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ROBUST AND RELIABLE H∞ OUTPUT
FEEDBACK CONTROL FOR LINEAR SYSTEMS
WITH PARAMETER UNCERTAINTY
AND ACTUATOR FAILURE1

Chang-Jun Seo and Byung Kook Kim

The robust and reliable H∞ output feedback controller design problem is investigated
for uncertain linear systems with actuator failures within a prespecified subset of actuators.
The uncertainty considered here is time-varying norm-bounded parameter uncertainty in
the state matrix. The output of a faulty actuator is assumed to be any arbitrary energy-
bounded signal. An observer-based output feedback controller design is presented which
stabilizes the plant and guarantees an H∞-norm bound on attenuation of augmented dis-
turbances, for all admissible uncertainties as well as actuator failures. The construction
of the observer-based output feedback control law requires the positive-definite solutions
of two algebraic Riccati equations. The result can be regarded as an extension of existing
results on robust H∞ control and reliable H∞ control of uncertain linear systems.

1. INTRODUCTION

The relationship between H∞ optimization and robust stabilization of uncertain lin-
ear systems has been established in [1]. Since then, interests have focused on the
problem of robust H∞ control for linear systems with parameter uncertainties (see
[2, 4] and [5] for example). The objective is to design a controller which stabilizes
an uncertain system while satisfying an H∞-norm bound constraint on disturbance
attenuation for all admissible uncertainties. However, these control designs may re-
sult in unsatisfactory performances or even unexpected instabilities in the event of
control component failures, e.g., actuator failures, sensor failures, etc. In practice,
failures of control components are often found in the real world. Hence, it should be
taken into account when a practical control system is designed. Recently, a method-
ology for the design of reliable control systems using observer-based output feedback
was introduced in [3]. The resultant control system provides guaranteed stability
and satisfies an H∞-norm disturbance attenuation bound in normal condition as
well as in the event of actuator or sensor failures in the system. However, in [3], the

1Paper presented at the 5th IEEE Mediterranean Conference on Control and Systems held in
Paphos (Cyprus) on July 21–23, 1997.
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system uncertainty is not considered when the control system is designed. Hence
the desired closed-loop behaviors may not be guaranteed if the system uncertainty
exists in the system under consideration.

In this paper, interest is focused on systems with practical control environments
where both system uncertainties and control component failures may exist. Espe-
cially, attention is concentrated on uncertain linear systems with time-varying norm-
bounded parameter uncertainties in the state matrix and actuator failures among
various control components. The output of a faulty actuator is assumed to be any ar-
bitrary energy bounded signal. It is a generalization for the actuator failure mode in
[3], where the output of a faulty actuator is assumed to be zero. Robust and reliable
H∞ control methodology is developed using observer-based output feedback under
the assumption that all information of the plant state is not available for feedback.
The approach adopted here relies on the notion of quadratic stabilization with an
H∞-norm bound which was introduced in [5]. An observer-based output feedback
control law is constructed by solving two parameter-dependent algebraic Riccati
equations. This control methodology guarantees satisfactory closed-loop behavior
despite the appearance of parameter uncertainties and actuator failures, which is an
extension of existing results on robust H∞ control [2, 4] and reliable H∞ control [3].

2. SYSTEMS AND DEFINITION

Consider a class of uncertain linear systems described by state-space models of the
form

ẋ(t) = [A + ∆A(t)] x(t) + Bu(t) + Gw1(t) (1a)
y(t) = Cx(t) + w2(t) (1b)

z(t) =
[

z1(t)
z2(t)

]
=

[
Hx(t)
u(t)

]
(1c)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control input, y(t) ∈ Rp is the
measured output, w1(t) ∈ Rr and w2(t) ∈ Rs are the disturbance inputs which
belong to L2[0,∞), and z(t) ∈ Rq is the controlled output. A, B, G, C and H
are known real constant matrices of appropriate dimensions describing the nominal
system. ∆A(·) is a real-valued matrix function representing time-varying parameter
uncertainty, which is of the form

∆A(t) = DF (t)E (2)

where D ∈ Rn×i and E ∈ Rj×n are known real constant matrices and F (t) ∈ Ri×j

is an unknown matrix function satisfying FT (t) F (t) ≤ I with the elements of F (·)
being Lebesgue measurable. Note that this kind of uncertainty structure has been
analyzed in [1] and [6], and also used in numerous papers (see [4] and [5] for example).

