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BLENDED φ–DIVERGENCES WITH EXAMPLES

Václav Kůs

Several new examples of divergences emerged in the recent literature called blended
divergences. Mostly these examples are constructed by the modification or parametrization
of the old well-known φ-divergences. Newly introduced parameter is often called blending
parameter. In this paper we present compact theory of blended divergences which provides
us with a generally applicable method for finding new classes of divergences containing any
two divergences D0 and D1 given in advance. Several examples of blends of well-known
divergences are given.

Keywords: divergences of probability distributions, blended divergences, statistical appli-
cations

AMS Subject Classification: 62B10, 62F35, 62G35

1. INTRODUCTION AND BASIC CONCEPTS

Lindsay [5] introduced a new class of divergences by the modification of weights
inside the integral expression of Pearson’s χ2-divergence. He called this divergence
“blended weight chi-squared disparity”, BWCS(β), and the weight parameter β ∈
[0, 1] called blending parameter. Similarly, he obtained “blended weight Hellinger
disparity” BWHD(β). Lindsay used these blended classes of disparities to achieve
better efficiency and robustness of estimators based on BWCS or BWHD.

Park and Basu [8] deal with two further modifications of blended Hellinger dispar-
ity and they called it “combined” and “penalized” variant of the Hellinger distance.
They presented computer simulation study for the corresponding estimators and
tests in case of some discrete models, in particular for the Poisson and geometric
distributions and their mixtures.

Kůs [3] introduced several examples of new classes of divergences based on a
method of normalization of a convex or concave functions. Some of these divergences
were shown to have a blend interpretation if we use a reparametrization by means
of blending parameter β.

In general, all these new classes of disparities have the following common property.
If the blending parameter is equal to the limiting values β = 0 or β = 1, then the
two original divergences, on which the blend was based, are achieved in this class of
blended divergences.
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Menéndez et al [6] introduced a general method for obtaining such blended di-
vergences and they stated some theoretical results concerning these blends without
proofs. They also proposed to use blends as new disparity statistics for grouped
data on which the goodness of fit testing procedures are based. Moreover, asymp-
totic distribution for appropriately scaled φ-disparity statistic was proved to be the
χ2

m+1 distribution, where m+1 denotes the number of intervals for a given partition
of R.

In this paper, which is based on Menéndez et al [6], we present a compact theory
of blended divergences which provides us with a generally applicable method for
finding new classes of divergences connecting any two divergences D0 and D1 given
in advance. We use this method to obtain blended divergences originated from the
family of Ia-divergences.

First let us define φ-divergences with its basic properties. For a systematic theory
of φ-divergences we refer to Vajda [10] and, for some additional recent results on
φ-divergences, also to Kůs [3].

Definition 1. Let P be the set of all probability measures on a measurable space
(X ,A). We define φ-divergence of two measures P and Q from P by

Dφ(P, Q) =
∫

X
q φ

(
p

q

)
dµ, (1)

where µ is a σ-finite measure on (X ,A) such that {P,Q} ¿ µ, and p = dP/dµ,
q = dQ/dµ denote the Radon–Nikodym derivative of P , Q with respect to µ. We
assume that divergence function φ : (0,∞) → R is convex on (0,∞) and strictly
convex at t = 1, with φ(1) = 0. On the boundary of the open domain p, q > 0
we extend the definition by q φ(p/q) = q φ(0) if p = 0 and q φ(p/q) = p φ(∞)/∞ if
q = 0, where φ(0) = limt→0+ φ(t) and φ(∞)/∞ = limt→∞ φ(t)/t with the convention
“0 · ∞ = 0”.

Divergences (1) are all reflexive and the range of Dφ(P, Q) is

0 ≤ Dφ(P,Q) ≤ φ(0) + φ(∞)/∞, P, Q ∈ P,

where the upper bound is achieved if P,Q are two singular measures. The values of
Dφ(P,Q) do not depend on a linear term of the form c(t− 1) added to, or extracted
from, divergence function φ. It means that every φ has its nonnegative version

φ̃(t) = φ(t)− φ′+(1)(t− 1), t ∈ (0,∞), (2)

equivalent to φ with respect to the same values of Dφ divergence. (φ′+(1) denotes
the derivatives of φ at t = 1 from the right.)

