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REDECING–HORIZON CONTROL
OF CONSTRAINED UNCERTAIN LINEAR SYSTEMS
WITH DISTURBANCES

Luigi Chisci, Paola Falugi and Giovanni Zappa

The paper addresses receding-horizon (predictive) control for polytopic discrete-time
systems subject to input/state constraints and unknown but bounded disturbances. The
objective is to optimize nominal performance while guaranteeing robust stability and con-
straint satisfaction. The latter goal is achieved by exploiting robust invariant sets under
linear and nonlinear control laws. Tradeoffs between maximizing the initial feasibility region
and guaranteeing ultimate boundedness in the smallest invariant region are investigated.

1. INTRODUCTION

Predictive control represents an effective design methodology for handling hard con-
straints and performance issues in a joint fashion. Stability of constrained predictive
control schemes has been thoroughly investigated [12] while robustness with respect
to model uncertainty deserves further attention [3] though there have been recently
several interesting contributions in this direction, like e. g. [1, 6, 14, 15, 16]. Typ-
ical robust constrained predictive control algorithms adopt a polytopic description
of model uncertainty [6, 14, 15] and pursue minimization of a worst-case perfor-
mance index [16] or of an upper bound of it [6, 14]. The present paper adheres to
the polytopic description of uncertainty which seems the most natural for handling
constraints, but, like [1, 15], turns aside from the objective of worst-case perfor-
mance optimization for a twofold reason. First, min-max optimization may be too
computationally demanding. Secondly, the paradigm of optimizing performance for
the worst-case system may be unrealistic in the common situation where a nominal
(most likely) model is available. For the above reasons, a more sensible approach
seems to minimize the nominal performance index (i. e. the performance index for
the nominal model) while robustly guaranteeing stability and constraint satisfaction.

Within this framework, we propose two novel predictive control algorithms for
polytopic discrete-time systems with state/control constraints and subject to un-
known but bounded disturbances. Both algorithms postulate a control sequence,
along an infinite prediction horizon, consisting of a fixed robustly stabilizing linear
state feedback u = Fx plus N free control moves [18]. The receding-horizon con-
troller selects the control at sample time t as the first element of the control sequence
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which minimizes the energy of control moves subject to appropriate state-dependent
linear constraints.

In particular, the first algorithm imposes the constraint that after N steps the
state enters a maximal polytopic set, which is feasible and robustly invariant under
the feedback u = Fx. This approach is similar to the one adopted in [15] but uses
maximal polytopic sets instead of more conservative ellipsoids.

Conversely, the second algorithm imposes the less stringent constraint that the
state at the next sample time remains in a controlled robust invariant set; a similar
approach is followed in [7] to cope with disturbances.

It is shown that the first algorithm guarantees asymptotic stability provided that
the initial state is feasible, while the second algorithm provides a larger feasibility
region but not guaranteed stability. In any case their feasibility regions turn out to be
larger than the ones provided by ellipsoidal invariance constraints [15]. Moreover,
the two algorithms are compared from both a computational and a performance
point of view.

The rest of the paper is organized as follows: Section 2 formulates the problem
of interest; Section 3 recalls background material on invariant set theory; Section 4
presents the two algorithms; Section 5 illustrates simulation results; finally Section 6
ends the paper.

2. NOTATION AND PROBLEM FORMULATION

Notation

For any subsets A,B of IRn, for any matrix M mapping IRn onto IRl and for any
subset C of IRl, the following sets are defined: A+B = {a + b|a ∈ A, b ∈ B}; −A =
{−a|a ∈ A}; A − B = A + (−B); M(A) = {Ma|a ∈ A}; M−1(C) = {a|Ma ∈
C}; A ∼ B = {a|a + B ⊆ A}. Further B1 denotes the unit ball (in the Euclidean
norm) of IRn and Co{· · · } denotes the convex hull.

