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HYBRID VARIATIONAL FORMULATION
OF AN ELLIPTIC STATE EQUATION APPLIED
TO AN OPTIMAL SHAPE PROBLEM

JAN CHLEBOUN

A variational formulation of the Poisson equation with homogeneous boundary condition
is considered as a state equation on a two-dimensional domain. A part of the boundary has
to be found to minimize a smooth cost functional. The primal hybrid formulation of the
state problem is used to obtain not only a solution of the original state equation but also its
derivative with respect to the outward unit normal to the boundary of the domain. Simple
approximative spaces are introduced and a convergence of approximate state solutions as
well as approximate optimal domains are proved.

INTRODUCTION

To make a theoretical analysis of the optimal shape problem studied in this paper the
primal variational formulation of the state equation is quite sufficient (cf. Begis and
Glowinski [1]). However, in practice, computational methods and algorithms have
to be taken into account to maximize effectiveness and accuracy of computation.

There are different methods used in the field of sensitivity analysis and some of
them require to know the derivative of the solution of a state and adjoint problem
with respect to the unit outward normal vector to the boundary of an optimized
domain, see Haug, Choi, Komkov [5]. The derivative computed by means of the
primal finite element method (FEM) is inaccurate. That is why we use the primal
hybrid formulation. It directly gives the derivative we need.

The goal of the paper is to apply the primal hybrid formulation of a simple elliptic
boundary problem to an optimal shape problem given by a smooth cost functional.

We extend the results of Raviart and Thomas [9] to a family of domains with a
variable boundary and incorporate them into the methodological frame of [1], using
results attained by Hlavacek [6], Hlavacek and Mékinen [7].

An optimal design problem is formulated in Section 1 and reformulated in Sec-
tion 2, where an existence result is given, too. In Section 3, we introduce approximate
problems. An error and convergence analysis is given in Section 4.
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1. PRIMAL FORMULATION OF AN OPTIMIZATION PROBLEM

Let us introduce the following set
U, = {v e CO:1(0,1]); 0 < C, < () < Ca, [v| < Cs ae. in (0, 1)},

where C(©:1([0, 1]) denotes the space of Lipschitz functions and €y, Cs, Cs are given
positive constants. The prime symbolizes the derivative with respect to xs.
Next, we consider a family of domains Q(v), v € U2, (Fig. 1), where

Qv) = {(z1,22) € R% 0 <z <w(2s), 0 < 29 < 1}.

Fig. 1.

Let us define the state equation: Find a function y(v) € H(Q(v)) such that

Yw € Hy(Q(v)) Vy(v) - Vwdz = fwdz, (1)
Q(v) Q(v)

where H}(€Q(v)) denotes the Sobolev space of functions with vanishing traces, f €
L?(Qp) is a given function, Q3 = (0,C%) x (0,1). In virtue of the Lax-Milgram
theorem there exists a unique solution of 1.

We introduce the cost functional J on the set U2;:

T(0,y(w)) = / (y(v) — yp)? de, (2)

Q(v)

where y(v) solves 1 and the function y, € L*(€p) is prescribed.
Finally, we define the set of admissible design variables (see [7])

1
Upg = {v e CW:1([0,1)); v €Uy, [V (x2)| < Cy a.e.in (0, 1),/ v(zg) dry = 05} ,
0

where C(1):1([0, 1]) stands for the space of functions with Lipschitz-continuous deriva-
tives and Cy4, C5 are positive constants. The constraint imposed on v”/(x2) is based
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on numerical tests and recommended by [7] to reduce oscillations of the designed
boundary.
Then the domain optimization problem P reads: Find vep: € Ugq such that

min J (v, y(v)). 3)

vEUG4

J(voph y(vopt ))

2. THE PRIMAL HYBRID FORMULATION OF THE STATE PROBLEM
AND THE EXISTENCE OF AN OPTIMAL DOMAIN

Let Q(v) = UM Q,(0) be a decomposition of the closure of the domain Q(v),
v € UY,, into a finite number R(v) of disjoint subdomains €, (v) with a Lipschitz-
continuous boundary. We introduce the space

X(w) = {w € L*(Qv)); w, = wlg, () € HY (Q.(v)),1<r < R(v)}

provided with the norm derived from the Sobolev norm || - |10, (») on H*(Q(v))

R(v) 1/2

HwHX(v) = Z erH?,Qr(v)
r=1

The seminorm | - |1 o, () is defined analogously.
Having H (div; Q(v)) = {q € [L3(Q(v))] 2 divqe L2(Q(v))} , we define the space

R(v)
M) = Spe [[ H?(092:(v)); 3q € H(div; Q(v)) :

r=1

n= q|QT(1)) Vr 01 aQT(U)ﬂ 1<r< R('U)} )

where v, is the unit outward normal along 9, (v). Generally, a functional q - v €
H~'/2(0Q) is defined by the Green formula

Yw e HY(Q) (q'l/,w){m:/Q(Vw~q—|—wdivq)dx,

where (-, )¢, represents the duality between H~/2(0Q) and H/2(01).
A norm over the space M (v) will be defined in Section 4.2.

