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Published bi-monthly by the Institute of Information Theory and Automation of the
Academy of Sciences of the Czech Republic, Pod Vodárenskou věž́ı 4, 182 08 Praha 8.
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ON CONTINUOUS CONVERGENCE
AND EPI-CONVERGENCE OF RANDOM FUNCTIONS

Part I: Theory and Relations

Silvia Vogel1 and Petr Lachout2

Continuous convergence and epi-convergence of sequences of random functions are cru-
cial assumptions if mathematical programming problems are approximated on the basis
of estimates or via sampling. The paper investigates “almost surely” and “in probability”
versions of these convergence notions in more detail. Part I of the paper presents definitions
and theoretical results and Part II is focused on sufficient conditions which apply to many
models for statistical estimation and stochastic optimization.

Keywords: continuous convergence, epi-convergence, stochastic programming, stability

AMS Subject Classification: 90C15, 90C31, 60B10

1. INTRODUCTION

Often a decision maker has to deal with a programming problem which contains
unknown parameters. Then, usually, he will estimate the parameters and solve the
surrogate problem obtained in this way. And he hopes that the solution of the
surrogate problem is a good approximation to the solution of the true problem.
Thus there is a need for conditions ensuring that this hope is justified, conditions
on the form of the true problem and on the behavior of the estimates.

There are many papers dealing with the approximation of mathematical pro-
gramming problems. Especially stability theory of parametric programming and the
theory of epi-convergence yield a lot of helpful results (cf. [1, 4, 16]).

When the surrogate problems are random – as in the case of estimated parameters
– additional considerations are necessary to adopt the deterministic results to the
random setting.

This problem was – for the almost surely case – mainly dealt with in the frame-
work of stochastic programming and Markovian decision processes. Meanwhile a lot

1The research has been partially supported by Deutsche Forschungsgemeinschaft under grant
No. 436TSE113/40.

2The research has been partially supported by the Ministry of Education, Youth and Sports of
the Czech Republic under Project MSM 113200008 and by the Grant Agency of the Czech Republic
under grant No. 201/02/0621.
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of qualitative and quantitative results are available (cf. [2, 3, 7, 8, 10, 13, 14, 15, 17,
19, 20, 21, 22, 25, 26, 28, 29, 30, 31]).

The methods of investigation are usually adjusted to the special framework. For
instance the approximation of the true probability measure by the empirical measure
based on independent samples or the availability of consistent estimates are often
employed.

But there are also many problems where weakly consistent estimates or dependent
samples are only accessible. Then, mostly, one cannot deal with the a. s. setting, and
one may ask for weaker convergence notions such as (semi)convergence in probability
for optimal values and optimal solution sets.

In [11, 12, 26] special large deviations results are given, which offer the possibility
to derive statements on convergence in probability. General stability statements in
terms of convergence in probability are proved in [27].

The similarity of the results in [27] to the “almost surely” case gave reason to
consider the relations between convergence almost surely and in probability in more
detail. The investigations are done for one-sided forms of epi- and/or continuous
convergence. The results can be combined in several forms to derive statements for
epi-convergence or continuous convergence as well.

When approximating optimization problems with constraints, in general, it is not
necessary to impose convergence of the objective functions on the whole domain.
Therefore we consider convergence restricted to a convergence region X.

We prove equivalent characterizations for so-called lower (or upper) semicontin-
uous approximations and epi-upper approximations almost surely at X which pave
the way for the examination of the connections between convergence almost surely
and in probability. They show immediately that the different notions for convergence
almost surely imply those for convergence in probability. Furthermore, it is clari-
fied to what extent convergence in probability can be characterized by convergence
almost surely of subsequences. Roughly spoken, if lower or upper semicontinuous
approximations are considered on the whole domain and for epi-upper approxima-
tions, convergence in probability is equivalent to the fact that each subsequence
contains a subsequence which converges almost surely in the sense under considera-
tion. However, this is no longer true if semicontinuous convergence is restricted to
a non-trivial subset X.

The connection between epi-convergence of a sequence of functions and the be-
havior of corresponding minimal values and sets of “argmins” is well investigated
and utilized in many papers on stability in stochastic programming. Implications
which may be drawn if half-sided approximations only are assumed are scattered in
the literature (cf. [4, 16, 27]). In order to make the present paper self-contained,
corresponding results are proved independently.