Problem formulation

Consider the discrete-time uncertain LTV system

x(t + 1) = A(t)x(t) + B(t)u(t) + Dw(t) (1)

where
A(t) = A0 + Ã(t) B(t) = B0 + B̃(t)

[
Ã(t), B̃(t)

]
=

q∑

j=1

λj(t)[Ãj , B̃j ], ∀ t ≥ 0

q∑

j=1

λj(t) = 1, λj(t) ≥ 0, j = 1, 2, . . . , q.

(2)

Here x(t) ∈ IRn is the state, u(t) ∈ IRm is the control input and w(t) ∈ IRp is
the disturbance input at sample time t = 0, 1, . . . . The pair (A0, B0) represents the
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nominal system while (Ã(t), B̃(t)) represents the model uncertainty which belongs to
the polytopic set P = Co{[Ãj , B̃j ], j = 1, . . . , q}. Notice that the coefficients λj are
unknown and possibly time-varying. The system (1) – (2), referred to as polytopic
system, provides a classical description of model uncertainty.

It is fundamental for the subsequent developments to make the following assump-
tion.

Assumption 1. There exists a constant state feedback gain F ∈ IRm×n which
robustly stabilizes the polytopic system (1) – (2), i. e. makes the closed-loop system

x(t + 1) = Φ(t) x(t) , Φ(t) = A(t) + B(t)F (3)

absolutely asymptotically stable (AAS) [10].

Let us introduce:

Aj
4
= A0 + Ãj , Bj

4
= B0 + B̃j , Φj

4
= Aj + BjF j = 1, 2, · · · , q.

Then we recall that (3) is AAS if

lim
t→∞

Φ(t)Φ(t− 1) · · ·Φ(0) = 0

for any sequence of matrices Φ(k) ∈ Co{Φ1,Φ2, · · · , Φq}. AAS is guaranteed if there
exists a norm ‖ · ‖ in IRn such that

‖Φj‖i ≤ γ < 1 j = 1, · · · , q (4)

where ‖ ·‖i is the norm, induced by ‖ ·‖, on the algebra of n×n matrices. Particular
cases of AAS are quadratic stability [2, 8] and polytopic stability [4, 5] where ‖ · ‖
is represented by an ellipsoidal or polytopic norm, respectively. Recent results [10]
show that the polytopic system (1) – (2) is absolutely asymptotically stable if and
only if it is exponentially stable. It is further assumed that the system (1) is subject
to the pointwise-in-time control and state constraints

u(t) ∈ U , x(t) ∈ X ∀ t ≥ 0 (5)

and the disturbance is pointwise-in-time bounded according to

w(t) ∈ W ∀ t ≥ 0 (6)

for some appropriate sets U ⊂ IRm, X ⊂ IRn, W ⊂ IRp satisfying the following
assumption.

Assumption 2. U , X , W contain the origin in the interior; further U and W are
compact.

The objective is to design a state-feedback regulator

u(t) = g(x(t)) (7)
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which possibly robustly stabilizes the system (1) subject to constraints (5) and
disturbance (6). Clearly, by Assumption 1, the LTI state feedback

u(t) = Fx(t) (8)

robustly stabilizes (1) but, because of constraints (5), stabilization is local in a
possibly small neighborhood of the origin. The stability domain could hopefully be
enlarged in a significant way by use of a nonlinear state feedback (7). The approach
followed in this paper combines the theory of invariant sets with predictive control
(receding-horizon) ideas.

3. INVARIANT SETS FOR POLYTOPIC SYSTEMS

This section recalls some background on invariant sets [5], revisited in the context
of polytopic systems. Given a robustly stabilizing LTI feedback (8), consider the
corresponding uncertain closed-loop system

x(t + 1) = Φ(t)x(t) + Dw(t)

u(t) = Fx(t)

Φ(t) ∈ Co{Φ1, Φ2, . . . , Φq}.
(9)

It is important from an analysis point of view to characterize the effect of the dis-
turbance w on the above system. To this end, let us introduce for the system (9)
the sets Rk of the states reachable in k steps from x(0) = 0. These sets can be
computed recursively as follows

R0 = {0}
Rk+1 = ϕ(1,Rk) + DW

(10)

where, given S ⊂ IRn and the integer k ≥ 0, ϕ(k,S) denotes the set of states x(k)
originated from x(0) ∈ S assuming that w(·) ≡ 0 in (9). The following result proves
that the sequence of sets {Rk, k ≥ 0} admits a limit R∞.

