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HYBRID VARIATIONAL FORMULATION
OF AN ELLIPTIC STATE EQUATION APPLIED
TO AN OPTIMAL SHAPE PROBLEM

Jan Chleboun

A variational formulation of the Poisson equation with homogeneous boundary condition
is considered as a state equation on a two-dimensional domain. A part of the boundary has
to be found to minimize a smooth cost functional. The primal hybrid formulation of the
state problem is used to obtain not only a solution of the original state equation but also its
derivative with respect to the outward unit normal to the boundary of the domain. Simple
approximative spaces are introduced and a convergence of approximate state solutions as
well as approximate optimal domains are proved.

INTRODUCTION

To make a theoretical analysis of the optimal shape problem studied in this paper the
primal variational formulation of the state equation is quite sufficient (cf. Begis and
Glowinski [1]). However, in practice, computational methods and algorithms have
to be taken into account to maximize effectiveness and accuracy of computation.

There are different methods used in the field of sensitivity analysis and some of
them require to know the derivative of the solution of a state and adjoint problem
with respect to the unit outward normal vector to the boundary of an optimized
domain, see Haug, Choi, Komkov [5]. The derivative computed by means of the
primal finite element method (FEM) is inaccurate. That is why we use the primal
hybrid formulation. It directly gives the derivative we need.

The goal of the paper is to apply the primal hybrid formulation of a simple elliptic
boundary problem to an optimal shape problem given by a smooth cost functional.

We extend the results of Raviart and Thomas [9] to a family of domains with a
variable boundary and incorporate them into the methodological frame of [1], using
results attained by Hlaváček [6], Hlaváček and Mäkinen [7].

An optimal design problem is formulated in Section 1 and reformulated in Sec-
tion 2, where an existence result is given, too. In Section 3, we introduce approximate
problems. An error and convergence analysis is given in Section 4.
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1. PRIMAL FORMULATION OF AN OPTIMIZATION PROBLEM

Let us introduce the following set

U0
ad =

{
v ∈ C(0),1([0, 1]); 0 < Ĉ1 ≤ v(x2) ≤ Ĉ2, |v′| ≤ Ĉ3 a. e. in (0, 1)

}
,

where C(0),1([0, 1]) denotes the space of Lipschitz functions and Ĉ1, Ĉ2, Ĉ3 are given
positive constants. The prime symbolizes the derivative with respect to x2.

Next, we consider a family of domains Ω(v), v ∈ U0
ad (Fig. 1), where

Ω(v) =
{
(x1, x2) ∈ R2; 0 < x1 < v(x2), 0 < x2 < 1

}
.

Fig. 1.

Let us define the state equation: Find a function y(v) ∈ H1
0 (Ω(v)) such that

∀w ∈ H1
0 (Ω(v))

∫

Ω(v)

∇y(v) · ∇w dx =
∫

Ω(v)

fw dx, (1)

where H1
0 (Ω(v)) denotes the Sobolev space of functions with vanishing traces, f ∈

L2(Ωβ) is a given function, Ωβ = (0, Ĉ2) × (0, 1). In virtue of the Lax–Milgram
theorem there exists a unique solution of 1.

We introduce the cost functional J on the set U0
ad:

J (v, y(v)) =
∫

Ω(v)

(y(v)− yp)2 dx, (2)

where y(v) solves 1 and the function yp ∈ L2(Ωβ) is prescribed.
Finally, we define the set of admissible design variables (see [7])

Uad =
{
v ∈ C(1),1([0, 1]); v ∈ U0

ad, |v′′(x2)| ≤ Ĉ4 a. e.in (0, 1),
∫ 1

0

v(x2) dx2 = Ĉ5

}
,

where C(1),1([0, 1]) stands for the space of functions with Lipschitz-continuous deriva-
tives and Ĉ4, Ĉ5 are positive constants. The constraint imposed on v′′(x2) is based
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on numerical tests and recommended by [7] to reduce oscillations of the designed
boundary.

Then the domain optimization problem P reads: Find vopt ∈ Uad such that

J (vopt, y(vopt)) = min
v∈Uad

J (v, y(v)). (3)

2. THE PRIMAL HYBRID FORMULATION OF THE STATE PROBLEM
AND THE EXISTENCE OF AN OPTIMAL DOMAIN

Let Ω(v) =
⋃R(v)

r=1 Ωr(v) be a decomposition of the closure of the domain Ω(v),
v ∈ U0

ad, into a finite number R(v) of disjoint subdomains Ωr(v) with a Lipschitz-
continuous boundary. We introduce the space

X(v) =
{
w ∈ L2(Ω(v)); wr = w|Ωr(v) ∈ H1(Ωr(v)), 1 ≤ r ≤ R(v)

}

provided with the norm derived from the Sobolev norm ‖ · ‖1,Ωr(v) on H1(Ωr(v))

‖w‖X(v) =




R(v)∑
r=1

‖wr‖21,Ωr(v)




1/2

.

The seminorm | · |1,Ωr(v) is defined analogously.