The following concept of quadratic stabilization with an H∞-norm bound will be
essentially used in deriving robust and reliable output feedback H∞ controller for
the uncertain system (1), which was introduced in [5].
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Definition 1. Let the constant γ > 0 be given. The uncertain system (1) is
said to be quadratically stabilizable with an H∞-norm bound γ (via linear output-
feedback) if there exist a fixed linear time-invariant proper output-feedback law
u = K(s) y, where s is a complex variable, and a real symmetric positive definite
matrix Q ∈ Rn×n such that the inequality

AT
c (t)Q + QAc(t) +

1
γ2

QBcB
T
c Q + CT

c Cc < 0 (3)

holds for any admissible uncertainty F (·), where (Ac(t), Bc, Cc) is a state-space
realization of the closed-loop system.

Note that Definition 1 implies the following facts. The proof is similar to that of
Lemma 2.1 in [5] and thus is omitted.

Lemma 1. Suppose the uncertain system (1) is quadratically stabilized with an
H∞-norm bound γ > 0 by linear output feedback. Then, the closed-loop system is
uniformly asymptotically stable. Moreover, with the zero initial condition, ‖z‖2 <
γ‖w‖2 for all admissible uncertainty F (·) and all nonzero w ∈ L2[0,∞), where
w = [wT

1 wT
2 ]T and ‖ · ‖2 denotes the usual L2[0,∞)-norm.

We conclude this section by introducing a decomposition of a matrix that will be
used in the control design. Let M be an n×m matrix and S be a subset of the set
U constructed to column numbers of M , that is,

S ⊆ {1, 2, . . . ,m} ≡ U. (4)

Let S denote the complement set of S, that is, S = U − S. We define the decompo-
sition of M for S as follows:

M = MS + MS (5)

where MS and MS are n×m matrices formed from M by replacing only columns of M
corresponding to S and S with null vectors, respectively. MS(respectively, MS) will
be called a ‘decomposition matrix of M for S(respectively, S)’. This decomposition
has the following properties.

MSMT
S

= MSMT
S = 0. (6)

Let s be a subset of S. Then

MSMT
S = MsM

T
s + MS−sM

T
S−s (7)

and
MsM

T
s ≤ MSMT

S . (8)

Note that the notation M ≥ N(respectively, M > N) where M and N are sym-
metric matrices, refers to the fact that the matrix M − N is positive semidefi-
nite(respectively, positive definite).
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3. PROBLEM FORMULATION

We classify actuators of a given system into two groups. One is a set of actuators
susceptible to failures, which is denoted by Ω ⊆ {1, 2, . . . ,m}. These actuators may
fail occasionally. This set of actuators is redundant in view of the stabilization of
the system while it may contribute and is necessary to improving a control system
performance. The other is a set of actuators robust to failures, which is denoted by
Ω = {1, 2, . . . , m} − Ω. We assume that these actuators never fail, and also that Ω
contains the minimum set of actuators required to stabilize a given system.

The actuators play a role to transmit the controller outputs to the plant. Without
loss of generality, the transfer function of an actuator is assumed to be 1. Generally,
the outputs of faulty actuators may have arbitrary signals different from normal
controller outputs, and these signals will act on the system as unexpected control
inputs. It is desirable that both the effects of failure are reduced to be negligible
by control feedback, and the stability of closed-loop system is maintained. In this
paper, the output of a faulty actuator is assumed to be any arbitrary energy bounded
signal, that is, the output of a faulty actuator belongs to L2[0,∞). The outputs of
faulty actuators are regarded as disturbance inputs. Attempts are made to suppress
the signals on the system outputs caused by faulty actuators as well as disturbance
inputs, below a given level.

Problem 1. (robust and reliable H∞ output-feedback control problem) Assume
that not all states are available for feedback. Let (A,BΩ) be a controllable pair,
where BΩ is the decomposition matrix of B for Ω, and also let (A,C) be an observ-
able pair. When a constant γ > 0 is given, design a fixed linear output-feedback
controller to stabilize the system (1) and guarantee the given H∞-norm constraint γ
on attenuation of augmented disturbances including failure signals, for actuator fail-
ures within an actuator set corresponding to Ω as well as all admissible uncertainties
satisfying FT (t)F (t) ≤ I.