In this paper we make use of a conjugated divergence functions φ∗ which usually
results in reversed φ-divergences.
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Proposition 1. Let φ be a divergence function. Then the conjugated function
φ∗(t) = t φ(1/t), t ∈ (0,∞), is also a divergence function, φ∗(0) = φ(∞)/∞,
φ∗(∞)/∞ = φ(0), and Dφ∗(P, Q) = Dφ(Q,P ) for all P, Q ∈ P. Moreover, the
divergence Dφ is symmetric if and only if there exists a real constant c such that
φ(t) = φ∗(t) + c(t− 1), t ∈ (0,∞).

The examples of blended divergences, presented in Section 3, are taken mostly
from the class of power Ia-divergences

Ia(P, Q) =
1

a(a− 1)

(∫
paq1−a dµ− 1

)
, P,Q ∈ P,

defined for a 6= 0, 1 by means of the divergence function

φa(t) =
ta − a(t− 1)− 1

a(a− 1)
, t ∈ (0,∞),

with

φa(0) =
{

1/a if a > 0, a 6= 1,
∞ if a ≤ 0,

φa(∞)/∞ =
{

1/(1− a) if a < 1,
∞ if a ≥ 1.

Note that the class of Ia-divergences contains twice Hellinger divergence H2(P, Q) for
a = 1/2, half of the Pearson’s χ2(P, Q) divergence for a = 2, and half of the Neyman’s
χ2(Q,P ) divergence for a = −1. The limits of Ia at a = 1 and a = 0 provide us
with the Kullback–Leibler divergence I0(P,Q) = I(P, Q) and the reversed Kullback–
Leibler divergence I1(P, Q) = I(Q,P ). The conjugated function of Proposition 1 is
φ∗a(t) = φ1−a(t), a 6= 0, 1. Further properties and applications of Ia-divergences can
be found, for example, in Vajda [10], Lindsay [5], Cressie and Read [1], and Read
and Cressie [9].

2. BLENDS OF DIVERGENCES

Theorem 1. Let L : [0,∞) → [0,∞) be a linear function (L 6≡ 0) with L∞ :=
lim

t→∞
L(t)/t ≥ 0 and φ(y) be a divergence function strictly convex at y = L(1). The

function φL(t) : (0,∞) → R, defined by

φL(t) = φ(L(t))− φ(L(1)), t ∈ (0,∞),

is a divergence function, φL(0) = φ(L(0)) − φ(L(1)), φL(∞)/∞ = L∞ · φ(∞)/∞,
and

DφL
(P, Q) = Dφ(L∞ P + L(0) Q,Q)− φ(L(1)), P, Q ∈ P.

P r o o f . It is clear that φL : R+ → R and φL(1) = 0. Since for all α ∈ (0, 1) and
t1, t2 ∈ R+

φL(αt1 + (1− α) t2) = φ(L(αt1 + (1− α) t2))− φ(L(1))
≤ αφ(L(t1)) + (1− α)φ(L(t2))− φ(L(1)) = αφL(t1) + (1− α)φL(t2)
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then φL is a convex function on (0,∞). Further, strict convexity of φ(y) at y = L(1)
implies strict convexity of φL(t) at t = 1. The two assertions concerning limits φL(0)
and φL(∞)/∞ are trivial consequences of the definition of φL. To prove the last
assertion, assume first that L(0) 6= 0 and L∞ 6= 0. Then

Dφ(L∞ P + L(0) Q,Q) =
∫

A+∩{q>0}

q φ

(
L∞ p + L(0) q

q

)
dµ

+φ(0)
∫

A0

q dµ + φ(∞)/∞
∫

{q=0}

(
L∞ p + L(0) q

)
dµ (3)

where

A+ = {L∞ p + L(0) q > 0} and A0 = {L∞ p + L(0) q = 0}.

Let us denote the first integral in (3) by I1, the second integral by I2, and the third
one by I3. Then

I2 = 0,

I3 = L∞ φ(∞)/∞
∫

{q=0}

p dµ = φL(∞)/∞
∫

{q=0}

p dµ,

I1 =
∫

{pq>0}

q φ

(
L∞ p + L(0) q

q

)
dµ +

∫

{p=0,q>0}

q φ(L(0)) dµ

=
∫

{pq>0}

q φ

(
L

(
p

q

))
dµ + φ(L(0))

∫

{p=0}

q dµ

=
∫

{pq>0}

q

[
φ

(
L

(
p

q

))
− φ(L(1))

]
dµ

+
[
φ(L(0))− φ(L(1))

] ∫

{p=0}

q dµ + φ(L(1))
∫

{p≥0}

q dµ

=
∫

{pq>0}

q φL

(
p

q

)
dµ + φL(0)

∫

{p=0}

q dµ + φ(L(1)).