HavingH(div; Ω(v)) =
{
q ∈ [

L2(Ω(v))
]2 ; div q ∈ L2(Ω(v))

}
, we define the space

M(v) =



µ ∈

R(v)∏
r=1

H−1/2(∂Ωr(v)); ∃q ∈ H(div; Ω(v)) :

µ = q|Ωr(v) · νr on ∂Ωr(v), 1 ≤ r ≤ R(v)

}
,

where νr is the unit outward normal along ∂Ωr(v). Generally, a functional q · ν ∈
H−1/2(∂Ω) is defined by the Green formula

∀w ∈ H1(Ω) 〈q · ν, w〉∂Ω =
∫

Ω

(∇w · q + w div q) dx ,

where 〈·, ·〉∂Ω represents the duality between H−1/2(∂Ω) and H1/2(∂Ω).
A norm over the space M(v) will be defined in Section 4.2.
For any function v ∈ U0

ad, we consider the continuous bilinear forms a(v; ·, ·) :
X(v)×X(v) → R and b(v; ·, ·) : X(v)×M(v) → R defined by

a(v;w, z) =
R(v)∑
r=1

∫

Ωr(v)

∇w · ∇z dx and b(v;w, µ) = −
R(v)∑
r=1

〈µ,w〉∂Ωr(v) .
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The primal hybrid formulation of the state problem (1.1) (see [9]) reads:
Find a pair (y(v), λ(v)) ∈ X(v)×M(v) such that

∀w ∈ X(v) a(v; y(v), w) + b(v;w, λ(v)) =
∫

Ω(v)

fw dx, (4)

∀µ ∈M(v) b(v; y(v), µ) = 0. (5)

It is known [9, Lemma 1] that

H1
0 (Ω(v)) = {w ∈ X(v); ∀µ ∈M(v) b(v;w, µ) = 0} (6)

and that [9, Theorem 1] the problem (2.1) – (2.2) has a unique solution (y(v), λ(v)) ∈
X(v) ×M(v) for any v ∈ U0

ad. Moreover, y(v) ∈ H1
0 (Ω(v)) is the solution of the

problem (1.1) and we have the equality (though in a weak sense, still useful — see
the Introduction)

∂y(v)
∂νr

= λ(v)|∂Ωr(v) , 1 ≤ r ≤ R(v).

As a consequence, both (1.1) and (2.1) – (2.2) can be considered as the state
problem for the optimal design problem P (see (1.3)).

If we need we shall extend any function belonging to the space H1
0 (Ω) or L2(Ω) by

zero on the set R2 \Ω. For the sake of simplicity, the extension will not be denoted
by a new symbol. Particularly, any solution y(v) of the state problem (1.1), v ∈ U0

ad,
can be extended to the domain Ωδ = (0, δ)× (0, 1), δ > Ĉ2 (see Fig. 1).

Lemma 2.1. Let {vn}∞n=1 be a sequence of functions vn ∈ Uad. Then a subse-
quence {vnm} ⊂ {vn} and a function v ∈ Uad exist such that vnm → v in C(1)([0, 1])
and

y(vnm) −→ y(v) in H1(Ωδ), (7)

where y(vnm) and y(v) are the first components of the solution of the state problem
(2.1) – (2.2) on the domain Ω(vnm) and Ω(v), respectively. If a sequence {vn}∞n=1 ⊂
U0

ad converges in C([0, 1]), then v ∈ U0
ad and (2.4) holds again.

P r o o f . Let us notice that subdomains Ωr(vn), Ωr(v) are unimportant here.
The solutions y(vn) belong to H1

0 (Ω(vn)) and are H1(Ωδ)-bounded. Thus a weakly
convergent subsequence can be extracted. The set Uad is compact in C(1)([0, 1]).
The strong convergence of y(vnm) can be proved like in the proof of [6, Lemma 2.1].

2

Theorem 2.1. There exists at least one solution of the optimization problem P.

P r o o f . The proof is standard — cf. e. g. [1], [6]. Suppose {vn}∞n=1, vn ∈ Uad,
is a minimizing sequence, i. e., lim

n→∞
J (vn, y(vn)) = inf

v∈Uad

J (v, y(v)). A subsequence

{vnm} ⊂ {vn} exists (Lemma 2.1) such that lim
m→∞

vnm = v0, v0 ∈ Uad.

It is easy to see that the convergence (2.4) implies lim
m→∞

J (vnm , y(vnm))=J (v0, y(v0)).

Hence, inf
v∈Uad

J (v, y(v)) = J (v0, y(v0)) and v0 ≡ vopt. 2
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3. APPROXIMATION BY HYBRID FINITE ELEMENTS

We shall proceed briefly, since the section summarizes known results. For details we
refer to e. g. [6], [7] (triangulations) and [9] (the primal hybrid FEM).

Let N be a positive integer and h = 1/N . Denoting by ej the subintervals
[(j − 1)h, jh], j = 1, 2, . . . , N , we define the set

Uh
ad =

{
vh ∈ U0

ad; vh|ej
∈ P1(ej), j = 1, . . . , N,

|δ2hvh(jh)| ≤ Ĉ4, j = 1, . . . , N − 1,
∫ 1

0

vh(x2) dx2 = Ĉ5

}
,

where P1(ej) is the set of linear functions defined on ej and

δ2hvh(jh) =
1
h2

[vh((j + 1)h)− 2vh(jh) + vh((j − 1)h)] .

Any domain Ω(vh) is subdivided into triangles (Fig. 2) and we suppose that the
resulting family τ =

{Th(vh); vh ∈ Uh
ad, h→ 0+

}
of triangulations Th(vh) is strongly

regular in the sense of [3] (see [6] for details). If h is fixed the triangulation of the
rectangle [0, Ĉ0]× [0, 1] is independent of vh, Ĉ0 is a fixed positive constant less than
Ĉ1.