Theorem 1. Under assumption 1 and compactness of W (Assumption 2), there
exists a compact set R∞ such that

i) Rk ⊂ R∞ ∀ t ≥ 0

ii) ∀ ε > 0, ∃ t ≥ 0 : R∞ ⊂ Rt + εB1

iii) R∞ is invariant under (9), i. e. R∞ = ϕ(1,R∞) + DW.

P r o o f . First we recall that with the Hausdorff metric ρ the family of com-
pact sets of IRn is a complete metric space. Since W is compact, Rk is compact.
Splitting the disturbance sequence {w(0), w(1), · · · , w(k)} into {w(0), 0, · · · , 0} and
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{0, w(1), · · · , w(k)} and using superposition, it can be noticed that the following in-
clusion holds

Rk ⊂ Rk+1 ⊂ Rk + ϕ(k, DW)

In fact, any state x ∈ Rk+1 can be written as the sum of a state in Rk produced by
the disturbance realization {0, w(1), · · · , w(k)} plus a state in ϕ(k, DW) produced
by {w(0), 0, · · · , 0}. The compactness of W and Assumption 1 imply the existence
of µ > 0 and λ ∈ (0, 1) such that, for all k ≥ 0, ϕ(k, DW) ⊂ µλkB1. Hence,
ρ(Rk+1,Rk) ≤ µλk from which {Rk, k ≥ 0} is Cauchy and the existence of R∞ is
established. Letting k → ∞ in (10) proves R∞ = ϕ(1,R∞) + DW which, in turn,
shows that R∞ is invariant under (9). 2

From the above theorem, it turns out that R∞ is the smallest set which, for
x(0) = 0, contains all possible trajectories of (9) generated from disturbances w(·)
in W. To ensure compatibility between the disturbance (6) and the constraints (5),
the following assumption has to be made

Assumption 3. R∞ ⊂ X and FR∞ ⊂ U .

Hereafter, we would like to characterize the set Σ0 of all states x(0) for the system
(9) such that the constraints (5) are satisfied. Due to the stability Assumption 1 on
(9), ϕ(t, Σ0) → 0 as t →∞ for any x(0) ∈ Σ0. Let us first introduce the concept of
robust invariant set.

Definition 1. Σ is a robust invariant set for the system (9) if for any x(0) ∈ Σ,
x(t) remains in Σ for all t ≥ 0.

Let Xc
4
= {x ∈ X : Fx ∈ U} denote the set of states for which the constraints

(5) are satisfied. Hence the desired set Σ0 is the largest robust invariant subset
of Xc, also called maximal admissible set [9]. Maximal admissible sets have been
considered in [9] and then in [13] for systems with bounded disturbance inputs. Here
the case of uncertain polytopic systems with bounded disturbances is addressed. Let
us introduce the set Oi, i = 0, 1, . . . , of initial states x(0) from which, under the
uncertain dynamics (9), the constraints (5) are satisfied for t = 0, 1, . . . , i. Clearly
the sets Oi can be computed recursively as follows:

O0 = Xc

for i = 1, 2, . . .

Oi = Xc ∩ {x : Φjx ∈ Oi−1 ∼ DW, j = 1, 2, . . . , q}.
(11)

Since Oi ⊆ Oi−1 , Oi converges to O∞
4
=

⋂∞
i=0 Oi, which, by Assumption 3, is non

empty; therefore Σ0 = O∞. It is important to ascertain whether the set O∞ is
finitely determined, i. e. there exists a finite i∗ such that Oi∗ = O∞. The following
result holds.
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Theorem 2. Under the Assumptions 1 – 3, if for some integer i, Oi is bounded,
then O∞ is finitely determined.