Thus we obtain from (3) that

Dφ(L∞ P + L(0)Q,Q) = DφL(P,Q) + φ(L(1)).

If L∞ = 0 then φL(t) = φ(L(0)) − φ(L(1)) and DφL
(P,Q) = φ(L(0)) − φ(L(1)).

Further,

Dφ(L∞ P + L(0)Q, Q)− φ(L(1)) = Dφ(L(0)Q,Q)− φ(L(1)) = φ(L(0))− φ(L(1)).
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If L(0) = 0 then

DφL
(P,Q) =

∫
q

[
φ

(
L∞

p

q

)
− φ(L(1))

]
dµ = Dφ(L∞ P, Q)− φ(L(1)).

Thus all assertions of the theorem are proved. 2

Note that if L(0) = 0 then DφL
is bounded iff Dφ is bounded. If L(0) 6= 0

then DφL
is bounded iff φ(∞)/∞ < ∞. Thus DφL

can be bounded while Dφ is
not bounded. It means that if we apply suitable linear transformation y = L(t) on
φ(y), we can obtain bounded divergence in spite of the fact that the original Dφ was
unbounded in the sense that φ(0) = ∞ and φ(∞)/∞ < ∞.

Corollary 1. Let φ be a divergence function and φ∗(t) is conjugated to φ. If we
define for all β ∈ [0, 1] the functions φS,β(t) by

φS,β(t) = φ(1− β + β t) = (1− β + β t)φ∗
(

1
1− β + β t

)
, t ∈ (0,∞),

then all φS,β are divergence functions, φS,β(0) = φ(1−β), φS,β(∞)/∞ = β φ(∞)/∞,
and

DφS,β
(P,Q) = Dφ(βP + (1− β)Q,Q), P,Q ∈ P.

If φ(∞)/∞ < ∞ and β 6= 0 then DφS,β
are bounded.

Corollary 2. Let φ be a divergence function. If we define for all β ∈ [0, 1] the
functions φR,β(t) by

φR,β(t) = (1− β + β t)φ

(
t

1− β + β t

)
, t ∈ (0,∞),

then all φR,β are divergence functions, φR,β(0) = (1 − β) φ(0), φR,β(∞)/∞ =
β φ(1/β) (where we take β φ(1/β) = φ(∞)/∞ if β = 0), and

DφR,β
(P, Q) = Dφ(P, βP + (1− β)Q), P,Q ∈ P.

If φ(0) < ∞ and β 6= 0 then DφR,β
(P, Q) are bounded.

P r o o f . Observe that the following relation exists between φR and φS of Corol-
laries 1 and 2,

φR,β(t) = t φ∗
(

1− β + β t

t

)
= t φ∗

(
β + (1− β)

1
t

)

=
(
φ∗(β + (1− β) t)

)∗
(t) =

(
(φ∗)S,1−β

)∗
(t).
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Thus, Proposition 1 and Corollary 1 with L(t) = β+(1−β)t imply that the function
φR,β(t) is a divergence function and further

DφR,β
(P, Q) = D(φ∗)S,1−β

(Q,P ) (Proposition 1)

= D∗
φ(βP + (1− β) Q,P ) (Corollary 1)

= Dφ(P, βP + (1− β) Q) (Proposition 1)

The same reasoning can be applied to prove the remaining assertions of Corollary 2.
2

Corollaries 1 and 2 can serve to construct a new, possibly bounded, φS,β or
φR,β-divergences. Both the corollaries also justify the correctness of the following
definition of blended divergences.

Definition 2. Let φ0 and φ1 be divergence functions and β ∈ [0, 1]. The function

φβ(t) = (1− β + β t)φ0

(
t

1− β + β t

)
+ φ1(1− β + β t), t ∈ (0,∞),

is said to be blended divergence function and the corresponding φβ-divergence

Dβ(P, Q) := Dφβ
(P, Q) = Dφ0(P, βP + (1− β)Q) + Dφ1(βP + (1− β)Q,Q)

is called blended divergence, more precisely β-blend of Dφ0 = D0 and Dφ1 = D1.

Corollary 1 and 2 imply that

φβ(0) = (1− β)φ0(0) + φ1(1− β),
φβ(∞)/∞ = β φ0(1/β) + β φ1(∞)/∞,

where we take β φ0(1/β) = φ0(∞)/∞ if β = 0. The order of blended divergences
Dφ0 and Dφ1 is substantial, i. e. the blend of Dφ1 and Dφ0 can differ from the blend
of Definition 2 (see Examples 1 and 2 in the next section).

