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Managing Editors:

Karel Sladký
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POLES AND ZEROS
OF NONLINEAR CONTROL SYSTEMS

Jean-François Pommaret

During the last ten years, the concepts of “poles” and “zeros” for linear control systems
have been revisited by using modern commutative algebra and module theory as a powerful
substitute for the theory of polynomial matrices. Very recently, these concepts have been
extended to multidimensional linear control systems with constant coefficients. Our purpose
is to use the methods of “algebraic analysis” in order to extend these concepts to the variable
coefficients case and, as a byproduct, to the nonlinear situation. We also provide nontrivial
explicit examples.

1. INTRODUCTION

It is a matter of fact that, during the last ten years or so, the concepts of “poles” and
“zeros” for linear control systems with constant coefficients have been revisited us-
ing modern commutative algebra and module theory. Among the various attempts,
we quote the survey [11] and the recent intrinsic approach [2]. The main idea is
to relate the definition of poles and zeros for linear control systems to the theory
of modules over a commutative ring that can be adopted for linear ordinary dif-
ferential (OD) control systems, that is when the input/output relations are defined
by systems of ordinary differential equations. The extension of these definitions to
linear multidimensional control systems has been recently obtained by means of the
“algebraic analysis” of linear partial differential (PD) control systems, that is when
the input/output relations are defined by systems of partial differential equations
[9, 12]. Hence, only the extension to nonlinear control systems, in a way coherent
with the direct study of [7], was remaining. In view of the underlying amount of
commutative and homological algebra needed [9, 10], the purpose of this paper is
only to provide an elementary sketch of the main ideas involved and we refer to [8]
for more details.

2. PRELIMINARIES

The basic procedure is to associate algebraic sets with the differential modules de-
fined by systems of partial differential equations and certain submodules defined by
selecting the inputs and the outputs among the control variables. In particular, if
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k is a (differential) field of constants, say Q, R or C in the applications, we may
consider the (commutative) ring D = k[d1, . . . , dn] = k[d] of differential operators
in n formal derivatives and we shall set didj = djdi = dij . The control system thus
allows to introduce by residue the differential module (or D-module) M obtained
by quotienting Dy1 + . . . + Dym = Dy by the subdifferential module generated by
the control OD or PD equations when y1, . . . , ym are the control variables. In this
framework, making a partition of the control variables into inputs and outputs al-
lows, by restriction, to obtain differential submodules respectively denoted by Min

and Mout.
Identifying D with the polynomial ring A = k[χ1, . . . , χn] = k[χ] in n indetermi-

nates, while taking into account the fact that M is a finitely generated noetherian
module over A, we may refer to the standard localization technique in commuta-
tive algebra [1, 4, 6] that supersedes the transfer matrix approach [10] in order to
introduce the support of M , namely supp(M) = {p ∈ spec(A)|Mp 6= 0} = {p ∈
spec(A)|p ⊇ annA(M)} = Z(annA(M)). We can therefore associate algebraic sets
with M but also with modules such as M/Min or M/Mout. We notice that, with the
above definition, we have Min + Mout = M but it may also happen, more generally,
that Min +Mout ⊂ M with a strict inclusion if, for example, one has to eliminate la-
tent variables among the control variables. At that time, a basic assumption, usually
done in classical OD control theory, is that M/Min is a torsion module. We recall
that the torsion submodule of M is t(M) = {m ∈ M |∃0 6= a ∈ A, am = 0} and that
M is called a torsion module if M = t(M) or is said to be torsion-free if t(M) = 0.
The true reason for this assumption is that, in this case, annA(M/Min) 6= 0 pro-
vides a well defined support, strictly distinct from spec(A), that can be identified
with the algebraic set defined over k by the radical ideal I(M) = rad(annA(M)) so
that supp(M) can be identified with Z(I(M)) where Z is used for “zero” in algebra
. . . and this is just the idea for introducing “zeros” in control theory when using
M/Mout or, by symmetry, the so-called “poles” when using M/Min.

Finally, the main property of the support is that, for any short exact sequence
0 → M ′ → M → M ′′ → 0 of modules over A, one can prove that annA(M) ⊆
annA(M ′) ∩ annA(M ′′) but rad(annA(M))M = rad(annA(M ′)) ∩ rad(annA(M ′′))
in such a way that supp(M) = supp(M ′) ∪ supp(M ′′). This specific nontrivial
property of the support is crucially used for considering various chains of inclusions
of submodules of M such as M ′

in = Min + t(M),. . . and respective quotient modules,
provided that they are torsion modules [9].

It is only at this stage that one can feel about the main challenging difficulty met
in extending these ideas to the variable coefficients case, that is when D = K[d] if now
K is a (OD or PD) differential field with n commuting derivations ∂1, . . . , ∂n such
that, in the operator sense, one has dia = adi+∂ia and D becomes a noncommutative
ring. In this case, the above technique for introducing algebraic sets fails because it
is no longer possible to introduce any polynomial ring or algebraic set as before.