We prescribe a unique correspondence between Ω(vh) and Th(vh). Coordinates of
the nodal points are governed by N + 1 values vh(jh), j = 0, . . . , N . The triangles
of a triangulation Th(vh) serve as subdomains Ωr(vh).

Fig. 2.

To be prepared to use the rectangle Ωδ we extend each triangulation Th(vh) ∈ τ
to Ωδ uniquely and denote by Thδ(vh). The resulting family τδ of triangulations is
assumed to be strongly regular. Like in Section 2 we define the space Xδ(vh) with
the norm ‖ · ‖Xδ(vh) and the seminorm | · |Xδ(vh).
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Let us consider the approximate subspaces

Xh(vh) =
{
w ∈ L2(Ω(vh)); ∀K ∈ Th(vh) w|K is a linear function

} ⊂ X(vh),

Mh(vh) =



µ ∈

∏

K∈Th(vh)

L2(∂K); ∀K ∈ Th(vh) ∀S µ|S = constant,

µ|∂K1
+ µ|∂K2

=0 on S = K1 ∩K2, K1 and K2 are adjacent triangles

}
⊂M(vh),

where S denotes a side of the triangle K.
Elements of Mh(vh) comply with a natural condition which follows from opposite

directions of outward normals along a common side of adjacent triangles.

The approximate state problem:
Find a pair (yh(vh), λh(vh)) ∈ Xh(vh)×Mh(vh) such that

∀wh ∈ Xh(vh) a(vh; yh(vh), wh) + b(vh;wh, λh(vh)) =
∫

Ω(vh)

fwh dx, (8)

∀µh ∈Mh(vh) b(vh; yh(vh), µh) = 0. (9)

The approximate domain optimization problem Ph: Find vh
opt ∈ Uh

ad such that

J (vh
opt, yh(vh

opt)) = min
vh∈Uh

ad

J (vh, yh(vh)), (10)

where yh(vh), yh(vh
opt) are the first components of the solution of (3.1) – (3.2) on the

domains Ω(vh), Ω(vh
opt), respectively.

As an analogy to (2.3) we introduce the space

Vh(vh) = {wh ∈ Xh(vh); ∀µh ∈Mh(vh) b(vh;wh, µh) = 0}
and reformulate (3.1) – (3.2) into the problem to find yh(vh) ∈ Vh(vh) such that

∀wh ∈ Vh(vh) a(vh; yh(vh), wh) =
∫

Ω(vh)

fwh dx. (11)

According to [9], the mapping

wh 7→ [a(vh;wh, wh)]1/2 = |wh|X(vh)

is a norm on Vh(vh), the problem (3.1) – (3.2) has a unique solution (yh(vh), λh(vh)) ∈
Xh(vh)×Mh(vh), the component yh(vh) belongs to Vh(vh) and solves (3.4) uniquely.

Remark 3.1. A general treatment of the primal hybrid FEM applied to the Pois-
son equation can be found in [9]. Let us note that Vh(vh) is an external approxi-
mation of the space H1

0 (Ω(vh)), i. e., Vh(vh) 6⊂ H1
0 (Ω(vh)). A function wh ∈ Xh(vh)

belongs to Vh(vh) if and only if [9, Section 4]

wh is continuous at midpoints of the sides of triangles contained in Ω(vh); (12)
wh vanishes at midpoints located on ∂Ω(vh). (13)

2
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Theorem 3.1. There exists at least one solution of the problem Ph given by (3.3).

P r o o f . Introducing basis functions of the space Vh(vh), we rewrite the equation
(3.4) into a matrix form. It is not difficult to prove that the solution of the linear
system continuously depends on the design variables. The cost functional is continu-
ous, too. Hence, the existence problem is reduced to a minimization of a continuous
function on a compact set. 2

4. CONVERGENCE ANALYSIS

In this section we study a convergence of the approximate state solutions and the
approximate optimal domains, respectively. We emphasize the convergence analysis
of the first component of the primal hybrid state solution, since it is the point of the
optimal domain problem. Let us note that C∞0 (Ω(v)) stands for the set of infinitely
continuously differentiable functions with a compact support contained in Ω(v).

4.1. Approximate solutions of the optimal domain problem

The convergence analysis will be based on the following equality (see [9, Theorem 3]).

Theorem 4.1. Let yh(vh) ∈ Vh(vh), vh ∈ Uh
ad, be the solution of the problem

(3.4). Then

|y(vh)− yh(vh)|2X(vh) =
(

inf
wh∈Vh(vh)

|y(vh)− wh|X(vh)

)2

+ (14)

+

(
inf

µh∈Mh(vh)
sup

wh∈Vh(vh)\{0}

b(vh;wh, λ(vh)− µh)
|wh|X(vh)

)2

,

where (y(vh), λ(vh)) ∈ H1
0 (Ω(vh))×M(vh) is the solution of the problem (2.1) – (2.2)

on the domain Ω(vh).

Lemma 4.1. Let {vh}, h → 0+, be a sequence of functions vh ∈ Uh
ad such that

lim
h→0+

vh = v in C([0, 1]). Then v ∈ Uad.