For any function v € Ugd, we consider the continuous bilinear forms a(v;-,-) :
X)) x X(v) =R and b(v;-,-): X(v) x M(v) — R defined by

R(v) R(v)
a(v;w, z) = Z /Q " Vw - Vzdx and bv;w, p) = — Z (W) 90, (v) -
r=1 r(v

r=1
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The primal hybrid formulation of the state problem (1.1) (see [9]) reads:
Find a pair (y(v), A(v)) € X(v) x M(v) such that

Vwe X() a(v;y(v),w) + blv;w, A(v)) = o )fw dzx, (4)

Ve M) b(v;y(v), pu) = 0. (5)
It is known [9, Lemma 1] that
HIQW)) = {w € X(0): ¥p € M(v) b(osw, ) = 0) (6)

and that [9, Theorem 1] the problem (2.1) —(2.2) has a unique solution (y(v), A(v)) €
X (v) x M(v) for any v € U°,. Moreover, y(v) € H}(Q(v)) is the solution of the
problem (1.1) and we have the equality (though in a weak sense, still useful — see
the Introduction)
dy(v)
ovy
As a consequence, both (1.1) and (2.1)—(2.2) can be considered as the state
problem for the optimal design problem P (see (1.3)).

= A0)|pq, ), 17 < Rv).

If we need we shall extend any function belonging to the space HE () or L%(9) by
zero on the set R? \ Q. For the sake of simplicity, the extension will not be denoted
by a new symbol. Particularly, any solution y(v) of the state problem (1.1), v € U2,
can be extended to the domain Q5 = (0,6) x (0,1), § > Cy (see Fig. 1).

Lemma 2.1. Let {vn}ff:l be a sequence of functions v, € U,qy. Then a subse-
quence {v,, } C {v,} and a function v € U4 exist such that v, , — vin cM([0,1])
and

y(vnm) I y(v) in Hl(Qé)a (7)

where y(v,,,,) and y(v) are the first components of the solution of the state problem
(2.1)—(2.2) on the domain Q(v,,,) and Q(v), respectively. If a sequence {v,} -, C
U, converges in C([0,1]), then v € U2, and (2.4) holds again.

Proof. Let us notice that subdomains Q,.(v,), Q,.(v) are unimportant here.
The solutions y(v,,) belong to H((v,,)) and are H'(s)-bounded. Thus a weakly
convergent subsequence can be extracted. The set Uy,q is compact in C ([0, 1]).

The strong convergence of y(vy,, ) can be proved like in the proof of [6, Lemma 2.1].
O

Theorem 2.1. There exists at least one solution of the optimization problem P.

Proof. The proof is standard — cf. e.g. [1], [6]. Suppose {vn}oe, Un € Uad,
is a minimizing sequence, i.e., lim J(v,,y(v,)) = iIZ}{f J(v,y(v)). A subsequence
n— 00 vEUGd
{vn,,} C {vn} exists (Lemma 2.1) such that lim v, =wvo, v € Uyg.

It is easy to see that the convergence (2.4) implies lim J (v, ,y(vn,. ) =T (vo,y(vo)).
Hence, gz}{f J(,y(v)) = T (vo,y(vp)) and vy = vept. O
v ad



Hybrid Variational Formulation of an Elliptic State Equation 235

3. APPROXIMATION BY HYBRID FINITE ELEMENTS

We shall proceed briefly, since the section summarizes known results. For details we
refer to e.g. [6], [7] (triangulations) and [9] (the primal hybrid FEM).

Let N be a positive integer and h = 1/N. Denoting by e; the subintervals
[(j —1)h,jh], 5 =1,2,..., N, we define the set

Z/lfd = {vh e legd; ”h|ej € Pi(e;), j=1,...,N,
A~ 1 A
|5}2L7)h(]h)|§04,]:1,,N*1,/ Uh($2)dIQC5},
0
where Pj(e;) is the set of linear functions defined on e; and

Fon(ih) = 3y lon((G + DR) = 2o () + v (G~ DA)].