P r o o f . The sets Oi can also be defined recursively as follows

Oi+1 = Oi ∩ {x|Fϕ(i + 1, x) ∈ Ui+1, ϕ(i + 1, x) ∈ Xi+1}
where Ui = U ∼ FRi, Xi = X ∼ Ri. Further, by Assumptions 2 and 3, U∞ = U ∼
FR∞ and X∞ = X ∼ R∞ are non empty and contain the origin in the interior. If
Oi is bounded there exists a ball B centered at the origin such that Oi ⊂ B. By
Assumption 1, ϕ(t,B) → {0} as t → ∞. Hence there exists an index ` > i for
which ϕ(` + 1,B) ⊂ X∞ and Fϕ(` + 1,B) ⊂ U∞. Then O` ⊂ Oi ⊂ B and, therefore,
ϕ(` + 1, O`) ⊂ X∞ and Fϕ(` + 1, O`) ⊂ U∞. This, by definition of the sets Oi,
implies that O` = O`+1 and hence O∞ = O` is finitely determined. 2

Remark 1. Obviously O0 is bounded if X is bounded. Also, notice that the set
On is bounded if U is bounded and (Φj , F ) is observable for some j.

Remark 2. In the same way, one can define the largest set, denoted by Σ̄0, con-
tained in Xc which is invariant under the nominal closed loop dynamics Φ0 =
A0 + B0F and in absence of disturbances. Σ̄0 can be computed by the recursion
(11) replacing Φj by Φ0 and setting W = {0}; clearly, Σ0 ⊂ Σ̄0.

Σ0 is the set of the initial states which are asymptotically steered to the origin
under the constant linear state feedback (8) without violating the constraints. It is
clearly possible to enlarge such a domain of attraction making use of a nonlinear
feedback u = g(x) ∈ U . This motivates the following definition of robust controlled
invariant set.

Definition 2. Σ is a robust controlled invariant set for the polytopic system (1) if
for any x ∈ Σ, there exists a state dependent input u ∈ U such that Ajx+Bju+Dw ∈
Σ for j = 1, 2, . . . , q and all w ∈ W.

Special robust controlled invariant sets are the sets ΣN , N ≥ 0, of all initial states
x(0) which can be robustly steered into Σ0 by an N -steps feedback control sequence
{u(0), u(1), . . . , u(N − 1)} ⊂ U , where each u(i) is allowed to depend on the current
state x(i). The sets ΣN can be computed recursively as follows

Σ0 = O∞

for N = 1, 2, . . .

ΣN = X ∩ {x|∃u ∈ U : Ajx + Bju ∈ ΣN−1 ∼ DW, j = 1, 2, . . . , q}.
(12)

Notice that the sets ΣN , N = 0, 1, . . . , give an increasing sequence. It must be
pointed out that, given x(0) ∈ ΣN , it is not possible, in general, to pre-compute at
time t = 0 the control sequence {u(0), u(1), . . . , u(N −1)} (open-loop control) which
robustly steers the state vector x(0) into Σ0 in N steps.
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Therefore for receding-horizon operation it is convenient to introduce the smaller
class of robust controlled invariant sets ΣN for which a sequence of N control moves
around the linear feedback (8), driving the initial state x(0) into Σ0, can be pre-
computed. Let us consider the feedback transformation u(t) = Fx(t) + c(t) where
c(t) denotes the new control variable and, accordingly, re-express the system (1) – (2)
as

x(t + 1) = Φ(t)x(t) + B(t)c(t) + Dw(t)

u(t) = Fx(t) + c(t)

[Φ(t), B(t)] ∈ Co{[Φ1, B1], [Φ2, B2], . . . , [Φq, Bq]}.
(13)

With reference to the above system, let us denote by ΣN the set of all the initial
states which can be robustly steered to Σ0, while satisfying the constraints, by choice
of an N -steps sequence {c(0), c(1), . . . , c(N−1)} depending on x(0) only. Notice that
the actual control sequence {u(0), u(1), . . . , u(N − 1)} turns out to be the sum of
the linear feedback Fx(t) plus the pre-computed sequence {c(0), c(1), . . . , c(N −1)}.
The set ΣN can be computed by the following recursion

S0 = Σ0 = Σ0 = O∞

for N = 1, 2, . . .