P r o o f . Through a sequence of continuous piecewise linear interpolates of the
derivatives v′h can be proved that v′h → v′ ∈ C(0),1([0, 1]). In addition, v ∈ Uad can
be shown. See the proof of [7, Lemma 3.2] for details. 2

Lemma 4.2. Let us denote ε(vh) = inf
wh∈Vh(vh)

|y(vh)−wh|X(vh), where y(vh) is the

solution of (3.4), vh ∈ Uh
ad. Let a sequence {vh}, h → 0+, vh ∈ Uh

ad, converge to a
function v in C([0, 1]). Then lim

h→0+
ε(vh) = 0.
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P r o o f . Let n be a positive integer. For any sufficiently small h (see Lemma 2.1)

‖y(vh)− y(v)‖1,Ωδ
≤ 1
n
. (15)

Also a function ϕn ∈ C∞0 (Ω(v)) exists such that

‖y(v)− ϕn‖1,Ω(v) ≤
1
n
. (16)

The uniform convergence of vh guarantees the existence of a parameter h(n) > 0
such that we have suppϕn ⊂ Ω(vh) for all h ∈ (0, h(n)].

We define the space (P1(K) is the set of linear functions on K)

Zh(vh)=
{
zh∈C(Ω(vh)); ∀K ∈ T (vh) zh|K ∈P1(K), zh|∂Ω(vh) =0

}
⊂H1

0 (Ω(vh)).

Denoting by rhϕn ∈ Zh(vh) the Zh(vh)-interpolation of ϕn, we estimate (see e. g. [3,
Theorem 3.1.6]) ‖ (ϕn − rhϕn)|K ‖1,K ≤ Ch| (ϕn|K) |2,K for any triangle K. The
constant C > 0 is independent of h and vh, since the set of triangulations is strongly
regular. Taking the root of the sum of the squared inequality, we obtain (h is small)

‖ϕn − rhϕn‖1,Ω(vh) ≤ Ch|ϕn|2,Ω(vh) ≤
1
n
. (17)

The inclusion Zh(vh) ⊂ Vh(vh) and (4.2), (4.3), (4.4) lead to

ε(vh) ≤ |y(vh)− rhϕn|X(vh) = |y(vh)− rhϕn|1,Ωδ
≤ 3
n

but n has been chosen arbitrarily. 2

The next analysis is based on an auxiliary problem similar to (1.1).
Let the domain Ωn(v) be given by v ∈ Uad and a positive integer n,

Ωn(v) =
{
x ∈ R2; dist (x,Ω(v)) <

1
n

}
.

We define the auxiliary problem: Find yn(v) ∈ H1
0 (Ωn(v)) such that

∀w ∈ H1
0 ((Ωn(v))

∫

Ωn(v)

∇yn(v) · ∇w dx =
∫

Ωn(v)

fw dx, (18)

the function f (see (1.1)) is extended by zero outside Ωβ .
We remind that for any n and v ∈ Uad the equation (4.5) has a unique solution.

Lemma 4.3. Let v ∈ Uad be given and ΩQ be a domain with a Lipschitz boundary,
Ωδ ⊂ ΩQ. Assume the parameter n big enough to ensure Ωn(v) ⊂ ΩQ. Then

lim
n→∞

‖yn(v)− y(v)‖1,ΩQ = 0,
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where y(v) ∈ H1
0 (Ω(v)) is the first component of the state solution (2.1) – (2.2).

P r o o f . The method of the proof is identical with that of Lemma 2.1. 2

An analysis of the second term of (4.1) is more laborious. We shall exploit the
method of function regularization. For any parameter % > 0, the mollifier is defined
as follows

ϕ%(x) =





1
ω exp

‖x‖2R2
‖x‖2R2−%2 , ‖x‖R2 ≥ %, ω =

∫
‖x‖R2<1

exp
‖x‖2R2
‖x‖2R2−1

dx,

0, ‖x‖R2 ≥ %.

(19)

Lemma 4.4. Let a sequence {vh}, h → 0+, vh ∈ Uh
ad, converge to v in C([0, 1]).

Let the pair (y(vh), λ(vh)) ∈ H1
0 (Ω(vh))×M(vh) be the solution of (2.1) – (2.2) and

let yn(v) ∈ H1
0 (Ωn(v)) be the solution of (4.5). Finally, let the function yn%(v) be

given by

yn%(v)(x) = %−2

∫

Ωn(v)

yn(v)(t)ϕ%(x− t) dt =
∫

|t|<1

yn(v)(x+ %t)ϕ1(t) dt,

where x ∈ Ωn(v) and % > 0.
Define κn%(vh) ∈M(vh) by

κn%(vh) =
∂yn%(v)
∂νK

on ∂K ∀K ∈ Th(vh), Ω(vh) ⊂ Ωn(v), (20)

where νK denotes the unit outward normal vector along the boundary of a triangle
K ∈ Th(vh). Then

∃h(n, %) > 0 ∀h ∈ (0, h(n, %)] ∃ ε(vh, n, %) ∈ R ∀w ∈ X(vh) (21)
|b(vh;w, λ(vh)− κn%(vh))| ≤ ε(vh, n, %) ‖w‖X(vh) ;

for any ε0 > 0 there exist parameters n and % such that

0 ≤ lim
h→0+

ε(vh, n, %) ≤ ε0. (22)

P r o o f . We introduce the function f% on Ωn(v),

f%(x) = %−2

∫

Ωn(v)

f(t)ϕ%(x− t) dt. (23)

Supposing x∈Ωn(v), dist(x, ∂Ωn(v))>%, is a given point, we have suppϕ%(x−t) ⊂
Ωn(v) and ∆tϕ%(x − t) = ∆xϕ%(x − t), (see (4.6) or [8], § 16). The subscripts t, x
denote variables used in the process of differentiation.
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Applying this and the equality f = −∆yn(v) (in the sense of distribution) to
(4.10), we may write

%2f%(x) =
∫

Ωn(v)

f(t)ϕ%(x− t) dt = (24)

= −
∫

Ωn(v)

yn(v)(t)∆tϕ%(x− t) dt = −
∫

Ωn(v)

yn(v)(t)∆xϕ%(x− t) dt =

= −∆x

∫

Ωn(v)

yn(v)(t)ϕ%(x− t) dt = −%2∆xyn%(v)(x).

