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ON HODGES–LEHMANN OPTIMALITY OF LR TESTS

Frantǐsek Rubĺık

It is shown that the likelihood ratio test statistics are Hodges-Lehmann optimal for
testing the null hypothesis against the whole parameter space, provided that certain regu-
larity conditions are fulfilled. These conditions are verified for the non-singular normal,
multinomial and Poisson distribution.

Let {P γ ; γ ∈ Ξ } be a family of probability measures, defined on (X,F) by means
of the densities {f(x, γ); γ ∈ Ξ } with respect to a measure ν. If we denote the q-fold
products

S = X∞ × . . .×X∞ , S = F∞ × . . .×F∞ , Θ = Ξq (1)

then for θ = (θ1, . . . , θq) ∈ Θ the corresponding product measure

Pθ = P
∞
θ1
× . . .× P

∞
θq

, (2)

defined on the σ-algebra S, describes independent sampling from the q populations
(X,F , P θj ), j = 1, . . . , q .

Throughout the paper we shall assume that

∅ 6= Ω0 ⊂ Θ . (3)

In describing asymptotic properties of tests of the null hypothesis we shall use the
notation

P =



 p ∈ Rq;

q∑

j=1

pj = 1 and pj > 0 for all j



 (4)

and for θ,θ∗ ∈ Θ, p ∈ P we denote

K(θ∗, θ, p) =
q∑

j=1

pjK(θ∗j , θj) , (5)

K(Ω0, θ, p) = inf{K(θ∗, θ, p); θ∗ ∈ Ω0 } , (6)



200 F. RUBLÍK

where K(θ∗j , θj) = K(P θ∗j , P θj
) is the Kullback-Leibler information number.

We shall suppose that a test ϕu of Ω0 against Θ− Ω0 depends on

s = ({x(1)
j }∞j=1, . . . , {x(q)

j }∞j=1) ∈ S

through
x(u) = (y(1, n(1)

u ), . . . , y(q, n(q)
u )) (7)

only, where
y(j, n(j)

u ) = (x(j)
1 , . . . , x

(j)

n
(j)
u

) (8)

is a sample from the j-th population.The sample sizes will be subjected to the
following assumption, which in the one sample case q = 1 simply means that the
sample size n tends to infinity.

(C1) In the notation

nu =
q∑

j=1

n(j)
u , p(j)

u = n(j)
u /nu (9)

the relations

lim
u→∞

nu = +∞ , lim
u→∞

p(j)
u = pj ∈ (0, 1〉 , j = 1, . . . , q (10)

hold.

If a test ϕu of Ω0 against Θ − Ω0 is based on (7) and for βu(θ) = Eθ(ϕu) the
relation

sup { lim
u→∞

βu(θ∗); θ∗ ∈ Ω0 } = α ∈ (0 , 1) (11)

holds, then according to Lemma 6.1 in [1] and Theorem 2.1 in [8] under validity of
(C1) for each parameter θ ∈ Θ− Ω0

lim inf
u→∞

1
nu

log[1− βu(θ)] ≥ −K(Ω0, θ, p) . (12)

We remark that an extension of this inequality to the case of stochastic processes
and random fields can be found in [11].

In accordance with [4], [7] and [8] we shall say that the tests {ϕu} are Hodges-
Lehmann optimal (H–L optimal) for testing Ω0 against Θ− Ω0 , if (C1) and (11 )
imply that

lim
u→∞

1
nu

log[1− βu(θ)] = −K(Ω0, θ, p) (13)

for each θ ∈ Θ− Ω0 .
The H–L optimality was investigated by Brown in [2], where testing Ω0 against

Ω1 is replaced with testing Ω∗0 against Ω∗1, and Ω∗i is the closure of Ωi in a set Θ∗, into
which the original parameter set Θ is embedded. As pointed out in [2], p. 1208, the
likelihood ratio statistics T (x1, . . . , xn, Ω0,Ω1) = log[L(x1, . . . , xn, Ω1)/L(x1, . . . , xn,
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Ω0)] can be essentially different from T (x1, . . . , xn,Ω∗0,Ω
∗
1), which is in [2] proved to

be optimal for the extended problem Ω∗0 against Ω∗1.
In some particular cases was the H–L optimality of the LR tests proved in [8].

