρ2 − ρ1)
.

New mode is unstable for strong enough stable
stratification!
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Three-layered model
For long waves, α � 1, and small buoyancy, b = b0α:

The K-H mode is unstable for short enough waves:

α >
g(ρ2

2
− ρ2

1
)

ρ1ρ2(U1 − U2)2
.

The new mode is unstable for long enough waves:

α <
g(ρ2 − ρ1)

ρ1(U1 − U2)2
.

Waves are stable for

1 <
ρ1(U1 − U2)

2

g(ρ2 − ρ1)
α < 1 +

ρ1

ρ2

But for b = O(1), this stable interval closes up, e.g. at
r = 1 and ρ = 2, all waves are unstable for b > 0.0073.
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Smooth profiles

The generalization of the Rayleigh equation for inviscid
disturbances to a stratified flow is the Taylor-Goldstein
equation:

(U − c)(v′′ − α2v) − U ′′v −
bρ′

B

ρB(U − c)
v

+
ρ′

B

ρB

[(U − c)v′ − U ′v] = 0

(including density variation in the inertia terms).

Consider basic velocity U and basic density ρB:

U = 1 + r tanh y, r =
U1 − U2

U1 + U2

ρB = 1 + δ tanh(y + h), δ =
ρ2 − ρ1

ρ1 + ρ2

.
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Numerical Taylor-Goldstein solutions

Comparison between numerical Taylor-Goldstein
solutions and analytic results of 3-layered model for
r = −1, b = 1, ρ2/ρ1 = 2:
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Independent confirmation of long-wave instability.
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Merging density and velocity layers
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Absolute instability of 3-layered flow
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Conclusions I: Absolute instability

A change in density of the fluid has the same
destabilizing effect on absolute instability as found
previously for confinement by a rigid plate.

Increasing buoyancy (i.e. stable stratification) causes
the effect to occur at smaller density ratios.

This corresponds to a reduction in Froud number, which
enhances upstream propagation of internal gravity
waves.

Required density ratios probably rather large for
terrestial oceanic/atmospheric flows.
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Conclusions II: Temporal instability

If the velocity jump and density jump do not coincide,
then there is qualitatively different behaviour to the K-H
case where they do coincide.

Stably stratified K-H flow is stable for long waves.

But three-layered flow is unstable for long waves.

The new mode is destabilized by increasing stable
stratification, and stabilized by increasing shear.

Could be important, e.g., in wave generation when
there is a shear layer in the air above a body of water.

Results have been confirmed by numerical solution for
smooth profiles.
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