If % is small enough a value h(%, n) > 0 exists such that

∀h ∈ (0, h(%, n)] dist(Ω(vh),R2 \ Ωn(v)) > %.

Then on any domain Ω(vh), 0 < h ≤ h(%, n), (4.11) reads

f%(v) = −∆yn%(v). (25)

Using substitution of the domain of integration, we obtain

∂yn%(v)
∂xi

(x) =
∫

|t|<1

∂yn(v)
∂xi

(x+ %t)ϕ1(t) dt = (26)

=
(
∂yn(v)
∂xi

)

%

(x), i = 1, 2; x ∈ Ω(vh), 0 < h ≤ h(%, n).

For any h sufficiently small, the function yn%(v) is defined on the set Ω(vh). We
can define κn%(vh) ∈M(vh) by (4.7).

Using (4.12) and (4.13), we get (now q = ∇(yn%(v)) – see Section 2)

∀w ∈ X(vh) b(vh;w, κn%(vh)) = −
∑

K∈Th(vh)

∫

K

∆(yn%(v))w dx−

−
∑

K∈Th(vh)

∫

K

∇(yn%(v))·∇w dx=
∫

Ω(vh)

f%w dx−
∑

K∈Th(vh)

∫

K

(∇yn(v))% ·∇w dx.

This and (2.1) lead to

|b(vh;w, λ(vh)− κn%(vh))| ≤
∣∣∣∣∣
∫

Ω(vh)

(f − f%)w dx

∣∣∣∣∣ + (27)

+

∣∣∣∣∣∣
∑

K∈Th(vh)

∫

K

[∇y(vh)− (∇yn(v))%] · ∇w dx

∣∣∣∣∣∣
.

Let w∇ ∈ [L2(Ω(vh))]2 be a function such that for any triangle K ∈ Th(vh), w∇|K =
∇w|K . Obviously, ‖w∇‖0,Ω(vh) = |w|X(vh). Replacing ∇w by w∇ in (4.14) and
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summing, we arrive at

|b(vh;w, λ(vh)−κn%(vh))|≤
[∫

Ω(vh)

(f−f%)2 dx

]1/2

‖w‖X(vh)+ (28)

+

[∫

Ω(vh)

|∇y(vh)− (∇yn(v))%|2 dx

]1/2

‖w‖X(vh).

We can write
∫

Ω(vh)

(f − f%)2 dx =
∫

Ω(v)

(f − f%)2 dx+ ε1(vh, %) = ε1(vh, %) + ε2(%), (29)

where the term ε1(vh, %) involves the integrals over the sets Ω(vh) \Ω(v) and Ω(v) \
Ω(vh). We easily get

lim
h→0+

ε1(vh, %) = 0 , lim
%→0+

ε2(%) = 0. (30)

Indeed, the first limit is a consequence of the uniform convergence of the functions
vh and the second one is a well known property of regularized functions (see e. g.
[8], § 15).

Making use of Ω(vh) ⊂ Ωδ ∩ ΩQ ∩ Ωn(v), we estimate the second term of (4.15)

‖∇y(vh)− (∇yn(v))%‖0,Ω(vh) ≤ ‖∇y(vh)−∇y(v)‖0,Ωδ
+ (31)

+ ‖∇y(v)−∇yn(v)‖0,ΩQ
+ ‖∇yn(v)− (∇yn(v))%‖0,Ωn(v).

Denoting the terms on the right-hand side of (4.18) by ε3(vh), ε4(n) and ε5(n, %),
respectively, and applying Lemmas 2.1 and 4.3, we have

lim
h→0+

ε3(vh) = 0, lim
n→∞

ε4(n) = 0, lim
%→0+

ε5(n, %) = 0. (32)

The last equality is valid for any positive parameter n.
Finally, (4.15), (4.16) and (4.18) give

ε(vh, n, %) = [ε1(vh, %) + ε2(%)]1/2 + ε3(vh) + ε4(n) + ε5(n, %)

and, by virtue of (4.17), (4.19), the statement (4.9) holds. 2

Lemma 4.5. Assume that a function ϕ ∈ H2(Ω(vh)), vh ∈ Uh
ad, is given. Let us

define ψ ∈M(vh) by ψ = ∂ϕ
∂νK

on ∂K, K ∈ Th(vh). Then

inf
µh∈Mh(vh)

sup
w∈X(vh)\{0}

b(vh;w,ψ − µh)
|w|X(vh)

≤ Ch|ϕ|2,Ω(vh),

where the constant C > 0 is independent of h and vh ∈ Uh
ad.