SN =








x
c
z


 :

[
Φjx + Bjc + Dw

z

]
∈SN−1 for j =1, 2, . . . , q and ∀w∈W;

Fx + c ∈ U ; x ∈ X}

ΣN =



x :




x
c
z


 ∈ SN for some

[
c
z

]



(14)
where, at stage N , c=c(0) denotes the first move and z=

[
cT (1), cT (2),. . ., cT (N−1)

]T

the subsequent N − 1 moves. Notice that the above recursion employs sets SN be-
longing to spaces whose dimension increases with N ; each vector of SN represents a
state x (first n components) and a control sequence [cT (0), . . . , cT (N − 1)]T which
robustly steers x in Σ0. Hence ΣN is just the projection of SN onto the state space
IRn. In particular, from the construction (14), it turns out that




x(0)
c(0)

...
c(N − 1)


 ∈ SN ⇒




x(1)
c(1)

...
c(N − 1)


 ∈ SN−1 ⇒

[
x(N − 1)
c(N − 1)

]
∈ S1 ⇒ x(N) ∈ Σ0.

(15)
for any realization of the system dynamics (A(t), B(t)) and of the disturbance
w(t), t = 0, . . . , N − 1.



176 L. CHISCI, P. FALUGI AND G. ZAPPA

Remark 3. Clearly, since Σ0 is invariant for c(t) = 0, the sets ΣN , N = 0, 1, . . .
form an increasing sequence; moreover ΣN ⊂ ΣN .

4. PREDICTIVE CONTROL ALGORITHMS

Predictive control algorithms are based on the optimization, along the control hori-
zon, of a given cost-functional, subject to suitable constraints. These constraints
must ensure the feasibility, at each step, of the corresponding system behavior and,
possibly, asymptotic convergence to the origin, or, in case of persistent disturbances,
to an ultimate boundedness set. When the dynamics is uncertain, the cost opti-
mization can be carried out either in a min-max or in a nominal sense. Hereafter we
shall consider only optimization with respect to the nominal model. This choice is
due both to the need of limiting the on-line computational complexity of predictive
control algorithms and to the belief that, in practice, attention to the worst case
performance does not pay too much. Therefore we assume that the feedback gain
matrix F , which robustly stabilizes the system, is the optimal LQ feedback gain
for the nominal model (this can always be ensured by a suitable choice of the LQ
cost functional), so that the optimal control policy is to reduce the gap between
the actual input u(t) and the feedback control signal Fx(t). Feasibility and stabil-
ity constraints, conversely, are provided by the robust invariant sets ΣN and ΣN ,
previously introduced.

Given x(0), the control sequence c
4
= [cT (0), . . . , cT (N − 1)]T steers x(0) to Σ0

iff [x(0)T , cT ]T ∈ SN . This suggests the following on-line receding-horizon scheme,
provided that SN is determined off-line.

Robust Predictive Control. (RPC(N)) At each sample time t, find



ĉ(t|t)
ĉ(t + 1|t)

...
ĉ(t + N − 1|t)


 = arg min

c(t+k|t),0≤k≤N−1

N−1∑

k=0

‖c(t + k|t)‖2, (16)

subject to 


x(t)
c(t|t)

c(t + 1|t)
...

c(t + N − 1|t)



∈ SN . (17)

Then apply to the system the control signal

u(t) = Fx(t) + ĉ(t|t) (18)

The above algorithm selects, at time t, among all sequences {c(t|t), . . . , c(t+N −
1|t)} which robustly enforce x(t + N) ∈ Σ0, the one with minimum l2 norm. Notice
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that if U and X are polyhedral sets, SN turns out to be a convex polytope and hence
(16) – (17) amounts to a Quadratic Programming (QP) problem. As far as stability
is concerned, the following result holds.

Theorem 3. Provided that x(0) ∈ ΣN , the receding-horizon control (16) – (18)
guarantees that: (i) the constraints (5) are satisfied; (ii) x(t) →R∞ as t →∞.