Any domain Q(vp) is subdivided into triangles (Fig. 2) and we suppose that the
resulting family 7 = {7}, (vs); vn € UL, h — 0+} of triangulations 7 (vy) is strongly
regular in the sense of [3] (see [6] for details). If h is fixed the triangulation of the
rectangle [0, C’O] x [0, 1] is independent of vy, Cy is a fixed positive constant less than
Ch.

We prescribe a unique correspondence between Q(vy,) and 75, (vy). Coordinates of
the nodal points are governed by N + 1 values v, (jh), j =0,...,N. The triangles
of a triangulation 7 (vy) serve as subdomains €,.(vp,).

Fig. 2.

To be prepared to use the rectangle Q5 we extend each triangulation 7, (vy) € T
to Qs uniquely and denote by Tps(vp,). The resulting family 75 of triangulations is
assumed to be strongly regular. Like in Section 2 we define the space Xs(vy) with
the norm || - || x,(v,) and the seminorm | - | x;,)-
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Let us consider the approximate subspaces

Xp(vp) = {w € L*(Q(vp)); VK € Tp(vp) w|g is a linear function} C X (vy,),

My (vp) =< p € H L*(0K); VK € Ty(vy) VS plg = constant,
KeTy(vn)

lor, + Hlox,=0o0on S = KN Ky, Ki and Ky are adjacent triangles} C M(vy),

where S denotes a side of the triangle K.
Elements of M}, (vy,) comply with a natural condition which follows from opposite
directions of outward normals along a common side of adjacent triangles.

The approximate state problem:
Find a pair (yp(vp), An(vr)) € Xn(vp) X My (vy) such that

Vwp € Xp(vn)  a(vn; yn(vn), wn) + b(vn; why An(vn)) = / fwp dz, (8)
Q(vn)
Y un € My (vr) b(vn; Yn(vn), pn) = 0. (9)
The approzimate domain optimization problem Py: Find vgpt € Z/[fd such that
j(v(};pbyh(vc};pt)) - néglh j(Uh,yh(’Uh)), (10)

h ad

where yp(vn), yn(vl,;) are the first components of the solution of (3.1) - (3.2) on the
domains Q(vy), Q(v},), respectively.

As an analogy to (2.3) we introduce the space

Vi(vn) = {wn € Xp(vn); Vun € Myp(vn)  b(vn; wh, pp) = 0}
and reformulate (3.1) —(3.2) into the problem to find y,(vg) € Vi (vy) such that
Vwy € Vi(vr)  alvn;yn(vn), wp) = / fwp, dz. (11)
Q(vn)
According to [9], the mapping

W=

w, = [a(vp; wh, wh [wh | x ()

is a norm on V},(vp,), the problem (3.1) - (3.2) has a unique solution (yp (vp), An(vp)) €
Xp(vp) x Mp,(vp,), the component yg (vg) belongs to V4 (vy) and solves (3.4) uniquely.

Remark 3.1. A general treatment of the primal hybrid FEM applied to the Pois-
son equation can be found in [9]. Let us note that V3 (vp) is an external approxi-
mation of the space Hg(Q(vh)), i.e., Vi(vn) ¢ HE(2(vp)). A function wy, € Xp,(vp)
belongs to V;,(vy) if and only if [9, Section 4]
wy, is continuous at midpoints of the sides of triangles contained in Q(vg);  (12)
wy, vanishes at midpoints located on 0$(vp,). (13)

a
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Theorem 3.1. There exists at least one solution of the problem P, given by (3.3).

Proof. Introducing basis functions of the space V}, (v, ), we rewrite the equation
(3.4) into a matrix form. It is not difficult to prove that the solution of the linear
system continuously depends on the design variables. The cost functional is continu-
ous, too. Hence, the existence problem is reduced to a minimization of a continuous
function on a compact set. o

4. CONVERGENCE ANALYSIS

In this section we study a convergence of the approximate state solutions and the
approximate optimal domains, respectively. We emphasize the convergence analysis
of the first component of the primal hybrid state solution, since it is the point of the
optimal domain problem. Let us note that C§°(Q(v)) stands for the set of infinitely
continuously differentiable functions with a compact support contained in Q(v).

4.1. Approximate solutions of the optimal domain problem
The convergence analysis will be based on the following equality (see [9, Theorem 3]).

Theorem 4.1. Let yu(vy) € Vi(vs), vn € U”,, be the solution of the problem
(3.4). Then

2
2 o .
[y(vn) — Yn(0n) X (up) = (whelaf(vh) ly(vn) — th(vh)) + (14)
2
. of sup b(vn; wn, AMvp) — pn) 7
€M (V) wy, eV, (vr)\{0} [Wh| X (un)

where (y(vp,), Mv)) € Hg(2(vy)) x M (v,) is the solution of the problem (2.1) —(2.2)
on the domain Q(vy,).