4. ROBUST AND RELIABLE H∞ CONTROLS

Based on Definition 1, we will solve the Problem 1 for the design of a robust and re-
liable H∞ controller for the uncertain linear system (1) that is robust for parameter
uncertainties and exogenous disturbances, and is reliable despite possible actuator
failures. Let ω ⊆ Ω correspond to a particular subset of susceptible actuators that
actually experience failures. When the actuators corresponding to ω actually expe-
rience failures, the control input is represented as

u(t) = uN
ω (t) + uF

ω (t). (9)

where uN
ω (t) is the normal control input vector only concerned by normal actuators,

whose elements corresponding to ω, which is the set of {1, 2, . . . ,m}−ω, have normal
actuator output and the other elements are zero, and uF

ω (t) is the abnormal control
input vector only concerned by faulty actuators, whose elements corresponding to ω
have faulty actuator output and the other elements are zero, where the superscripts
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N and F mean ‘normality’ and ‘failure’, respectively. The controlled output is
described by

z(t) =
[

Hx(t)
u(t)

]
=

[
Hx(t)
uN

ω (t)

]
+

[
0

uF
ω (t)

]
= zN

ω (t) + zF
ω (t) (10)

where zN
ω (t) ≡

[
Hx(t)
uN

ω (t)

]
and zF

ω (t) ≡
[

0
uF

ω (t)

]
. Since zF

ω (t) is out of closed-loop

system, only zN
ω (t) can be considered in the closed-loop system. Hence, the signals

on the system output which should be suppressed are zN
ω (t).

The output-feedback control law for the uncertain linear system (1) is based on
a state observer of the form:

ζ̇ = Aζ + BΩu + BΩû + Df̂ + Gŵ1 + L(y − Cζ) (11)

where

û = Kaζ, (12)

f̂ = Kuζ (13)

and
ŵ1 = Kdζ. (14)

L is the observer gain, Ka is the actuator output estimation gain, Ku is the un-
certainty estimation gain, and Kd is the disturbance estimation gain. û, f̂ and ŵ1

account for the actuator output u, the uncertainty F (t) Ex, and the disturbance
input w1, respectively. Then the control law becomes

ζ̇ = (A + BΩKa + DKu + GKd − LC)ζ + BΩu + Ly (15a)
u = Kζ (15b)

where K is the control feedback gain. Let actuators corresponding to any set ω ⊆ Ω
be failed. The control input, that is, the actuator output becomes

u = (KT )T
ωζ + uF

ω (16)

where (KT )ω is the decomposition matrix of KT for ω. Applying the controller (15)
with (16) to the system (1) gives a closed-loop system of order 2n described by

ẋe = Fexe + Gew
F
ω , zN

ω = Hexe (17)

where xe = [xT ζT ]T , wF
ω = [wT

1 wT
2 (uF

ω )T ]T , and

Fe =
[

A + DF (t)E Bω(KT )T
ω

LC A + BΩ(KT )T
Ω

+ BΩKa + DKu + GKd − LC

]
,

Ge =
[

G 0 Bω

0 L 0

]
, He =

[
H 0
0 (KT )T

ω

]
(18)
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where (KT )Ω is the decomposition matrix of KT for Ω. Transforming coordinates
of (17) such that the last n state variables are the observer error e = ζ − x, gives

˙̃xe = F̃ex̃e + G̃ew
F
ω , zN

ω = H̃ex̃e (19)

where

F̃e =




A + DF (t)E + Bω(KT )T
ω Bω(KT )T

ω

{ BΩKa + DKu + GKd { A + BΩKa + DKu + GKd

−DF (t)E −BΩ−ω(KT )T
Ω−ω } −BΩ−ω(KT )T

Ω−ω − LC }


 ,

G̃e =
[

G 0 Bω

−G L −Bω

]
, H̃e =

[
H 0

(KT )T
ω (KT )T

ω

]
. (20)

where (KT )Ω−ω is the decomposition matrix of KT for Ω− ω. Now the problem is
reduced to selecting K, L, Ka, Ku and Kd in (15) such that the augmented system
(19) is quadratically stable with an H∞-norm bound γ.

Theorem 1. Let a scalar γ > 0 be given. Suppose

K = −BT X, Ka =
1
γ2

BT X, Ku =
1
γ2

DT X, Kd =
1
γ2

GT X (21)

where X > 0 satisfies

AT X + XA−XBΩBT
Ω

X +
1
γ2

X(GGT + DDT + BΩBT
Ω)X

+ γ2ET E + HT H + δ1I = 0 (22)

for a positive scalar δ1. Suppose also

L = γ2(W −X)−1CT (23)

where W > X satisfies

AT W + WA− γ2CT C +
1
γ2

W (GGT + DDT + BΩBT
Ω)W

+ WBΩBT
ΩW + γ2ET E + HT H + δ2I = 0 (24)

for a positive scalar δ2 > δ1. Then for actuator failures corresponding to any ω ⊆ Ω,
the observer-based controller (15) quadratically stabilizes the system (1) with an
H∞-norm bound γ in the sense of ‖zN

ω ‖2 < γ‖wF
ω ‖2.