In the case of exponential families was this H–L optimality in the multisample case
q > 1 proved in [7] under the conditions, including the following assumptions.

(D 1) The effective set

B =
{

x; sup
γ

log f(x, γ) < +∞
}

(14)

is open.
(D 2) The arithmetic mean x = 1

n

∑n
i=1 xi of the i.i.d. observations x1, . . . , xn

belongs to B with probability 1 for all n ≥ N and γ ∈ Ξ.

These assumptions are in [7] imposed to assure existence of the MLE with proba-
bility 1 for all n ≥ N . They are fulfilled by the families generated by the exponential
reparametrization of the non-singular normal distributions, but for important expo-
nential families—generated by the exponential reparametrization of the Poisson or
the multinomial distributions—the set (14) is closed, and the MLE does not exist
with positive probability for all n. Moreover, the null hypothesis Ω0 is in [7] assumed
to have the property that the function (25) of the parameter θ∗ is continuous. The
aim of this paper is to present regularity assumptions, fulfilled by the non-singular
normal, the Poisson and the multinomial distributions. As it can be seen from theo-
rem 1, the presented assumptions in difference from [7] facilitate a unified approach
to the H–L optimality of the LR tests for all integers q ≥ 1, without imposing any
restrictions on value of the quantity K(θ) (defined in [7] on p. 7), or on continuity
of K(·, Ω0, p).

(A I) There exists a σ-compact metric space Ξ1 such that Ξ is dense in Ξ1 (i. e.
Ξ = Ξ1), and the original system { f(x, γ); γ ∈ Ξ } can be extended to a system
{ f(x, γ); γ ∈ Ξ1 } of densities with respect to the same measure ν (by the extension
we understand that f(x, γ) coincides with the original density if γ ∈ Ξ). Moreover,
the extended system {P γ ; γ ∈ Ξ1 } consists of mutually different probabilities, the
Kullback-Leibler information quantity K(θ∗, .) is continuous on Ξ1 for each θ∗ ∈ Ξ1

(i. e. γ∗n → γ∗ implies K(θ∗, γ∗n) → K(θ∗, γ∗)), and f(x, γ) is continuous on Ξ1 for
each x ∈ X.

(A II) The function K(., θ) is finite and continuous on Ξ1 for each θ ∈ Ξ .

(A III) Let {θ∗n}∞n=1 be parameters from Ξ1, γ ∈ Ξ and

lim sup
n→∞

K(θ∗n, γ) < +∞ .

(a) If θ ∈ Ξ, then lim sup
n→∞

K(θ∗n, θ) < +∞ .

(b) The sequence {θ∗n}∞n=1 possesses a limit point in Ξ1 and if the parameters
{θn}∞n=1 belonging to Ξ are such that lim sup

n→∞
K(θ∗n, θn) < +∞ , then also the se-

quence {θn}∞n=1 possesses a limit point in Ξ1 .
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(c) Let limn→∞ θ∗n = θ∗. If {θn}∞n=1 is a sequence of parameters from Ξ and
lim

n→∞
θn = θ, then lim inf

n→∞
K(θ∗n, θn) ≥ K(θ∗, θ) .

(A IV) There exist measurable sets An ⊂ Xn, an integer N and measurable
mappings θ̂n : An → Ξ1, gn : An → R such that for each γ ∈ Ξ and n ≥ N

P γ(An) = 1 (15)

and on the set An in the notation L(x1, . . . , xn, γ) =
∏n

i=1 f(xi, γ) the equality

log L(x1, . . . , xn, γ) = gn(x1, . . . , xn)− nK(θ̂n, γ) (16)

holds.

(AV) In the notation from (A IV) and

pu = (p(1)
u , . . . , p(q)

u ) , (17)

for θ = (θ1, . . . , θq) ∈ Ξq let (cf. (8) )

K
(
θ̂, θ, pu

)
=

q∑

j=1

p(j)
u K

(
θ̂

n
(j)
u

(
y(j, n(j)

u )
)
, θj

)
. (18)

If (10) holds and θ ∈ Ξq, then for every real t

Pθ

[
nuK(θ̂, θ, pu) ≥ t

] ≤ exp[−t + hu(t)] (19)

where

lim sup
u→∞

hu(tu)
nu

= 0 (20)

whenever the inequality

lim sup
u→∞

tu
nu

< +∞ (21)

holds.