Lemma 4.1. Let {v,}, h — 0+, be a sequence of functions vy, € U", such that
hlir(r)l vp, = v in C([0,1]). Then v € Upq.
—0+

Proof. Through a sequence of continuous piecewise linear interpolates of the
derivatives v}, can be proved that vj, — v’ € C(1([0,1]). In addition, v € Uyq can

be shown. See the proof of [7, Lemma 3.2] for details. O
Lemma 4.2. Let us denote e(vy,) =  inf  [y(vn) —wh|x(v,), Where y(vy) is the
wp €V (vn)

solution of (3.4), vy, € U",. Let a sequence {vy}, h — 0+, v, € U, converge to a
function v in C([0,1]). Then hlirg e(vp) = 0.
—0+
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Proof. Let n be a positive integer. For any sufficiently small i (see Lemma 2.1)

1
ly(on) = y(@)llas < . (15)
Also a function ¢, € C§°(2(v)) exists such that
1
ly(v) = PnllLow < - (16)

The uniform convergence of v, guarantees the existence of a parameter h(n) > 0
such that we have supp ¢, C Q(vs,) for all h € (0, h(n)].
We define the space (P;(K) is the set of linear functions on K)

Zn(on) ={ 2n € COAun)); VK € T(on) 2nlyc € Pi(K), 2hlaar(u,) =0} © HY(QAvn).

Denoting by ¢, € Zn(vr) the Zp, (vp,)-interpolation of ¢, we estimate (see e. g. [3,
Theorem 3.1.6]) || (¢n — 7h¢n)| g 1,5 < Ch| (@nlx) |2,k for any triangle K. The
constant C' > 0 is independent of h and vy, since the set of triangulations is strongly
regular. Taking the root of the sum of the squared inequality, we obtain (h is small)

1

1,0200m) < Chlpnl2.0ww,) < — (17)

||90n — Thn
The inclusion Zp,(vy,) C Vi, (vr,) and (4.2), (4.3), (4.4) lead to

3

e(vn) < ly(vn) — ThSOn|X(vh) = |y(vn) — T“h@n|1,95 < o

but n has been chosen arbitrarily. O

The next analysis is based on an auxiliary problem similar to (1.1).
Let the domain 2,,(v) be given by v € U,4 and a positive integer n,

Q,(v) = {m € R2; dist (z, Q1)) < 1} .

n

We define the auziliary problem: Find y,(v) € Hg(Q,(v)) such that

Yw € Hy((Qn(v)) /Q ( )Vyn(v) -Vwdx = /Q ( )fw dz, (18)

the function f (see (1.1)) is extended by zero outside Q3.
We remind that for any n and v € U,q the equation (4.5) has a unique solution.

Lemma 4.3. Let v € Uyq be given and g be a domain with a Lipschitz boundary,
Q5 C Qg. Assume the parameter n big enough to ensure Q,(v) C Q. Then

Jim 1y (0) = 9(0) 1.0 =0,
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where y(v) € H} (2(v)) is the first component of the state solution (2.1)—(2.2).
Proof. The method of the proof is identical with that of Lemma 2.1. O

An analysis of the second term of (4.1) is more laborious. We shall exploit the
method of function regularization. For any parameter o > 0, the mollifier is defined
as follows

llz]|Z2
dz,

T2lZ, 1

ll|?
%exp Wﬁv lz|lgz >0, w= [ exp

polx) = lzllp2 <1 (19)

0, [zlre = o

Lemma 4.4. Let a sequence {vj,}, h — 0+, vy, € U",, converge to v in C([0,1]).
Let the pair (y(vs), A(vr)) € HE(Q(vh)) x M (vp,) be the solution of (2.1)—(2.2) and
let y,,(v) € H(2,(v)) be the solution of (4.5). Finally, let the function y,,(v) be
given by

Yno(0)(z) = 02 / n (0) () 9o — 1)t = / g (0) (& + ot (1),

n(v) [t]<1
where z € Q,,(v) and o > 0.
Define kno(vp) € M(vp) by
Fng(0n) = 83’#9(“) on 0K YK € Tp(vs), Qvn) C Qu(v), (20)
K

where v denotes the unit outward normal vector along the boundary of a triangle
K € Ty (vp). Then

Jh(n,0) >0 Yhe (0,h(n, o) Fe(vp,n,0) €R Ywe X(vy,) (21)

|b(vn; w, A(vn) = fing(vn))| < €(vn,n, 0) [wlx (uy) ;
for any ¢ > 0 there exist parameters n and p such that