P r o o f . Lemma 4.5 is, in fact, Lemma 9 of [9].
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For any K ∈ Th(vh) and any side S of K, we set µh = π0
S

∂ϕ
∂νK

= π0
Sψ on S,

where π0
S stands for the orthogonal projector in L2(S) upon constants P0|S . We

can estimate

∀w ∈ H1(K)
∣∣∣∣
∫

S

(ψ − µh)w dγ
∣∣∣∣ =

∣∣∣∣
∫

S

(
∂ϕ

∂νK
− π0

S

∂ϕ

∂νK

)
w dγ

∣∣∣∣ ≤
≤ Ch|ϕ|2,K |w|1,K ,

where the constant C > 0 is independent of K, h and vh. The inequality is a direct
consequence of the estimate cited by [9]. However, the paper [9] refers to [4]. A
detailed proof can be found in [2]. Since the independence of C is a consequence of
strongly regular triangulations, we consider [4] as a sufficient reference. Thus

∀w ∈ X(vh) |b(vh;w,ψ − µh)| =
∣∣∣∣∣∣
−

∑

K∈Th(vh)

∫

∂K

(ψ − µh)w dγ

∣∣∣∣∣∣
≤

≤
∑

K∈Th(vh)

C1h|ϕ|2,K |w|1,K ≤ C1h|ϕ|2,Ω(vh)|w|X(vh),

and the constant C1 > 0 does not depend on h and vh. 2

Having Lemma 4.4 and Lemma 4.5, we tend to approximation of λ(vh) by κn%(vh)
and to utilization of (4.1). According to the following lemma, the two norms on
Vh(vh) are uniformly equivalent.

Lemma 4.6. There exists a constant C > 0, independent of h and vh ∈ Uh
ad, such

that

∀wh ∈ Vh(vh) ‖wh‖X(vh) ≤ C|wh|X(vh).

P r o o f . The family τ of triangulations is strongly regular, so that there exist
constants C1 > 0, C2 > 0, independent of h and vh ∈ Uh

ad, such that for any
K ∈ Th(vh) it holds diam(K) ≤ C1h and C2h

2 ≤ meas (K).

Suppose vh ∈ Uh
ad is given. The interval [0, 1] on x2-axis is subdivided into

N = h−1 subintervals. We denote their midpoints by zj , j = 1, . . . , N, and erect
perpendiculars pj —see Fig. 3. Let the set of triangles Ki ∈ Th(vh) intersected by
pj be denoted by Ij , j = 1, . . . , N . We define the sets Qj =

⋃
i∈Ij

Ki, j = 1, . . . , N ,
and the segments qi = pj ∩Ki, i ∈ Ij , j = 1, . . . , N . The length of qi is not greater
than C1h.
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Fig. 3.

Let us choose a point x ∈ ⋃
i∈I Ki, I =

⋃N
j=1 Ij . Then the subscripts i and j

exist such that x ∈ Ki, x ∈ Qj . By (3.5), the function w is continuous at a midpoint
si = (ti, zj) ∈ ∂Ki. Using (3.6), we have

w(x) =
∫ ti

0

∂w

∂x1
(x1, zj) dx1 + (∇ w|Ki

) · (x− si).

Estimating the argument of the above integral on relevant segments qi and realizing
the fact that the number of elements of the set Ij is not greater than C3/h, C3 > 0
is a constant independent of vh ∈ Uh

ad, we arrive at

w2(x) ≤ 4C2
1C3h

∑

k∈Ij

‖∇w|Kk
‖2R2 . (33)

We integrate (4.20) over Ki, taking linearity of w on any triangle into account,
∫

Ki

w2(x) dx ≤ 4C2
1C3hmeas (Ki)

∑

k∈Ij

‖∇w|Kk
‖2R2 ≤ (34)

≤ 4
C4

1C3

C2
h

∑

k∈Ij

∫

Kk

|∇w|Kk
|2 dx.

The estimate (4.21) is valid for any Ki, i ∈ Ij . Denoting C4 = 4C4
1C3/C2, we obtain

∫

Qj

w2(x) dx =
∑

i∈Ij

∫

Ki

w2(x) dx ≤ C3C4

∑

k∈Ij

∫

Kk

|∇w|Kk
|2 dx.

Finally, we integrate over Ω(vh) =
⋃N

j=1Qj

∫

Ω(vh)

w2(x) dx ≤ C3C4

∑

k∈I

∫

Kk

|∇w|Kk
|2 dx = C3C4|w|2X(vh).
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The closing estimate is independent of h and vh ∈ Uh
ad,

∀w ∈ Vh(vh) ‖w‖2X(vh) ≤ (C3C4 + 1) |w|2X(vh). 2

Now we are able to prove the following convergence lemma based on (4.1).

Theorem 4.2. Assume that a sequence {vh}, h → 0+, vh ∈ Uh
ad, converges

to v in C([0, 1]). The solutions of (3.1) – (3.2) and (2.1) – (2.2) are denoted by
(yh(vh), λh(vh)) ∈ Xh(vh) ×Mh(vh) and (y(v), λ(v)) ∈ H1

0 (Ω(v)) ×M(v), respec-
tively. Then

lim
h→0+

‖yh(vh)− y(v)‖Xδ(vh) = 0.

P r o o f . We know (Lemma 2.1) that

y(vh) → y(v) in H1(Ωδ), h→ 0+, (35)

where (y(vh), λ(vh)) ∈ H1
0 (Ω(vh))×M(vh) solves (2.1) – (2.2) on Ω(vh).