We recall that a metric space is said to be σ-compact, if it can be expressed as
a countable union of its compact subsets. The reader can easily verify that both
this property of Ξ1 and the continuity of f(x, .), which are postulated in (A I),
together with validity of (A IV) imply measurability of (22) for any non-empty set
Ω ⊂ Θ = Ξq.

The regularity assumptions imposed for the multisample case in [7] include only
the exponential families, for which the MLE exists with probability 1 for all n ≥ N .
Instead of the exponential reparametrization we use an enlargement of the class of
probabilities. Since the Kullback-Leibler information number is non-negative, the
axiom
(A IV) guarantees that for all n ≥ N there exists with probability 1 a MLE θ̂n of
the unknown parameter γ ∈ Ξ, but taking values in the enlarged parameter set Ξ1,
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and having the property that the likelihood functions computed for the original par-
ameters γ ∈ Ξ can be expressed in the specific postulated way. We remark that for
the exponential families, satisfying the assumptions (D 1) and (D 2), imposed in [7],
the assumption
(A IV) is fulfilled with Ξ1 = Ξ. Validity of (A IV) makes possible to use the in-
equality (2.8) from [3] in the proof of H–L optimality of LR tests.

If we put for Ω ⊂ Θ

L(x(u), Ω) = sup





q∏

j=1

n(j)
u∏

i=1

f(x(j)
i , θj); θ = (θ1, . . . , θq) ∈ Ω



 , (22)

then by the likelihood ratio test statistics Tu for testing Ω0 against Θ−Ω0 we shall
understand the statistics

Tu = 2 log
L(x(u), Θ)
L(x(u), Ω0)

. (23)

In the proof of the theorem on H–L optimality of (23) the following lemma will be
used.

Lemma 1. Let the assumptions (A I) – (A III) be fulfillled, (3) hold and for δ ≥ 0
let

D(δ, p) = { θ∗ ∈ Ξq
1; K(θ∗, Ω0, p) ≤ δ } , (24)

where
K(θ∗, Ω0, p) = inf {K(θ∗, θ̃, p); θ̃ ∈ Ω0 } . (25)

If limu→∞ δu = 0, limu→∞ pu = p ∈ P, then for each θ ∈ Θ in the notation (6)

du = K
[
D(δu, pu), θ, pu

]
(26)

is a real number and
lim inf
u→∞

du ≥ K(Ω0, θ, p) . (27)

P r o o f. Since du ≤ K(θ∗, θ, pu) whenever θ∗ ∈ Ω0, taking into account (A II) we
see that

lim sup
u→∞

du < +∞ . (28)

Since the sets (24) are non-empty, there exist θ∗u ∈ D(δu, pu) such that

du ≤ K(θ∗u, θ, pu) ≤ du + u−1 . (29)

Let θ
(0)
u ∈ Ω0 be such that

K(θ∗u, Ω0, pu) ≤ K(θ∗u, θ(0)
u , pu) ≤ K(θ∗u, Ω0, pu) + u−1 . (30)

Let us choose an increasing sequence {uv}∞v=1 of positive integers such that

lim inf
u→∞

du = lim
v→∞

duv . (31)
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Fixing γ0 ∈ Ω0 and utilizing (28)–(30), pu → p and (A III)(a) we get

lim sup
u→∞

K(θ∗u, θ(0)
u , pu) ≤ lim sup

u→∞
K(θ∗u, γ0, pu) < +∞

which together with (A III)(b) means that there exists a subsequence {uvt}∞t=1 and
points θ∗ ∈ Ξ1, θ(0) ∈ Ω0 such that in the notation

zt = uvt , γ∗t = θ∗zt
, γ

(0)
t = θ(0)

zt

for t →∞
γ∗t → θ∗ , γ

(0)
t → θ(0) .

If θ̃ ∈ Ω0, then (A II), (30) and (A III)(c) yield

K(θ∗, θ̃, p) = lim
t→∞

K(γ∗t , θ̃, pzt
) ≥ lim sup

t→∞
K(γ∗t , γ

(0)
t , pzt

) ≥

≥ lim inf
t→∞

K(γ∗t , γ
(0)
t , pzt) ≥ K(θ∗, θ(0), p) ≥ K(θ∗, Ω0, p) .