0< lim e(op,n,0) < €o. (22)

Proof. We introduce the function f, on ,(v),
S =0 [ i0ae-pa (23)

Supposing = € Q,,(v), dist(z, 02, (v)) > o, is a given point, we have supp ¢, (z—t) C
0, (v) and Ayp,(x —t) = Agpy(z —t), (see (4.6) or [8], §16). The subscripts ¢, x
denote variables used in the process of differentiation.
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Applying this and the equality f = —Agy,(v) (in the sense of distribution) to
(4.10), we may write

P o) = / T Opule = (24)

- / i (0) () Mesp i — 1) dt = / U (0) (8) Dipy( — 1) dt =
Qp (v) Qp (v)
N / (Dol — £) dt = — g2 Ay (v)(2).

If o is small enough a value h(p,n) > 0 exists such that
Vhe (0,h(g,n)] dist(Qvn),R?\ Q,(v)) > o.
Then on any domain Q(vy), 0 < h < h(g,n), (4.11) reads
fo(v) = =Ayn,(v). (25)
Using substitution of the domain of integration, we obtain

OYno(v) _ yn(v)
6% (33) - /|t<1 8%‘1

(x+ ot)p1(t)dt = (26)

Oyn ,
= < %x(v)> (), 1=1,2; x € Qvp), 0<h < h(o,n).
¢ e
For any h sufficiently small, the function y,,(v) is defined on the set Q(v;). We
can define kn,(vy) € M(vp,) by (4.7).
Using (4.12) and (4.13), we get (now q = V(yn,(v)) — see Section 2)

Vwe X(va)  bnsw, kng(vn)) == AYnp(v))wdz —
KET,}L(U}L)
- Z / V (Yno(v deo::/ fowdx— Z / Vyn(v)),-Vwdz.
KeTy(vn) Q(vn) KeTy,(vn)

This and (2.1) lead to

[b(vn; w, A(vn) = Fing(vn))| <

/ (f — fowdz|+
Q(vn)

T Z /[Vy(vh)—(vyn(v))g}~vwdm.

KeT,(vn) " K

Let wy € [L?(2(vp))]? be a function such that for any triangle K € 7y, (vp,), wy |, =
Vwly. Obviously, |wv|oow,) = |w|x@,)- Replacing Vw by wy in (4.14) and
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summing, we arrive at

1/2
Ib(vh;uw\('vh)/~’~ng(vh))§VQ (ffg)zdx] lwllx@n+  (28)

(vn)

1/2
+ /Q( )Vy(vh)—(Vyn(v))glzdwl [wllx (o)
Vh

We can write
/ (f — fo)de = / (f — f)Pdz+ e1(un 0) = e1(un 0) + e2(0)s  (29)
Q(vn) Q(v)

where the term 1 (vy, 9) involves the integrals over the sets Q(vy) \ Q(v) and Q(v) \
Q(vp). We easily get

Jim, €1 (vh, 0) =0, Jim, £2(0) (30)

Indeed, the first limit is a consequence of the uniform convergence of the functions
vy, and the second one is a well known property of regularized functions (see e.g.

(8], §15).
Making use of Q(vp) C Q5 N Qg N, (v), we estimate the second term of (4.15)
IVy(on) = (Vyn(0)ollo,w) < IVY(vn) = Vy(v)llo.os + (31)
+ IVy(v) = Vyn()llo.cg + [[Vyn(v) = (Vyn(v)ello,e, v)-

Denoting the terms on the right-hand side of (4.18) by e3(vp,), £4(n) and e5(n, o),
respectively, and applying Lemmas 2.1 and 4.3, we have

hli%lJr es(vp) =0, lim e4(n) =0, gli%lJr es(n, 0) = 0. (32)

n—oo

The last equality is valid for any positive parameter n.
Finally, (4.15), (4.16) and (4.18) give

e(vn,n, 0) = [e1(vn, 0) + €2(0)]"/? + e3(vn) + €4(n) + £5(n, 0)

and, by virtue of (4.17), (4.19), the statement (4.9) holds. O

Lemma 4.5. Assume that a function ¢ € H2(Q(vy)), vi, € UM, is given. Let us

define ¢ € M (vp,) by ¢ = 68”‘2 on 0K, K € Tj(vp). Then

it b(vp; w, ¥ — pp)