Denoting the terms on the right-hand side of (4.1) by I2
1 (vh) and I2

2 (vh), respec-
tively, we have (see Lemma 4.2)

lim
h→0+

|y(vh)− yh(vh)|2X(vh) = lim
h→0+

(I2
1 (vh) + I2

2 (vh)) = lim
h→0+

I2
2 (vh). (36)

Let us choose ε0 > 0 arbitrarily. Then (see (4.9)) parameters n, % and h0 > 0,
dependent on ε0, exist such that ε(vh, n, %) ≤ ε0 and the function yn%(v) defines
κn%(vh) ∈M(vh), 0 < h ≤ h0. Using (4.8) and Lemma 4.6, we get

∀wh ∈ Vh(vh) ∀µh ∈Mh(vh) |b(vh;wh, λ(vh)− µh)| ≤ (37)
≤ |b(vh;wh, λ(vh)− κn%(vh))|+ |b(vh;wh, κn%(vh)− µh)| ≤
≤ ε0C1|wh|X(vh) + |b(vh;wh, κn%(vh)− µh)|,

where the constant C1 > 0 is independent of h and vh.
Applying Lemma 4.5 to (4.24), we obtain for any positive ε0

|I2(vh)| ≤ ε0C1 + inf
µh∈Mh(vh)

sup
wh∈Vh(vh)\{0}

b(vh;wh, κn%(vh)− µh)
|wh|X(vh)

≤

≤ ε0C1 + C2h|yn%(v)|2,Ω(vh) ≤ ε0C1 + C2h|yn%(v)|2,Ωδ
≤ 2ε0C1,

where the constant C2 > 0 does not depend on h and vh. Thus, limit (4.23) tends
to zero.

Choosing ε > 0, we have, if h is small enough, (see (4.22), (4.23))

|yh(vh)− y(v)|Xδ(vh) < ε. (38)

Next, a function yε(v) ∈ C∞0 (Ω(v)) exists such that

‖y(v)− yε(v)‖1,Ωδ
< ε. (39)
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For any triangulation Thδ(vh) ∈ τδ we define the set of continuous and piecewise
linear functions

Zδ(vh) =
{
z ∈ C(Ωδ); ∀K ∈ Thδ(vh) z|K ∈ P1(K)

}
.

For any w ∈ C(Ωδ), let rhw ∈ Zδ(vh) be the Zδ(vh)-interpolation.
The well known estimate (see e. g. [3], Theorem 3.2.1) gives

‖yε(v)− rhyε(v)‖1,Ωδ
≤ C3h|yε(v)|2,Ωδ

≤ ε, (40)

the constant C3 > 0 is independent of h and vh since the family τδ of triangulations
is strongly regular. Combining (4.25), (4.26) and (4.27), we estimate

|yh(vh)− rhyε(v)|Xδ(vh) < 3ε.

For any h sufficiently small, we have supp yε(v) ⊂ Ω(vh), hence rhyε(v)|Ω (vh) ∈
Vh(vh).

The function gh(vh) = yh(vh) − rhyε(v)|Ω(vh) complies with the assumptions of
Lemma 4.6, hence a constant C4 > 0, independent of h and vh, exists such that

‖gh(vh)‖Xδ(vh) ≤ 3C4ε. (41)

The inequalities (4.28), (4.26) and (4.27) imply the final estimate

‖yh(vh)− y(v)‖Xδ(vh) ≤ ‖yh(vh)− rhyε(v)‖Xδ(vh) + ‖rhyε(v)− y(v)‖1,Ωδ
≤

≤ 3C4ε+ ‖y(v)− yε(v)‖1,Ωδ
+ ‖yε(v)− rhyε(v)‖1,Ωδ

≤ ε(3C4 + 2). 2

Lemma 4.7. Under the assumptions of Theorem 4.2

lim
h→0+

J (vh, yh(vh)) = J (v, y(v)).

P r o o f . The proof is easily seen from (1.2) and Theorem 4.2. 2

To prove the main convergence result we need the following auxiliary lemma.

Lemma 4.8. For any v ∈ Uad there exists a sequence {vh}, h → 0+, vh ∈ Uh
ad,

such that
lim

h→0+
vh = v in C([0, 1]).

P r o o f . Following the proofs of [7, Lemma 3.1] and [1, Lemma 7.1], we can
construct a piecewise linear function dependent on h and prove that it belongs to
Uh

ad. A sequence of these functions converges to v uniformly. 2
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Theorem 4.3. Let
{
vh

opt

}
, h → 0+, vh

opt ∈ Uh
ad, be a sequence of solutions of

the approximate domain optimization problem Ph (see (3.3)). Then a subsequence{
vhn

opt

}
⊂ {

vh
opt

}
exists such that vhn

opt → vopt in C([0, 1]), hn → 0+, and the design
variable vopt ∈ Uad solves the problem P (see (1.3)).

The strong convergence of the first component of the approximate hybrid state
solution is ensured by Theorem 4.2.

P r o o f . We follow the proof of [1, Theorem 7.1].
Let η ∈ Uad be given. There exists a sequence {ηh}, h → 0+, ηh ∈ Uh

ad, such
that ηh → η in C([0, 1]) (Lemma 4.8). Let us denote by yh(ηh) ∈ Xh(ηh) the first
component of the solution of (3.1) – (3.2) where vh is replaced by ηh.