P r o o f . The hypothesis that x(0) ∈ ΣN along with (15) imply that x(1) ∈
ΣN−1 ⊂ ΣN . Hence, by induction, x(t) ∈ ΣN for all t ≥ 0 and satisfaction of the
constraints (5) is guaranteed. Next, consider the Bellman function

Vt = V (x(t))
4
=

N−1∑

k=0

‖ĉ(t + k|t)‖2

Since, by (15), {ĉ(t + 1|t), . . . , ĉ(t + N − 1|t),0} is feasible at time t + 1,

Vt − Vt+1 ≥ ‖c(t)‖2 ≥ 0 (19)

where c(t)
4
= ĉ(t|t). Hence {Vt}t≥0 is a nonnegative monotonic non-increasing scalar

sequence and, as t → ∞, must converge to V∞ < ∞. Summing the Vt − Vt+1 of
(19), for t from 0 to ∞, we have

∞ > V0 − V∞ ≥
∞∑

t=0

‖c(t)‖2 ≥ 0 ⇒ lim
t→∞

‖c(t)‖2 = 0

which proves that lim
t→∞

c(t) = 0. Since

x(t) = Φ(t, 0)x(0) +
t−1∑

k=0

Φ(t, k + 1)B(k)c(k) +
t−1∑

k=0

Φ(t, k + 1)Dw(k)

Φ(t, k) = Φ(t− 1) · · ·Φ(k + 1)Φ(k)

and, by Assumption 1, Φ(t, k) exponentially converges to 0 as t →∞, it follows that
x(t) →R∞ as t →∞. 2

Algorithm RPC(N) ensures, therefore, asymptotic stability with domain of at-
traction ΣN ⊂ ΣN . Notice that ΣN is actually a conservative region; any state in
ΣN could in fact be steered into Σ0 by an N -steps feedback sequence. Therefore an
alternative algorithm called IC–PC(N) is introduced hereafter.

Invariance Constraint Predictive Control. (IC–PC(N)) Let Σ be a robust
controlled invariant set. At each sample time t, find




ĉ(t|t)
ĉ(t + 1|t)

...
ĉ(t + N − 1|t)


 = arg min

c(t+k|t),0≤k≤N−1

N−1∑

k=0

‖c(t + k|t)‖2, (20)
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subject to the robust invariance constraint

Φjx(t) + Bjc(t|t) ∈ ΣN ∼ DW j = 1, 2, . . . , q (21)

and to the nominal constraints

u(t + k|t) ∈ U and x(t + k|t) ∈ X , k ≥ 0

c(t + k|t) = 0, k ≥ N

where u(t + k|t) and x(t + k|t) denote the disturbance free predictions with respect
to the pre-specified nominal LTI system [A0, B0]. Then apply u(t) = Fx(t) + ĉ(t|t)
to the system.

Remark 4. In this algorithm, constraints on the future input and state values are
imposed for the nominal model only. They should ensure a satisfactory performance
for the real plant. Notice that the constraints u(t + k|t) ∈ U and x(t + k|t) ∈ X for
k ≥ N are equivalent to impose that x(t+N |t) belongs to Σ0, the maximal admissible
set under the linear closed-loop dynamics of the nominal model. Conversely stability
and feasibility are ensured by the robust constraint (21), which guarantees that the
state x(t) will never leave Σ and, hence, that the optimization problem will remain
feasible at future time instants.

Theorem 4. Let Σ = ΣL where L ≥ N is the integer such that

ΣL−1 ⊂ ΣN−1 , ΣL 6⊂ ΣN−1. (22)

Then, if x(0) ∈ Σ, the IC–PC(N) algorithm guarantees that x(t) ∈ Σ for all t ≥ 0
and that the constraints (5) are satisfied.