The standard way to escape from this trouble is to pass from filtred modules to
graded modules and we explain this procedure not at all well known by the control
community where the people are mostly familiar with the constant coefficients case.
Meanwhile, the reader will understand on the examples presented later on that such
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an approach must bring quite a new field of research, even in OD control theory.
We may use the standard filtration D = {Dr}r≥0 by the order of operators with
Dr = {P ∈ D|ord(P ) ≤ r} and D0 = k or K. We check at once the well known
properties:

— 0 = D−1 ⊆ D0 ⊆ D1 ⊆ . . . ⊆ D.

— ∪r≥0Dr = D.

— DrDs ⊆ Dr+s.

The induced residual filtration of M will be M = {Mq}q≥0 and we have:

— DrMq ⊆ Mq+r, ∀ q, r ≥ 0, with equality for q large enough (Maisonobe and
Sabbah [5]). The associated graded algebra gr(D) = ⊕r≥0Dr/Dr−1 is a com-
mutative ring. In this case, if µ = (µ1, . . . , µn) is a multi-index with length
|µ| = µ1 + . . . + µn, we may write any P ∈ D with ord(P ) = r as a finite
sum P =

∑
0≤|µ|≤ra

µdµ where aµ ∈ K and dµ = (d1)µ1 . . . (dn)µn . We then
define the symbol of P with respect to the polynomial variables (covector
in differential geometry) χ to be the polynomial σχ(P ) =

∑
|µ|=ra

µχµ and
σχ(PQ) = σχ(P )σχ(Q), ∀P, Q ∈ D.

Proceeding similarly for M , we may introduce the associated graded module G =
gr(M) = ⊕q≥0Mq/Mq−1. Accordingly, G becomes a module over gr(D) and we may
apply the commutative machinery already introduced in order to set:

Definition. char(M) = supp(G).

Now we can associate with M two integers that can be computed effectively by
using Gröbner or similar bases [3]:

— For q large enough, there exists a unique polynomial HM , called Hilbert poly-
nomial of M , such that dim(Mq+r) = HM (q+r) = (m/d!)rd + . . .. The degree
d = d(M) is called the dimension of M .

— Z(I(G)) is an algebraic set which is the union of irreducible algebraic sets or
varieties. We may consider the maximum of the (Krull) dimensions of these
varieties.

A key result is the following theorem [6]:

Theorem. (Hilbert–Serre) These two numbers coincide.

3. ANALYSIS OF LINEAR CONTROL SYSTEMS

We now come to the unexpected application of these apparently abstract results to
control theory.

First of all, we have of course the way to define poles and zeros for the variable
case. Meanwhile, it will bring a striking result that we shall discuss and illustrate.
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We notice that this result is implicitly used in the definition of causality which
only involves the top degree terms in the numerator and denominator of a transfer
matrix for example. Indeed, in the case k = cst(K) is the subfield of constants
of K, if our control system is defined over k, for any differential module M we can
compute d = d(M) by means of the Hilbert polynomial but also by using annA(M) or
annA(G) and these three numbers coincide. Accordingly, as far at least as dimensions
are only concerned, one can study the graded or the filtred framework equivalently,
even though they can look like quite different.

Example. With m = 1, n = 3, q = 2 and k = Q, let us consider the following
(formal) linear system:





d33y − d13y − d3y = 0

d23y − d12y − d2y = 0

d22y − d12y = 0.

It is easy to check that dim(Gq) = 3, ∀ q ≥ 1 ⇒ d(M) = 1. The algebraic sets
defined by the two ideals:

ann(M) = ((χ3)2 − χ1χ3 − χ3,

χ2χ3 − χ1χ2 − χ2, (χ2)2 − χ1χ2)

ann(G) = ((χ3)2 − χ1χ3, χ2χ3 − χ1χ2,

(χ2)2 − χ1χ2)

are both the union of three varieties of dimension 1, even if they are quite distinct
ideals indeed.

Of course, an additional difficulty (leading in fact to the definition of Gröbner
bases) is that the graded approach only works if the system is formally integrable,
that is if the given equations at order q generate all the ones existing at order q + r
through no more than r differentiations (prolongations), ∀ r ≥ 0.

Example. With n = 4, m = 1, q = 1 and K = Q(x1, x2, x3, x4), let us consider
the nonformally integrable system:

d4y − x3d2y − y = 0, d3y − x4d1y = 0

=⇒ d2y − d1y = 0.

We notice at once that the ideal (χ4 − x3χ2, χ3 − x4χ1) does not contain χ2 − χ1.
Accordingly the dimension of the corresponding differential module is 1 and not 2
as one could imagine from pure algebra.

It must be emphasized that the lack of formal integrability is responsible for
the fact that the exactness of a short sequence 0 → M ′ → M → M ′′ → 0 of
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filtred modules does not necessarily imply the exactness of the associated sequence
0 → G′ → G → G′′ → 0 of graded modules, but this is a very delicate question
[5, 8].