Since according to (A I)

K(θ∗, Ω0, p) = K(θ∗,Ω0, p) , (32)

obviously K(θ∗, Ω0, p) = limt→∞K(γ∗t , γ
(0)
t , pzt). Combining this with (30) and

θ∗u ∈ D(δu, pu) we see that K(θ∗,Ω0, p) = 0. Utilizing (A III)(b), (A I) we obtain
that θ∗ ∈ Ω0 and by virtue of (31), (29), (A II)

lim inf
u→∞

du = lim
t→∞

K(γ∗t , θ, pzt) = K(θ∗, θ, p) ≥ K(Ω0, θ, p) .

The inequality (27) now follows from (A II). 2

Theorem 1. Let a family of probabilities {P γ ; γ ∈ Ξ }, determined by densities
{f(x, γ);
γ ∈ Ξ } with respect to a measure ν be such that the assumptions (A I) – (AV)
are fulfilled. Let

∅ 6= Ω0 ⊂ Θ = Ξq (33)

and in the notation (23)

ϕu(x(u)) =
{

1 Tu > tu
0 Tu ≤ tu .

(34)

If validity of (C1) and (11) implies that the critical constants tu in (34) can be chosen
in such a way that

lim sup
u→∞

tu < +∞ (35)

then the tests (34) are H–L optimal.
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P r o o f. We shall proceed analogously as in the proof of theorem 4.5 in [7]. Let
us assume that both (C I) and (11) hold. In accordance with (A IV) let

Bu = A
n

(1)
u
× · · · × A

n
(q)
u

and for x(u) ∈ Bu put

θ̂(u)(x(u)) =
(
θ̂

n
(1)
u

(y(1, n(1)
u )), . . . , θ̂

n
(q)
u

(y(q, n(q)
u ))

)
. (36)

Making use of (A IV), (A II) we get for u ≥ u0 in the notation (24) that

Pθ

[
2 log

L(x(u), Θ)
L(x(u), Ω0)

≤ tu

]
= Pθ

[
2nuK(θ̂(u),Ω0, pu) ≤ tu

]
=

= Pθ

[
θ̂(u) ∈ D(δu, pu)

]
(37)

where δu = tu/2nu . According to the assumptions limu→∞ δu = 0. Utilizing the
first inequality in (2.8) in [3] and applying the assumption (A V) we see that for
u ≥ u1

Pθ

[
θ̂(u) ∈ D(δu, pu)

] ≤ Pθ

[
K(θ̂(u), θ, pu) ≥ du

] ≤ exp[−nudu + ou] (38)

where limu→∞ ou/nu = 0. Combining (37) and (38) with (27) we get

lim sup
u→∞

1
nu

log Pθ[ϕu = 0] ≤ −K(Ω0, θ, p)

and (13) follows from (12). 2

According to Theorem 1 the LR tests (34) based on (23) are H–L optimal for
arbitrary non-empty set Ω0 ⊂ Ξq, having the property (35). However, if θ∗ ∈ Ω0,
then

2 log
L(x(u), Θ)
L(x(u), Ω0)

≤ T̃u(x(u), θ∗) , T̃u(x(u), θ∗) = 2 log
L(x(u), Θ)
L(x(u), θ∗)

. (39)

If Ξ is an open subset of Rm and the densities {f(x, γ); γ ∈ Ξ} satisfy regularity
conditions on partial derivatives, then the MLE θ̂n of the unknown parameter from
Ξ has the property that L(

√
n(θ̂n−γ)|Pγ) → N(0, J−1(γ)), where J(γ) is the Fisher

information matrix, and according to the well-known classical results under validity
of (C1) for u →∞ the weak convergence of distributions

L(T̃u(x(u), θ∗)|Pθ∗) → χ2
mq (40)

takes place, where χ2
mq denotes the chi-square distribution with mq degrees of free-

dom. From (39) and (40) one can easily find out, that validity of (C1) and (11)
implies (35). This fact will be used in the proofs of theorems in the further text.
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Let k > 1 be an integer and a = (k − 1)k/2. Let us put m = 2k + a and denote

Ξ = { γ = (µ′, σ1, . . . , σk, ρ′)′ ∈ Rm; µ ∈ Rk, min σi > 0, ρ ∈ Ra, R(ρ) is positive definite }
(41)

the set of parameters of the non-singular k-dimensional normal distributions, i. e. µ
is the vector of means, σ2

i are the variances, ρ = (ρ12, . . . , ρk−1k)′ are the correlation
coefficients and R(ρ) is the symmetric matrix with R(ρ)ij =ρij if i<j, and R(ρ)ii =1.
For γ ∈ Ξ we shall denote by V (γ) the covariance matrix of the corresponding normal
distribution and f(x, γ) its density. In this notation the following theorem holds.