P r o o f . For any x ∈ ΣL there exists u ∈ U such that Ax + Bu ∈ ΣL−1 ∼
DW ⊂ ΣN−1 ∩ (ΣL ∼ DW), for all [A,B] ∈ [A0, B0] + P. Hence if x(0) ∈ ΣL,
IC–PC(N) can find u(0) ∈ U such that x(1) ∈ ΣL and, by induction, guarantees
that x(k) ∈ ΣL ⊂ X and u(k) ∈ U for all k ≥ 0. 2

Compared to RPC(N), IC–PC(N) has a larger feasibility domain ΣL ⊃ ΣN .
However, robust asymptotic stability cannot be guaranteed. A counterexample ex-
hibiting a limit cycle will be shown in the next section. From a computational point
of view the IC–PC algorithm is cheaper than the RPC algorithm. In fact, the latter
requires the off-line computation of the invariant set SN in the higher dimensional
space Rn+mN which is harder than the computation of ΣN in Rn. Details on the
computation of these sets are reported in the Appendix. Nevertheless, the most
crucial issue is on-line computation which, for both algorithms, amounts to solving
at each sampling interval, a QP problem in mN variables. Compared to traditional
predictive control, the algorithms RPC and IC–PC may involve a considerably larger
number of linear inequalities in the QP problem. However this implies a negligible
extra computational load if interior point algorithms [17] are used for the solution
of QP.
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5. A NUMERICAL EXAMPLE

Consider the system (1) with q = 2,

A1 =
[

1 0.1
0 1

]
, A2 =

[
1 0.1
0 1.8

]
, B = B1 = B2 =

[
0

0.0787

]
, D =

[
0.01
0

]

(23)
subject to input saturation constraints |u(t)| ≤ 2 and disturbance |w(t)| ≤ 0.3. We
assumed A0 = (A1 + A2)/2 and B0 = B as the nominal model. Also consider the
feedback gain F = [−11.80 − 18.70] which quadratically stabilizes the system (23).
With reference to the above feedback gain, Figure 1 compares the robust domain of
attraction Σ0 with Σ0, the domain of attraction that we should have for the nominal
system [A0, B0] with no uncertainty and without disturbances. For this example it
turns out that, in Theorem 4, L = 21 much larger than N = 3. Figure 2 compares,
for a control horizon N = 3, the regions Σ3 and Σ21 where the two algorithms
RPC(N) and IC–PC(N) guarantee feasibility (and for RPC(N) also asymptotic
stability). Figure 2 also displays the ellipsoidal domain of attraction Σ̃3 obtained
with the approach in [15] for N = 3; notice that Σ̃3 is significantly smaller than Σ3

and Σ21. This clearly demonstrates the conservatism of using ellipsoids instead of
polytopes as robust invariant sets. Figure 3 reports the sets ΣN for 0 ≤ N ≤ 10 and
shows how the feasibility region increases for a larger control horizon. Table 1 reports
the number of inequalities describing ΣN and, respectively, SN for 0 ≤ N ≤ 10. It
can be seen that the complexity of SN is increasing with N more rapidly than for
ΣN and, hence, the RPC algorithm turns out to be more expensive in terms of
computation and memory requirements than IC–PC.
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Fig. 1. Σ0 (solid) and Σ0 (dashed).

Simulations have been run to compare the two proposed algorithms RPC(N) and
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Fig. 2. Σ0 ⊂ Σ3 ⊂ Σ21 (solid), Σ3 (dashed) and eΣ3 (dash-dotted).
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Fig. 3. ΣN , 0 ≤ N ≤ 10.

IC–PC(N), taking into account the uncertainty, and a traditional constrained pre-
dictive control algorithm referred to as NPC (Nominal Predictive Control) designed
for the nominal model ignoring uncertainty and disturbances. A control horizon
N = 3 has been selected. Figure 4 shows the state trajectories of NPC, RPC(3),
IC–PC(3) for an initial state x(0) ∈ Σ3, A(t) = A2 and w(t) = −0.3, ∀ t ≥ 0;
Figure 5 shows the corresponding input responses u(t). Notice that both RPC and
IC–PC ensure feasibility and asymptotic stability, while NPC exhibits an infeasible
and unstable behavior. Figure 6 shows the state trajectories of RPC and IC–PC for
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Table 1. Number of linear inequalities

describing SN and ΣN vs. N .