Specification 1. For a given φ, if we take into account the special case φ0(t) = φ(t)
and φ1(t) = φ∗(t), then we get from Definition 2

φβ(t) = (1− β + β t) φ

(
t

1− β + β t

)
+ (1− β + β t) φ

(
1

1− β + β t

)

= t φ∗
(

β + (1− β)
1
t

)
+ φ∗(1− β + β t)

with the corresponding blended divergence

Dβ(P, Q) = Dφ(P, βP + (1− β)Q) + Dφ(Q, βP + (1− β)Q).
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Thus, we obtain the blend of Dφ(P, Q) and reversed D∗
φ(P, Q) = Dφ(Q, P ). The

order of blending is again substantial. Further,

φβ(0) = (1− β)φ(0) + (1− β) φ

(
1

1− β

)
,

φβ(∞)/∞ = β φ(1/β) + β φ(0),

where we take β φ(1/β) = φ(∞)/∞ if β = 0. Therefore, if φ(0) = ∞ then for all
β ∈ [0, 1] the blended divergences Dβ(P, Q) are unbounded. However, provided that
φ(0) < ∞ and β ∈ (0, 1), we get bounded blended divergences Dβ irrespectively of
the value of φ(∞)/∞.

Theorem 2. Let φ be a divergence function, φ0(t) = φ(t) and φ1(t) = φ∗(t).
Then for all β ∈ [0, 1] the blends Dβ of Dφ(P, Q) and reversed Dφ(Q,P ) are skew
symmetric about β = 1/2

Dβ(P, Q) = D1−β(Q,P ), β ∈ [0, 1], P, Q ∈ P ,

with the symmetric blend

D 1
2
(P, Q) = Dφ

(
P,

P + Q

2

)
+ Dφ

(
Q,

P + Q

2

)
.

P r o o f . By direct computation it can be verified that φ∗β(t) = φ1−β(t), t ∈ (0,∞)
which proves the skew symmetry. The symmetry of D1/2(P, Q) follows immediately
from Proposition 1, since φ∗1/2(t) = φ1/2(t). 2

If we intend to construct blended divergence, we can use either the given φ(t)
or φ̃(t) or another similar variant of φ(t) with the same divergence. However, the
Dβ(P, Q) blend of reversed divergences does not depend on the variant used since

(
φ̃
)

β
(t) = φβ(t)− (1− 2 β)φ′+(1) (t− 1)

and thus D(eφ)β
(P, Q) = Dφβ

(P,Q) = Dβ(P, Q). Furthermore, provided φ is twice
differentiable at t = 1, the symmetric blend of Theorem 2 for β = 1/2 is always
based on nonnegative divergence function φβ , since φ′β(1) = (1− 2 β)φ′(1).

The natural question arises whether a certain power Dα
1/2(P, Q), α > 0, of the

reflexive and symmetric blend D1/2 of Theorem 2 can represent a metric distance
on P. Kafka, Österreicher and Vincze [2] proved that a certain power Dα

φ (P, Q)
of the symmetric φ-divergence satisfies the triangle inequality if the function (1 −
tα)1/α/φ(t) is nonincreasing in the domain 0 < t < 1. Unfortunately, to verify this
sufficient condition for a given blended metric divergence D1/2 of Theorem 2 can be
quite difficult (see Österreicher [7]).
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3. EXAMPLES OF BLENDED DIVERGENCES

To illustrate the presented theory of blended divergences we give several examples
taken from the family of Ia-divergences. However, two arbitrary φ-divergences or
even blends, given in advance, can be blended to achieve required statistical proper-
ties of estimators or tests based on the corresponding blend. The best way, how to
apply the theory of blends, would be to design a blend fitted to the real statistical
application.

Example 1. (Pearson–Neyman blend) If we choose

φ0(t) = φ(t) = (t− 1)2 and φ1(t) = φ∗(t) =
(t− 1)2

t

then, applying Specification 1, we come to the blend of Pearson’s D0(P, Q) =
χ2(P, Q) and Neyman’s D1(P,Q) = χ2(Q, P ) divergences defined by means of
blended divergence function

φβ(t) = (1− β + β t)

[(
t

1− β + β t
− 1

)2

+
(

1
1− β + β t

− 1
)2

]

=
[
(1− β)2 + β2

] (t− 1)2

1− β + β t
,

for all β ∈ [0, 1]. We restrict ourselves to a normalized blended divergence function
φβ with φ′′β(a) = 1, i. e.