S Ch|(p| Q(vp)
€M (vn) weX (vy)\{0} 0| X (v 2900

where the constant C' > 0 is independent of h and v, € U",.
Proof. Lemma 4.5 is, in fact, Lemma 9 of [9].
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For any K € 7p,(v) and any side S of K, we set up = wga‘?j‘; = w31 on S,
where 7 stands for the orthogonal projector in L?(S) upon constants Pp|g. We

can estimate
o Oy
HY K - dy| = /= = <
Vwe H (K) ‘/S(l/) fon )w 7’ /S(GVK ﬂsaVK>wdv‘_

< Chlolz k|w, Kk,

where the constant C' > 0 is independent of K, h and vy. The inequality is a direct
consequence of the estimate cited by [9]. However, the paper [9] refers to [4]. A
detailed proof can be found in [2]. Since the independence of C' is a consequence of
strongly regular triangulations, we consider [4] as a sufficient reference. Thus

Vwe X(on) [bloniw, o — )| = |- > /BK(@b—uh)deS

KeThn(vn)

< Z C1h|ol2,k|w|1,x < Crh|p
KeTy,(vn)

2,Q(vp) |w‘X(vh)7

and the constant C; > 0 does not depend on h and vy,. O

Having Lemma 4.4 and Lemma 4.5, we tend to approximation of A(vp,) by Kno(vs)
and to utilization of (4.1). According to the following lemma, the two norms on
Vi (vp,) are uniformly equivalent.

Lemma 4.6. There exists a constant C > 0, independent of h and vy, € Z/l(fd, such
that

Ywp € Vi(on)  l[willx(wn) < Clwn|x (w,)-

Proof. The family 7 of triangulations is strongly regular, so that there exist
constants C7 > 0, Cy > 0, independent of h and v, € L{,;‘d, such that for any
K € Tp,(vp) it holds diam(K) < C1h and C2h? < meas (K).

Suppose v, € I/{gd is given. The interval [0,1] on zs-axis is subdivided into
N = h~! subintervals. We denote their midpoints by zj, 7 =1,...,N, and erect
perpendiculars p; —see Fig. 3. Let the set of triangles K; € 7j(v) intersected by
p;j be denoted by I;, j=1,...,N. We define the sets Q; = Uielj K;,7=1,...,N,
and the segments ¢; = p; N K, i € I;, j =1,...,N. The length of ¢; is not greater
than Ch.
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Fig. 3.

Let us choose a point = € |J;c; Ki, I = U;V:1 I;. Then the subscripts i and j
exist such that x € K, z € ;. By (3.5), the function w is continuous at a midpoint
si = (ti, z;) € OK,. Using (3.6), we have

b ow
w@) = [ S z) do+ (V wl,) - (@ = s0)
0 L1

Estimating the argument of the above integral on relevant segments ¢; and realizing
the fact that the number of elements of the set I; is not greater than C3/h, C3 > 0
is a constant independent of vy, € L{jd, we arrive at

w?(z) <4CFCsh > | Vwlk, IR (33)

kel

We integrate (4.20) over K;, taking linearity of w on any triangle into account,

/wz(x)dx < 4C1203hmeas(Ki)Z||Vw|Kk||f§2§ (34)
Ki kel;
4
< 40100%2/ IVl |2 dz.
2 ker; Kk

The estimate (4.21) is valid for any K;, i € I;. Denoting Cy = 4C{C5/Cs, we obtain

/ w?(x)de = Z/ w?(x) dz < C3Cy Z/ V|, | dz.
Q K; Ky

J i€l kel;

Finally, we integrate over Q(vp,) = U;V:1 Qj

/ w?(z) da < 03042/ Vol [ do = CsCalulk .
Q(’Uh,) Kk

kel
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The closing estimate is independent of h and v, € Z/lgd,

Vwe Vilvn)  wlk,) < (CsCi+1)wlk ) O

Now we are able to prove the following convergence lemma based on (4.1).

Theorem 4.2. Assume that a sequence {vp}, h — 0+, vy € Z/{gd7 converges
to v in C([0,1]). The solutions of (3.1)—(3.2) and (2.1)—(2.2) are denoted by
(yn(vn), An(vr)) € Xp(vp) x Mp(vy) and (y(v), A(v)) € HE(Q(v)) x M(v), respec-
tively. Then

T (0) ~ Y0 x) = 0.