P r o o f . Consider actuator failures corresponding to ω ⊆ Ω. With all assumptions
in Theorem 1, if we can find a 2n× 2n matrix Xe > 0 such that

F̃e
T
Xe + XeF̃e +

1
γ2

XeG̃eG̃e
T
Xe + H̃e

T
H̃e < 0, (25)
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the proof will be completed due to Definition 1.
Substituting (21) into (20), we obtain

F̃e =




A + DF (t) E −BωBT
ω X −BωBT

ω X{
1
γ2 (GGT + DDT + BΩBT

Ω)X
{

A + 1
γ2 (GGT + DDT + BΩBT

Ω) X

−DF (t)E + BΩ−ωBT
Ω−ωX

}
+BΩ−ωBT

Ω−ωX − LC
}


 ,

G̃e =
[

G 0 Bω

−G L −Bω

]
, H̃e =

[
H 0

−BT
ω X −BT

ω X

]
. (26)

Define Xe > 0 by

Xe =
[

X 0
0 X1

]
. (27)

Let the left-hand side of (25) be

R =
[

R11 R12

R21 R22

]
. (28)

Calculating R using (26), we obtain

R11 = AT X + XA−XBωBT
ω X +

1
γ2

X(GGT + BωBT
ω ) X

+ET FT (t)DT X + XDF (t) E + HT H

R12 =
1
γ2

X(DDT + BΩ−ωBT
Ω−ω) X1 + XBΩ−ωBT

Ω−ωX1 − ET FT (t)DT X1

R21 =
1
γ2

X1(DDT + BΩ−ωBT
Ω−ω)X + X1BΩ−ωBT

Ω−ωX −X1DF (t)E

R22 = AT X1 + X1A +
1
γ2

X(GGT + DDT + BΩBT
Ω)X1

+
1
γ2

X1(GGT + DDT + BΩBT
Ω)X +

1
γ2

X1(GGT + BωBT
ω )X1

−CT LT X1 −X1LC +
1
γ2

X1LLT X1 + XBωBT
ω X

+XBΩ−ωBT
Ω−ωX1 + X1BΩ−ωBT

Ω−ωX

R11 can be modified to

R11 = AT X + XA−XBΩBT
Ω

X +
1
γ2

X(GGT + DDT + BΩBT
Ω)X

+γ2ET E + HT H + δ1I − δ1I −
( 1

γ2
+ 1

)
XBΩ−ωBT

Ω−ωX

+γ2ET FT (t)F (t)E − γ2ET E − 1
γ2

XDDT X

+ET FT (t)DT X + XDF (t)E − γ2ET FT (t)F (t)E.
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Using (22) gives

R11 = −δ1I −
( 1

γ2
+ 1

)
XBΩ−ωBT

Ω−ωX + γ2ET FT (t) F (t) E − γ2ET E − 1
γ2

XDDT X

+ET FT (t)DT X + XDF (t)E − γ2ET FT (t)F (t) E.

R22 can be modified to

R22 = AT (X + X1) + (X + X1)A +
1
γ2

(X + X1) (GGT + DDT + BΩBT
Ω) (X + X1)

+(X + X1) BΩBT
Ω(X + X1)− γ2CT C + γ2ET E + HT H + δ2I

+
(
γCT − 1

γ
X1L

)(
γC − 1

γ
LT X1

)
− (δ2 − δ1) I −

( 1
γ2

+ 1
)

X1BΩ−ωBT
Ω−ωX1

− 1
γ2

X1DDT X1 − (X + X1) BωBT
ω (X + X1).

By choosing W = X + X1 and using (23) and (24), we obtain

R22 = −(δ2−δ1) I−
( 1

γ2
+1

)
X1BΩ−ωBT

Ω−ωX1− 1
γ2

X1DDT X1−WBωBT
ω W. (29)

Hence, it follows that

R = −
[

δ1I 0
0 (δ2 − δ1) I

]
− γ2

[
ET

0

] [
I − FT (t)F (t)

] [
E 0

]

−
( 1

γ2
+ 1

) [
XBΩ−ω

−X1BΩ−ω

] [
BT

Ω−ωX −BT
Ω−ωX1

]

−
[

γET FT (t)− 1
γ XD

1
γ X1D

]
[

γF (t)E − 1
γ DT X 1

γ DT X1

]

−
[

0
WBω

] [
0 BT

ω W
]
.

From the assumptions that δ1 < δ2 and FT (t)F (t) ≤ I, we conclude that R < 0.