φβ(t) =
1
2

(t− 1)2

1− β + β t
, t ∈ (0,∞), β ∈ [0, 1],

with the corresponding blended divergence

Dβ(P,Q) =
1
2

∫
(p− q)2

β p + (1− β) q
dµ, P,Q ∈ P.

This blend Dβ coincides with the generalized LeCam divergence LCβ investigated
in Kůs [3]. This blend was found also by Lindsay [5] by the modification of weights
inside the integral expression for Pearson’s χ2-divergence, BWCS(β), mentioned
already in Section 1. Thus, the present example shows that blended divergences
developed earlier in the literature remain to be φ-divergences. Symmetric blend of
Theorem 2, D 1

2
(P, Q), corresponds to the squared Le Cam distance LC2(P, Q).

Example 2. (Neyman–Pearson blend) On the other side, if we exchange φ0(t)
with φ1(t) in Example 1 we get a blend of Neyman’s D0(P, Q) = χ2(Q,P ) and
Pearson’s D1(P, Q) = χ2(P, Q), with

φ̃β(t) = t

(
β + (1− β)

1
t
− 1

)2

+ (1− β + β t− 1)2

=
[
(1− β)2 + β2t

] (t− 1)2

t
= (1− β)2φ∗(t) + β2φ(t).
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Consequently,
D̃β(P, Q) = (1− β)2 χ2(Q,P ) + β2 χ2(P, Q).

The symmetric divergence of Theorem 2

D̃ 1
2
(P,Q) =

1
4

(
χ2(P, Q) + χ2(Q,P )

)
=

1
4

∫
(p + q)(p− q)2

p q
dµ

coincides with the symmetrized divergence J2(P, Q)/2 defined in Vajda [11]. Note
that φβ of Example 1 differs from φ̃β of Example 2 since for all β ∈ (0, 1) there is
φβ(0) < ∞ but φ̃β(0) = +∞. It means that the Neyman–Pearson blend produces
unbounded divergences for all β ∈ [0, 1], while the Pearson–Neyman blends are
bounded for all β ∈ (0, 1).

Example 3. (Blended power divergences – variant A) Both Examples 1 and 2 are
the special cases (for a = 2 and a = −1) of blended Ia(P, Q) and I1−a(P,Q) power
divergences. For a ∈ R− {0, 1} and

φa(t) =
ta − 1

a(a− 1)
, φ∗a(t) = φ1−a(t)− t− 1

a(a− 1)

we obtain by Specification 1

φa,β(t) =
1

a(a− 1)

[
ta + 1

(1− β + β t)a−1
− 2 β(t− 1)− 2

]
, a 6= 0, 1 ,

where the linear term 2 β(t− 1) can be omitted as it does not alter the value of the
φa,β-divergence

Ia,β(P, Q) =
1

a(a− 1)

(∫
pa + qa

(β p + (1− β) q)a−1
dµ− 2

)
, a 6= 0, 1 ,

as the blend of Ia,0(P, Q) = Ia(P, Q) and Ia,1(P, Q) = Dφ∗a(P, Q) = I1−a(P, Q).
Note that the reversed order of blending I1−a and Ia divergences is also included in
the expressions for all a 6= 0, 1. If we use the following limits of φa(t) as a → 0 and
a → 1,

φ0(t) = − ln t, φ1(t) = φ∗0(t) = t ln t ,

then we get

φ0,β(t) = 2(1− β + β t) ln(1− β + β t)− (1− β) ln t− β t ln t

with the corresponding reversed Kullback–Kullback blend

I0,β(P, Q) = −
∫

(β p + (1− β) q)
[
ln

β p + (1− β) q

p
+ ln

β p + (1− β) q

q

]
dµ

= 2
∫

(β p + (1− β) q) ln
β p + (1− β) q

q
dµ + (1− β) I(Q,P )− β I(P, Q)
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where the last equality holds if the expression on the right hand side is meaningful.
However, all the blended divergences I0,β(P, Q) are unbounded since for all β ∈ [0, 1)
there is φ0,β(0) = ∞ and for β = 1 it is φ0,1(∞)/∞ = ∞.