Theorem 2. If Ω0 is a non-empty subset of Θ = Ξq and Tu are the statistics (23),
then the tests (34) are H–L optimal for testing Ω0 against Θ− Ω0.

P r o o f. Since (40) holds with m = k(k+3)
2 , the tests (34) have the property (35).

We shall prove that also the assumptions (A I) – (A V) are fulfilled.
Let us denote Ξ1 = Ξ . For γ,γ∗ ∈ Ξ

K(γ , γ∗) =
1
2
(µ− µ∗)′V (γ∗)−1(µ− µ∗) +

1
2
tr

[
V (γ)V (γ∗)−1

]
+

1
2

log
|V (γ∗)|
|V (γ)| −

k

2

and (A I), (A II) obviously hold.
According to the inequality (3.31) in [6]

K(γ∗, γ) ≥ 1
2
(µ∗ − µ)′V (γ)−1(µ∗ − µ) +

1
2

k∑

j=1

g
( λj(γ)

λj(γ∗)

)
− k

2

where λ1(γ) ≥ . . . ≥ λk(γ) are characteristic roots of V (γ) and g(z) = z−1 + log z.
Since g(z) attains its minimum in z = 1 and g(z) −→ +∞ if either z → +∞ or
z → 0+, the assumption (A III) holds.

The assumption (AV) can be proved either similarly as the theorem 2.1 in
[3], or after the exponential reparametrization by means of the lemma 4.4 in [7].
Since (A IV) holds with the usual MLE θ̂n and with the set An of the n-tuples
(x1, . . . , xn) ∈ (Rk)n for which the matrix

∑n
j=1(xj−x)(xj−x)′ is positive definite,

the assumptions of Theorem 1 are fulfilled. 2

As we have already noted, this theorem 2 can be applied to testing the null
hypothesis (3) on parameters of the non-singular normal distribution by means of
the test statistics (23). Since in some situations the likelihood ratio test statistics
(23) are expressible as monotone transformations Zu(T ∗u ) of some usually used test
statistics T ∗u , in such a case also H–L optimality of T ∗u is established. In the following
example the statistics T ∗u have not this property.

Example. Testing equality of covariances. Let us denote in accordance with
(1) and (41)

Ω0 = {θ = (θ1, . . . , θq) ∈ Θ; V (θ1) = . . . = V (θq)} (42)
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the hypothesis that the covariance matrices of the q normal populations are equal.
Let

x̄j , Σ̂j

denote the sample mean and the sample covariance matrix constructed from the
sample drawn from the j-th population. If we put Sj = n

(j)
u Σ̂j , S =

∑q
j=1 Sj , then

Tu = 2 log
L(x(u), Θ)
L(x(u), Ω0)

= log T̃u , T̃u =
∣∣∣∣

1
nu

S

∣∣∣∣
nu

/ q∏

j=1

∣∣∣∣
1

n
(j)
u

Sj

∣∣∣∣
n(j)

u

.

As pointed out in [10], p. 225, to obtain an unbiased test, instead of T̃u the modified
test statistic

T ∗u =
∣∣∣∣

1
nu − q

S

∣∣∣∣
nu−q/ q∏

j=1

∣∣∣∣
1

n
(j)
u − 1

Sj

∣∣∣∣
n(j)

u −1

(43)

is used. We shall prove the H–L optimality of the statistic T ∗u .
As it is shown in the proof of the theorem 3.1 in [6], if γ ∈ Ξ and a is a real

number, then there exist real numbers 0 < ε < β such that in the notation

Bn = { (x1, . . . , xn); λk(Σ̂) ≥ ε , λ1(Σ̂) ≤ β } , (44)

where λk(Σ̂) is the smallest and λ1(Σ̂) is the largest characteristic root of Σ̂, the
inequality

lim sup
n→∞

1
n

log
[
1− P γ(Bn)