Proof. We know (Lemma 2.1) that
y(vn) — y(v) in HY(Qs), h — 0+, (35)

where (y(vi), A(vr)) € HE(Q(vh)) x M(vp,) solves (2.1)—(2.2) on Q(vy).
Denoting the terms on the right-hand side of (4.1) by I?(vs) and I3(vy,), respec-
tively, we have (see Lemma 4.2)

i [y (on) = yn(on) e = i (FFon) + o)) = lim I3(n). (36)

lim
h—0+
Let us choose g9 > 0 arbitrarily. Then (see (4.9)) parameters n, ¢ and hy > 0,
dependent on &g, exist such that e(vs,n,0) < &o and the function y,,(v) defines

Kno(vn) € M(vp), 0 < h < hg. Using (4.8) and Lemma 4.6, we get
Ywy, € Vh(vh) V,LLh € Mh(’l)h) |b(vh;wh,)\(vh) — ‘Ll,h)| <
< ‘b(vh; Wh,, )‘(Uh) - ang(vh))‘ + |b(?]h; Wh,, Hng(vh) - /th)| <

< e0C1lwh|x (vy) + 10(VR; Why Knp (V) — pn)l,

(37)

where the constant C; > 0 is independent of A and vy,.
Applying Lemma 4.5 to (4.24), we obtain for any positive g

B(vn: Wh, Fin(Vh) —
[Ix(vh)] < e0Ci+  inf (vn; Wh, Kng(Vn) — fin)
wn €My, (vp) wp, €V (v )\{0} |wh‘X(vh)

< €001+ Coh|yne(v)|2,000,) < €0C1 4 Cahlyne(v)]2,05 < 260Ch,

where the constant Cy > 0 does not depend on h and vp. Thus, limit (4.23) tends
to zero.
Choosing € > 0, we have, if h is small enough, (see (4.22), (4.23))

[yn(vn) — y(0)] x5 0n) <€ (38)

Next, a function y.(v) € C5°(£2(v)) exists such that

19(v) = 4= (V)ll0; <e. (39)
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For any triangulation 7,s(vy,) € 75 we define the set of continuous and piecewise
linear functions

Zs(vp) = {2z € C(Q); VK € Tys(v)  z|x € PI(K)}.

For any w € C(Qs), let rpw € Zs(vp,) be the Zs(vp,)-interpolation.
The well known estimate (see e.g. [3], Theorem 3.2.1) gives

19 (0) = raye (V) 1.0, < Cahlye(v)]2.0;, <e, (40)

the constant Cs > 0 is independent of h and vy, since the family 75 of triangulations
is strongly regular. Combining (4.25), (4.26) and (4.27), we estimate

lyn(vn) = Taye (V) x5 () < 3€-
For any h sufficiently small, we have supp y.(v) C Q(vp), hence r,y-(v)|q, (vn) €
Vh (Uh).

The function gx(vy) = yn(vn) — rhyg(v)\ﬂ(vh) complies with the assumptions of
Lemma 4.6, hence a constant Cy > 0, independent of h and vy, exists such that

[1gn (0n)ll x5 (o) < 3Cae. (41)
The inequalities (4.28), (4.26) and (4.27) imply the final estimate

1y (vn) = y(0)l[x5n) < N1Yn(0n) = Taye (V) x5 0n) + 170 (0) = y(0)]1,05 <
< 3Cae+ [ly(v) = ye ()5 + Y= (v) = rrye(v)ll1.0; < (3Cs +2). 0

Lemma 4.7. Under the assumptions of Theorem 4.2

hlir& T (Whsyn(vn)) = T (v, y(v)).

Proof. The proof is easily seen from (1.2) and Theorem 4.2. O

To prove the main convergence result we need the following auxiliary lemma.

Lemma 4.8. For any v € U,q there exists a sequence {vy}, h — 0+, v, € Z/lgd,
such that

li = i 1]).
Jm vp = v in C([0,1])

Proof. Following the proofs of [7, Lemma 3.1] and [1, Lemma 7.1], we can
construct a piecewise linear function dependent on h and prove that it belongs to
Z/lgd. A sequence of these functions converges to v uniformly. a
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Theorem 4.3. Let {vé‘pt}, h — 0+, vf}pt € U",, be a sequence of solutions of

the approximate domain optimization problem P}, (see (3.3)). Then a subsequence
{v?;t} C {v},;} exists such that vff;;'t — Vopt in C([0,1]), hy, — 0+, and the design
variable vop; € Uaq solves the problem P (see (1.3)).

The strong convergence of the first component of the approximate hybrid state
solution is ensured by Theorem 4.2.

Proof. We follow the proof of [1, Theorem 7.1].

Let 17 € Uyq be given. There exists a sequence {n,}, h — 0+, n, € U",, such
that 9, — n in C([0,1]) (Lemma 4.8). Let us denote by yx(nn) € Xp(nn) the first
component of the solution of (3.1)—(3.2) where vy, is replaced by .

The set U2, is compact in C([0, 1]). We choose a subsequence {vf}l’;}} c{vl,}c
UY, such that (Lemma 4.1) vffgi converges to v* € U,q in C([0,1]).