Theorem 1 gives a method to design a controller for the uncertain system (1)
which guarantees robust and reliable stability and disturbance attenuation of the
closed-loop system despite the appearance of actuator failures as well as time-varying
parameter uncertainties in the state matrix. Note that in the event of actuator
failures corresponding to ω, the controlled output to be achieved by Theorem 1
satisfies

‖z‖2 < γ‖wN
ω ‖2 + ‖uF

ω ‖2, (30)

which is due to each element of uF
ω belonging to L2[0,∞). Theorem 1 is an extension

of the result for a reliable centralized controller design in [3], to allow for time-varying
parameter uncertainty in the state matrix, and soft-type failures as well as hard-type
failures studied in [3]. 2



Robust and Reliable H∞ Output Feedback Control for Linear Systems . . . 437

5. EXAMPLE

Consider the following linear system with the parameter uncertainty in the state
matrix

ẋ(t) =








−2 1 1 1
3 0 0 2

−1 0 −2 −3
−2 −1 2 −1


 +




1 0
0 0
0 0
0 1


 F (t)

[
0.01 0 −0.01 0
0 0 0.01 0

]




x(t)

+




0 0
1 0
0 0
0 1


 u(t) +




1
0
1
0


 w1(t) (30a)

y(t) =
[

1 0 0 0
0 0 1 0

]
x(t) + w2(t) (30b)

z(t) =




1 0 −1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1




[
x(t)
u(t)

]
=

[ [
1 0 −1 0

]
x(t)

u(t)

]
. (30c)

where the uncertain matrix F (t) is time-varying as follows:

F (t) =
[

0 1
sin(2t) 0

]
. (31)

The nominal open-loop system, which is considered in [3], is unstable, since not all
poles are in the left-half plane. The uncertain matrix F (t) satisfies FT (t)F (t) ≤ I.
Two cases of control designs are compared under the same environment. In the
first case (Case 1), the controller is designed assuming that all actuators are well
operational. In the other case (Case 2), the controller is designed where the first
actuator failure is taken into account using the result in Theorem 1. The simulation
environment is as follows:

Design parameter:

γ = 20, δ1 = 0.01, δ2 = 0.1.

Initial state:

x(0) =
[

3 −2 2 −3
]T

, ζ(0) =
[

0 0 0 0
]T .

Disturbance input:

w(t) =
[

w1(t)T w2(t)T
]T =

{ [
2 −2 1

]T 5 ≤ t ≤ 10
[

0 0 0
]T otherwise.

First actuator failure:

u1(t) =





not failed 0 ≤ t < 5
2 5 ≤ t ≤ 15
0 t > 15.
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Figure 1 shows that the control system of Case 1 is unstable in the presence of
actuator failure even though it is robust for the uncertainties before the presence of
first actuator failure. On the other hand, Figure 2 shows that the control system of
Case 2 is robust and reliable for the uncertainties and first actuator failure.

0 5 10 15 20 25 30
-300

-200

-100

0

100

Time[sec]

Regulation Output z

0 5 10 15 20 25 30
-150

-100

-50

0

50

Time[sec]

Regulation Output u

Fig. 1. System responses for robust H∞ control – Case 1
(solid-line: z(t), u1(t); dashed-line: u2(t)).
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0
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Time[sec]

Regulation Output z

0 5 10 15 20 25 30
-30

-20

-10

0

10

Time[sec]

Regulation Output u

Fig. 2. System responses for robust and reliable H∞ control – Case 2
(solid-line: z(t), u1(t); dashed-line: u2(t)).

6. CONCLUSIONS

For linear systems with time-varying parameter uncertainty in the state matrix, this
paper has presented a robust and reliable H∞ control design methodology to achieve
quadratic stability and H∞-disturbance attenuation, not only when the system is
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operating properly, but also in the presence of certain actuator failures. Actuator
failures are considered as arbitrary energy-bounded disturbance signals to the sys-
tem. A set of actuators considered for reliable control is assumed to be susceptible to
failures and redundant in view of the stabilization of the system. A construction for
the desired observer-based output feedback control law is given in terms of the posi-
tive definite solutions of two parameter-dependent algebraic Riccati equations. The
existence of an appropriate solution to the equations is sufficient to guarantee that
the controller tolerates actuator failures within a prespecified set of susceptible ac-
tuators, and suppresses the effects of exogenous disturbance inputs and unexpected
actuator outputs by failures under a predefined level. The result of this paper pro-
vides an unified solution for both robust control and reliable control. And also the
result can be regarded as an extension of existing results on robust H∞ control and
reliable H∞ control of uncertain linear systems.
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