N SN (RPC) ΣN (IC–PC)
0 10 10
1 20 14
2 42 18
3 86 22
4 174 28
5 350 32
6 702 36
7 1342 40
8 2686 44
9 5246 48

10 10238 52

the same A(t) as above, an initial state x(0) ∈ Σ21\Σ3 and w(t) = 0.3 cos(1000πt).
Notice that in this case RPC becomes infeasible and unstable. Although IC–PC(N)
ensures feasibility and boundedness of the state in ΣN , in general it does not guaran-
tee ultimate boundedness inR∞. To this end, Figure 7 shows a limit cycle behaviour
of IC–PC(3) for the system under consideration with

A2 =
[

1 0.1
0 1.9

]
, F = [−49,−16.5] ,

a particular choice of the initial state, A(t) = A2 and w(t) = 0, ∀ t ≥ 0. This
example, however, is quite “pathological” since the selected gain F is highly detuned
for the true system (A2, B), i. e. the eigenvalues of A2 + BF are very close to the
unit circle.

6. CONCLUSION

The paper has faced the control of polytopic uncertain systems subject to con-
trol/state constraints and unknown but bounded disturbances. Two predictive con-
trol algorithms have been proposed. Both combine nominal performance optimiza-
tion with robust feasibility and stability. The two algorithms differ on the constraints
imposed on future inputs and states. When robust constraints are imposed over the
whole prediction horizon, we get a smaller feasibility region but asymptotic stability
can be proved. When robust constraints are imposed only on the one-step-ahead
prediction while the nominal constraints are considered for the subsequent steps, we
get a larger feasibility region but asymptotic stability cannot be guaranteed. Com-
putational and robust stability requirements have been discussed and performance
illustrated by simulation examples.
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Fig. 4. NPC (dash-dotted), RPC (dashed) and IC–PC (solid).

0 5 10 15 20 25 30

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

u(k) 

k 

Fig. 5. Input responses of NPC (dash-dotted), RPC (dashed) and IC–PC (solid).

APPENDIX – COMPUTATION OF INVARIANT SETS

Let X , U , W be polyhedra described by

X = {x : Mxx ≤ vx}, U = {u : Muu ≤ vu}, W = Co{wj ; j = 1, 2, . . . `}.

Computation of sets Σi

Let Σi = {x : Mx ≤ v}. Then:
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Fig. 6. RPC (dashed) and IC–PC (solid).
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Fig. 7. Limit cycle behavior of IC–PC.

1. Compute δ = max
1≤j≤`

MDwj and

Z =





[
x
u

]
:




MA1 MB1

...
...

MAq MBq

0 Mu




[
x
u

]
≤




v − δ
...

v − δ
vu








.
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2. Compute, by the Fourier–Motzkin elimination algorithm [11] together with
an LP subroutine in order to eliminate redundant inequalities, the projection
Z = {x : Mx ≤ v} of Z onto IRn.

3. Compute

Σi+1 =
{

x :
[

M
Mx

]
x ≤

[
v
vx

]}
.

Computation of sets Si

Let Si = {s : Ms ≤ v} ⊂ IRn+mi and partition M as M = [M1,M2] where M1

and M2 denote the first n and, respectively, last mi columns. Then, setting δ =
max
1≤j≤`

M1Dwj , we get Si+1 = {s : Ms ≤ v} ⊂ IRn+m(i+1) where

M =




M1Φ1 M1B1 M2

...
...

...
M1Φq M1Bq M2

MuF Mu 0
Mx 0 0




, v =




v − δ
...

v − δ
vu

vx




.

(Received January 18, 2001.)
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Sistemi e Informatica – Università di Firenze, via Santa Marta 3, 50139 Firenze. Italy.
e-mails: chisci,falugi,zappa@dsi.unifi.it


	INTRODUCTION
	NOTATION AND PROBLEM FORMULATION
	INVARIANT SETS FOR POLYTOPIC SYSTEMS
	PREDICTIVE CONTROL ALGORITHMS
	A NUMERICAL EXAMPLE
	CONCLUSION