On the other side, the interchanging of the order of the functions φ0 and φ1 results
in the Kullback–reversed Kullback blend

φ1,β(t) = t ln t− (t + 1) ln(1− β + β t),

I1,β(P,Q) =
∫ (

p ln
p

β p + (1− β) q
+ q ln

q

β p + (1− β) q

)
dµ

= I(P,Q)−
∫

(p + q) ln
β p + (1− β) q

q
dµ

provided the last expression is meaningful. For all β ∈ (0, 1) the Kullback–reversed
Kullback blend I1,β is bounded since φ1,β(0) = − ln(1−β) and φ1,β(∞)/∞ = − ln β.
The symmetric blend of Theorem 2,

I1, 1
2
(P, Q) = I

(
P,

P + Q

2

)
+ I

(
Q,

P + Q

2

)

coincides with the fα-divergence of Österreicher [7] for α = 1 which has been proved
to be a squared metric distance.

Example 4. (Blended power divergences – variant B) To blend Ia and I−a diver-
gences we set, for 0 < |a| < 1,

φa,0(t) =
ta − 1

sign[a(a− 1)]
and φa,1(t) =

t−a − 1
sign[a(a + 1)]

in place of φ0 and φ1 in Definition 2, respectively. Then for all β ∈ [0, 1]

φa,β(t) = − sign(a)
(1− β + β t) ta − 1

(1− β + β t)a
, t ∈ (0,∞), 0 < |a| < 1,

where we have already omitted the linear term β (t − 1) which has no influence on
the corresponding blended divergence

Da,β(P,Q) = − sign(a)
∫ (

β p + (1− β)q
)

pa − qa+1

(
β p + (1− β) q

)a dµ, 0 < |a| < 1.

If a ∈ (0, 1) then these blended divergences are bounded for all β ∈ (0, 1). Note that
the blend

Da, 1
2
(P, Q) = − sign(a) 2a−1

∫
(p + q)pa − 2qa+1

(p + q)a
dµ

given by

φa, 1
2
(t) = − sign(a) 2a−1 ta(1 + t)− 2

(1 + t)a
, t ∈ (0,∞), 0 < |a| < 1

is bounded for all a ∈ (0, 1), but it is not symmetric (Theorem 2 is applicable only
to the blends of mutually reversed divergences). Another variant of “blended” Ia

and I−a divergences was presented in Kůs [3].
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Example 5. (Self-blended power divergences) If we put

φa,0(t) = φa,1(t) =
ta − 1

a(a− 1)
, a 6= 0, 1,

then we obtain from Definition 2 self-blended Ia-divergence defined by the blended
divergence function

φa,β(t) =
1

a(a− 1)

[
ta + (1− β + β t)2a−1

(1− β + β t)a−1
− 2

]
, a 6= 0, 1, β ∈ [0, 1],

where we have omitted the linear term β (t− 1) again. For example, the parameter
a = 1/2 defines a self-blended Hellinger divergence

HS
β (P, Q) := D 1

2 ,β(P,Q) = 4
(

2−
∫

(
√

p +
√

q)
√

β p + (1− β) q dµ

)

given by means of divergence function φ 1
2 ,β(t) = 4

(
2− (

√
t + 1)

√
1− β + β t

)
, t ∈

(0,∞), β ∈ [0, 1]. The blends HS
β are bounded divergences for all β ∈ [0, 1]. The

symmetric divergence in this class is

HS
1
2
(P, Q) = 4

(
2−

√
2

2

∫
(
√

p +
√

q)
√

p + q dµ

)
.

Similarly, for a = 2 we obtain a self-blended Pearson divergence and a = −1 leads
to a self-blended Neyman divergence. The limiting case φ0,0(t) = − ln t defines a
self-blended reversed Kullback divergence KLβ(P, Q) using the blended divergence
function

φ0,β(t) = β (t− 1) ln(1− β + β t)− (1− β) ln t− β t ln t

with corresponding divergences

KLβ(P,Q) = KL(P, βP + (1− β)Q) + KL(βP + (1− β)Q,Q)

= β

∫
(p− q) ln

β p + (1− β)q
q

dµ + (1− β)I(Q,P )− β I(P, Q),

provided the last expression is meaningful. If we consider the second limit φ1,0(t) =
t ln t, we get a self-blended Kullback divergence Iβ(P,Q) defined by means of

φ1,β(t) = t ln t− (1− β)(t− 1) ln(1− β + β t), β ∈ [0, 1],

as follows

Iβ(P, Q) = I(P, βP + (1− β)Q) + I(βP + (1− β)Q, Q)

= I(P,Q)− (1− β)
∫

(p− q) ln
β p + (1− β)q

q
dµ.
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