] ≤ −a (45)

holds. Let (10) hold. If a = K(Ω0, θ, p) and B
(j)
n are the sets (44) satisfying (45)

with
γj = θj and a∗j = a/pj , then in the notation X = Rk, Cu = B

(1)

n
(1)
u

× . . .×B
(q)

n
(q)
u

lim sup
u→∞

1
nu

log Pθ

[
Xnu − Cu

]
≤ −a . (46)

Under validity of the null hypothesis T̃u

/
T ∗u → 1 a. e. , and according to [9], p. 404

the distributions L(log T̃u) → χ2
v. Thus if costants {tu} are such that the tests (34)

based on Tu = log T ∗u satisfy (11), then (35) is fulfilled. Further, it is obvious that
there exist an index u1 and a positive real number M such that for all u ≥ u1 on
the set Cu the inequality T̃u

/
T ∗u ≤ M holds. Hence according to Theorem 2

lim sup
u→∞

1
nu

log Pθ

[
Cu ∩ {log T ∗u ≤ tu}

] ≤

≤ lim sup
u→∞

1
nu

log Pθ

[
log T̃u ≤ tu + log M

]
= −K(Ω0, θ, p) .

Combining this with (46) we get

lim sup
u→∞

1
nu

log Pθ

[
log T ∗u ≤ tu

] ≤ −K(Ω0, θ, p) ,



208 F. RUBLÍK

which together with (12) means that the tests based on T ∗u are H–L optimal for
testing the hypothesis (42) under the normality assumptions.

Let X = {1, ..., k} be a finite set,

Ξ =

{
(p1, ..., pk−1)′ ∈ Rk−1; min

i
pi > 0,

k−1∑

i=1

pi < 1

}
(47)

and

f(x, p) = px , pk = 1−
k−1∑

j=1

pj (48)

denotes a density with respect to the counting measure µ on (X, 2X). In this notation
the following theorem holds.

Theorem 3. If Ω0 is a non-empty subset of Θ = Ξq and Tu are the statistics (23),
then the tests (34) are H–L optimal for testing Ω0 against Θ− Ω0.

P r o o f. Since (40) holds with m = k − 1, the tests (34) have the property (35).
To prove (A I) – (AV), let us denote

Ξ1 = Ξ (49)

the closure of (47), and let f(x, p) be the densities (48). Since

K(p, p∗) =
k∑

j=1

pj log
pj

p∗j

where 0 log 0
x = 0, the assumption (A III)(c) can be proved similarly as the lemma

4.4(a) in [5], and all the other statements in (A I) – (A III) can be easily proved by
means of the compactness of Ξ1.

The assumption (A IV) is fulfilled with An = Xn and

θ̂n = (p̂1, . . . , p̂k−1)′ , p̂x =
nx

n

where nx denotes the number of occurrences of x in x1, . . . , xn.
Making use of the first equality in (48), the relation (2.4) in [5] and proceeding

as in the proof of the inequality (2.10) in [5], we obtain, that (AV) holds.
Thus the assumptions of Theorem 1 are fulfilled and the proof is completed. 2

Let X = {0, 1, 2, ...},
Ξ = (0,+∞) (50)

and

f(x, λ) =
e−λλx

x!
(51)

be density of the Poisson distribution Pλ with respect to the counting measure µ on
(X, 2X). In this notation the following theorem holds.
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Theorem 4. If Ω0 is a non-empty subset of Θ = Ξq and Tu are the statistics (23),
then the tests (34) are H–L optimal for testing Ω0 against Θ− Ω0.

P r o o f. Since (40) holds with m = 1, the tests (34) have the property (35). To
prove (A I) – (AV), we denote

Ξ1 = 〈0 ,+∞) .

Since for λ, λ∗ ∈ Ξ1

K(λ, λ∗) =

{
λ∗ − λ + λ log

λ

λ∗
λ∗ > 0

+∞ λ∗ = 0, λ > 0

where 0 log 0
x = 0, the assumptions (A I) – (A III) hold. The assumption (A IV) holds

with An = Xn and θ̂n = n−1
∑n

j=1 xj . Since the axiom (AV) can be proved either
by means of the relation (6.22) in [6] or by means of the Lemma 4.3 in [7], the
assumptions of Theorem 1 are fulfilled. 2

(Received December 22, 1992.)
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