The preceding results can also be used in order to study the structural properties
of control systems, that is properties, such as controllability, that do not depend on
the choice of inputs and outputs among the control variables. The idea, still not
known in multidimensional control theory today, up to our knowledge, relies on the
following trick that only gets a deep meaning if one uses the extension functor as a
key homological tool for studying dimensions [9].

If P ∈ D with P =
∑

aµdµ, we define ad(P ) =
∑

(−1)|µ|dµaµ after pushing
all the coefficients to the left as in the standard presentation of an operator, using
the commutation relations of the corresponding noncommutative ring if needed.
The adjoint operation thus defined can be extended to operators and systems in
a linear way or through integration by part as in mechanics (elasticity) or physics
(electromagnetism). Accordingly, if the control system is formally defined by the
linear system Dy = 0 ⇐⇒ aτµ

k dµyk = 0 where k is an index for the variables and τ
is an index for the equations, we may multiply on the left by test functions λτ and
integrate by part to get D̃λ = 0 as adjoint system. If now M (respectively N) is the
differential module defined by D (respectively D̃), the key idea is to notice that N
becomes a torsion module if and only if D is surjective, that is has no compatibility
conditions on z for solving formally Dy = z. This is the main reason for which
control systems are most of the time assumed to be defined by surjective operators.
In this case, one has the following delicate theorem generalizing the well known
Kalman and Hautus tests for OD systems while showing how the classification of
modules depends on the dimension [9, 12].

Theorem. When D is formally surjective as above, then M is torsion-free if
d(N) ≤ n − 2 (minor primeness), M is reflexive if d(N) ≤ n − 3, . . . , M is pro-
jective if d(N) = −1, that is Z(I(M)) = ∅ (zero primeness).

Corollary. An OD control system defined by a surjective operator is controllable
if and only if N = 0.

Example. If we consider the preceding example as providing D̃, then the corre-
sponding D surely defines a torsion-free module, without any need to refer to any
direct computation. Of course, all these facts cannot be imagined when n = 1.

4. ANALYSIS OF NONLINEAR CONTROL SYSTEMS

We are finally ready to extend these results to nonlinear control systems. For this,
setting yq = {yk

µ = dµyk|0 ≤ |µ| ≤ q, 1 ≤ k ≤ m} and k{y} = limq→∞ k[yq], we may
suppose that the system is defined over K by a prime ideal p ⊂ K{y} (care to the
notation) and we introduce the quotient differential field L = Q(K{y}/p). Referring
to [6], we may then consider the module M = ΩL/K of Kähler differentials as a
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differential module over L[d] and this is just as if we were dealing with the variable
coefficients case. In the differential geometric framework, a similar procedure can
be followed by using vertical bundles for linearizing the system.

In actual practice, if the nonlinear system is defined by equations of the form
Φτ (yq) = 0, we may introduce the vertical variations Yq = δyq related by equations
of the form ∂Φτ

∂yk
µ
(yq)dµY k = 0 where the yq are solutions of the above system of (non-

differential) equations. The following nonlinear example exhibits features similar to
the ones of the preceding examples. It is rather difficult to find such examples.

Example. With n = 2, m = 1, q = 2, let us consider the nonlinear formally
integrable system defined by two differential polynomials, using jet notation:

{
Φ1 ≡ y12 − 1

2 (y11)2 + y1 = 0

Φ2 ≡ y22 − 1
3 (y11)3 + 3y2 + 2y = 0.

One has:
d2Φ1 − d1Φ2 + y11d1Φ1 + 2Φ1 ≡ 0.

The linearized system is:
{

d12Y − y11d11Y + d1Y = 0

d22Y − (y11)2d11Y + 3d2Y + 2Y = 0

and one can check that dim(Gq) = 1, ∀ q ≥ 2 ⇒ d(M) = 1. Accordingly, the
characteristic set is defined by:

χ1χ2 − y11(χ1)2 = 0, (χ2)2 − (y11)2(χ1)2 = 0.

Using a primary decomposition, it is the union of two varieties, namely:

(χ2 − y11χ1 = 0) ∪ (χ1 = 0, χ2 = 0)

and the second variety (a point) is imbedded in the first variety having dimension 1.
One can also notice the identity:

(χ2 − y11χ1)2 = (χ2)2 − (y11)2(χ1)2 − 2y11(χ1χ2 − y11(χ1)2)

and the radical of the preceding ideal is indeed a prime ideal only generated by
χ2 − y11χ1.

5. CONCLUSION

We hope to have convinced the reader that poles and zeros must only be considered
as particular algebraic sets related to the input/output structure of the control
systems. As a byproduct, other algebraic sets can also be of use, provided one can
refer to intrinsically defined numbers such as dimensions. We have shown how to
restrict these computations by using the symbol terms, contrary to what is done
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in polynomial matrix theory. Also we have been able to extend these results to
nonlinear systems. More results on both linear and nonlinear systems can be found
in the book [8]. The application of these results to stability problems is an important
open problem for the future.

(Received February 2, 2002.)
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