By virtue of (3.3), J(v?{,‘t, yh(vg;t)) < T (Mn, s yn(Mr,,)). Passing to the limit with

hy, and using Lemma 4.7, we obtain J(v*,y(v*)) < J(n,y(n)) and v* = vpt. O

4.2. Convergence of the second component of the approximate state
solution

Essentially, in this subsection we verify results of [9] generalized to a family of
domains with a movable boudary.

1/2
We provide the space X (vj,) with the new norm [|w|| x (v, ) = ( > ||w||%K> ,
Kej’h (Uh)

where for any triangle K € T (vp),

- 1/2 .
lwllx = (lwli x +hZllwllg )~ hix = diam (K).

b(vpsw,u)

Then the space M (vy,) is normed by ||| ar¢ sup

o) weX (vy)\{0} |HwH|X(vh).

Lemma 4.9. Let 75(vy) belong to the set 7 of strongly regular triangulations.
Then there exists a constant C > 0, independent of h and vy, such that

b(vp; wp,
Vin € Ma(on)  sup DR oo
wneXn\{0} lwnllx (un)

Proof. The proof is based on detailed estimates concerning an affine mapping
between a triangle K and a reference triangle K. Since 7 is a strongly regular family
of triangulations, we find out that the proof of [9, Lemma 10] can be followed step
by step. O



Hybrid Variational Formulation of an Elliptic State Equation 247

Lemma 4.10. Let the pair (y(vp), A(vn)) € X(vn) X M(vp) solve the problem
(2.1)—(2.2) on the domain Q(vy,). Assume that (yn(vh), An(vn)) € Xn(vp) x My, (vr)
is the solution of the problem (3.1)—(3.2). Then

1
IACoR) = An(or)llarcny < Flyon) = yn(on)lx ) + (42)

1
+ (14 = inf Aop) — o)
(1+) .0 A = il

where the constant C' > 0 is independent of h and v, € Llfd and equals to the
constant C' in Lemma 4.9.

Proof. We refer to the proof of [9, Theorem 3]. The independence of C is an
immediate consequence of Lemma 4.9. O

Theorem 4.4. Let a sequence {v}, h — 0+, v, € U",, converge to v in C([0, 1]).
Then

li - =y
i, IAvR) = An(ur)llarwn) =0

Proof. Let us choose £ > 0 arbitrarily. By Lemma 4.4, we have y,,(v) €

C*(Q(vp)) and Kne(vy) € M(vy,) such that

b(vn; w, A(vp) — Hn@(vh))
1wl x(on)

Vw e X(vy) \ {0} <e(vp,n,0) <E. (43)

Using ||w x(v,) > [w|x(v,) and Lemma 4.5 (¢ = yno(v), 1 = kno(vn)), we arrive
at

inf Kno(Up) — vr) = 44
it (o) — s (1)
. b(vh§wvnng(vh) - ,L"h) N
= inf sup < Chlyno(v)l2,000,) < &,
HREM(h) weX (vy)\{0} llwll x o) e )

where the last inequality holds for all h sufficiently small because y,,(v) does not
depend on h and vy,.
The inequality [|w||x(v,) < lw]lx(v,) and (4.30), (4.31) give

b(vn; w, A(v) — pn)

inf Aop) — o) = inf su
s €M (o) A Cvn) Nhl”M( h) 1in € M (vn) weX(vhp)\{O} |||w|”X(vh)
- o sup b(vns w, A(n) = Kng(vn))
B €Mp(vh) [weX (vy)\{0} |||w|||X('Uh)
i b(Vn; W, Kng(Vn) — pn) < 2.
weX (vp)\{0} llwll x o)

Inserting this into (4.29), we finish the proof by

1 1.,
IX(vn) = An(or) | a(on) < 5\?!(%) — yn(vn)| x (o) +2(1 + 5)&
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Indeed, by virtue of Theorem 4.2 (see (4.23)), the term |y(va) — yn(vn)|x(v,) tends
to zero. The parameter ¢ is arbitrarily small. O

Closing remark. The system (3.1)—(3.2) seems to be clumsy to solve. Never-
theless, using the space Vi, (vp,) (see (3.5)—(3.6)), we can compute yp,(vp) from the
equation (3.4) easily. Substituting yy(vy) into (3.1) and introducing suitable basis
functions of the spaces Xy (vy) and My, (vp,), we obtain a system of linear equations
with a diagonal matrix.

Thus the component A(vp,) can be computed and the desired normal derivative
along the boundary of an optimized domain approximated. However, computational
effectiveness of the approach given in this paper has not been tested yet.
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