The set U0
ad is compact in C([0, 1]). We choose a subsequence

{
vhn

opt

}
⊂ {

vh
opt

} ⊂
U0

ad such that (Lemma 4.1) vhn
opt converges to v∗ ∈ Uad in C([0, 1]).

By virtue of (3.3), J (vhn
opt, yh(vhn

opt)) ≤ J (ηhn
, yh(ηhn

)). Passing to the limit with
hn and using Lemma 4.7, we obtain J (v∗, y(v∗)) ≤ J (η, y(η)) and v∗ ≡ vopt. 2

4.2. Convergence of the second component of the approximate state
solution

Essentially, in this subsection we verify results of [9] generalized to a family of
domains with a movable boudary.

We provide the spaceX(vh) with the new norm |||w|||X(vh) =

(
∑

K∈Th(vh)

|||w|||21,K

)1/2

,

where for any triangle K ∈ Th(vh),

|||w|||1,K =
(|w|21,K + h−2

K ‖w‖20,K

)1/2
, hK = diam (K).

Then the space M(vh) is normed by |||µ|||M(vh) = sup
w∈X(vh)\{0}

b(vh;w,µ)

|||w|||X(vh)
.

Lemma 4.9. Let Th(vh) belong to the set τ of strongly regular triangulations.
Then there exists a constant C > 0, independent of h and vh, such that

∀µh ∈Mh(vh) sup
wh∈Xh(vh)\{0}

b(vh;wh, µh)
|||wh|||X(vh)

≥ C|||µh|||M(vh).

P r o o f . The proof is based on detailed estimates concerning an affine mapping
between a triangle K and a reference triangle K̂. Since τ is a strongly regular family
of triangulations, we find out that the proof of [9, Lemma 10] can be followed step
by step. 2
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Lemma 4.10. Let the pair (y(vh), λ(vh)) ∈ X(vh) × M(vh) solve the problem
(2.1) – (2.2) on the domain Ω(vh). Assume that (yh(vh), λh(vh)) ∈ Xh(vh)×Mh(vh)
is the solution of the problem (3.1) – (3.2). Then

|||λ(vh)− λh(vh)|||M(vh) ≤
1
C
|y(vh)− yh(vh)|X(vh) + (42)

+
(

1 +
1
C

)
inf

µh∈Mh(vh)
|||λ(vh)− µh|||M(vh),

where the constant C > 0 is independent of h and vh ∈ Uh
ad and equals to the

constant C in Lemma 4.9.

P r o o f . We refer to the proof of [9, Theorem 3]. The independence of C is an
immediate consequence of Lemma 4.9. 2

Theorem 4.4. Let a sequence {vh}, h→ 0+, vh ∈ Uh
ad, converge to v in C([0, 1]).

Then
lim

h→0+
|||λ(vh)− λh(vh)|||M(vh) = 0.

P r o o f . Let us choose ε̂ > 0 arbitrarily. By Lemma 4.4, we have yn%(v) ∈
C∞(Ω(vh)) and κn%(vh) ∈M(vh) such that

∀w ∈ X(vh) \ {0} b(vh;w, λ(vh)− κn%(vh))
‖w‖X(vh)

≤ ε(vh, n, %) ≤ ε̂. (43)

Using |||w|||X(vh) ≥ |w|X(vh) and Lemma 4.5 (ϕ = yn%(v), ψ = κn%(vh)), we arrive
at

inf
µh∈Mh(vh)

|||κn%(vh)− µh|||M(vh) = (44)

= inf
µh∈Mh(vh)

sup
w∈X(vh)\{0}

b(vh;w, κn%(vh)− µh)
|||w|||X(vh)

≤ Ch|yn%(v)|2,Ω(vh) ≤ ε̂,

where the last inequality holds for all h sufficiently small because yn%(v) does not
depend on h and vh.

The inequality ‖w‖X(vh) ≤ |||w|||X(vh) and (4.30), (4.31) give

inf
µh∈Mh(vh)

|||λ(vh)− µh|||M(vh) = inf
µh∈Mh(vh)

sup
w∈X(vh)\{0}

b(vh;w, λ(vh)− µh)
|||w|||X(vh)

≤

≤ inf
µh∈Mh(vh)

[
sup

w∈X(vh)\{0}

b(vh;w, λ(vh)− κn%(vh))
|||w|||X(vh)

+

+ sup
w∈X(vh)\{0}

b(vh;w, κn%(vh)− µh)
|||w|||X(vh)

]
≤ 2ε̂.

Inserting this into (4.29), we finish the proof by

|||λ(vh)− λh(vh)|||M(vh) ≤
1
C
|y(vh)− yh(vh)|X(vh) + 2(1 +

1
C

)ε̂.
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Indeed, by virtue of Theorem 4.2 (see (4.23)), the term |y(vh)− yh(vh)|X(vh) tends
to zero. The parameter ε̂ is arbitrarily small. 2

Closing remark. The system (3.1) – (3.2) seems to be clumsy to solve. Never-
theless, using the space Vh(vh) (see (3.5) – (3.6)), we can compute yh(vh) from the
equation (3.4) easily. Substituting yh(vh) into (3.1) and introducing suitable basis
functions of the spaces Xh(vh) and Mh(vh), we obtain a system of linear equations
with a diagonal matrix.

Thus the component λ(vh) can be computed and the desired normal derivative
along the boundary of an optimized domain approximated. However, computational
effectiveness of the approach given in this paper has not been tested yet.
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