2. DESCRIPTION OF THE CONSIDERED PROBLEM

Let a complete probability space [Ω,A, P ] be given and suppose that a random
optimization problem

(IP 0) min
x∈Γ0(ω)

f0(x, ω)



On Continuous Convergence and Epi-convergence of Random Functions. Part I 77

is approximated by a sequence of surrogate problems
(IPn) min

x∈Γn(ω)
fn(x, ω), n ∈ N, ω ∈ Ω,

where Γn| Ω → 2R
p

, n ∈ N0 := N ∪ {0}, denotes a multifunction with measurable
graph, i. e. Graph Γn ∈ A ⊗ Σp, and the function fn| Rp × Ω → R, n ∈ N0, is
supposed to be (Σp ⊗ A, Σ)-measurable. Here Σ denotes the σ-field of Borel sets
of R and Σ is the σ-field of Borel sets of R, i. e. generated by Σ and {+∞}, {−∞}.
Consequently, Σp denotes the σ-field of Borel sets of Rp.

Although our main interest is in deterministic original problems, which are ap-
proximated relying on estimates, we here allow for random original problems in order
to show that the relations between the convergence notions under consideration also
hold for random original problems. Furthermore, random original problems occur if
one deals with stochastic processes.

We usually write the “full” form fn(x, ·) instead of fn(x) for random functions
(and fn(x, ω) for the realizations), because we sometimes deal with random functions
and deterministic functions simultaneously and hence have to distinguish clearly
between them.

The constraint set Γn may be specified by inequality constraints:

Γn(ω) = {x ∈ Rp| gj
n(x, ω) ≤ 0, j ∈ J}, where the functions

gj
n| Rp × Ω → R, n ∈ N0, j ∈ J have to satisfy the same measurability conditions

as fn, J is a countable index set.
By f̃n we denote the modified objective functions

f̃n(x, ω) :=

{
fn(x, ω) if x ∈ Γn(ω),

+∞ otherwise.
(1)

Having graph of Γn measurable, the function f̃n is (Σp ⊗ A, Σ)-measurable. Ob-
viously, fn can be regarded as a modified objective function. Therefore, in the
following, we shall introduce continuous convergence, epi-convergence and a concept
of approximations (almost surely, in probability or in the deterministic sense) for
the functions fn, n ∈ N.

3. ALMOST SURE CONVERGENCE OF RANDOM FUNCTIONS

Let us start with deterministic functions.

Definition 3.1. Let {hn, n ∈ N0} be a family of deterministic functions
hn|Rp→ R. By EL∗hn(x0) we denote the epi-limes inferior of (hn)n∈N at x0 ∈ Rp

and by EL∗hn(x0) the epi-limes superior:

EL∗hn(x0) := sup
V ∈N (x0)

lim inf
n→+∞

inf
x∈V

hn(x), (2)

EL∗hn(x0) := sup
V ∈N (x0)

lim sup
n→+∞

inf
x∈V

hn(x). (3)
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(We denote by N (x0) the neighborhood system of x0.)

These two limits can be equivalently described using convergent sequences.

Lemma 3.1. Let {hn, n ∈ N0} be a family of deterministic functions hn| Rp → R.
Then

lim inf
n→+∞

hn(xn) ≥ EL∗hn(x0) for each sequence xn → x0 and (4)

there is a sequence x̂n → x0 such that lim inf
n→+∞

hn(x̂n) = EL∗hn(x0),

lim sup
n→+∞

hn(xn) ≥ EL∗hn(x0) for each sequence xn → x0 and (5)

there is a sequence x̃n → x0 such that lim sup
n→+∞

hn(x̃n) = EL∗hn(x0).

The epi-limes inferior and the epi-limes superior of a sequence of functions provide
us with a powerful tool for the problem (IPn) investigation. Let us define notions
convenient for our task. The notation was chosen because of the close relationship
to the lower semicontinuity of a function of two variables, see [10], [16].

Definition 3.2. A sequence (hn)n∈N satisfying the inequality

EL∗hn(x0) ≥ h0(x0) (6)

at a point x0 will be called a lower semicontinuous approximation to h0 at x0, we
shall abbreviate this property by hn

l−−−→
{x0}

h0.

Definition 3.3. A sequence (hn)n∈N will be called an upper semicontinuous ap-

proximation to h0 at x0

(
hn

u−−−→
{x0}

h0

)
if (6) is satisfied for {−hn, n ∈ N0}.

Definition 3.4. A sequence (hn)n∈N fulfilling the relation

EL∗hn(x0) ≤ h0(x0), (7)

(hn)n∈N is called an epi-upper approximation to h0 at x0

(
hn

epi-u−−−−→
{x0}

h0

)
.

Definition 3.5. A sequence (hn)n∈N with hn
l−−−→

{x0}
h0 and hn

u−−−→
{x0}

h0 is contin-

uously convergent to h0 at x0

(
hn−−−→{x0}

h0

)
, and a sequence satisfying (6) and (7)

is epi-convergent to h0 at x0

(
hn

epi−−−→
{x0}

h0

)
.

The above definitions are formulated for single points, only. Using a natural idea
we can extend them for subsets of Rp.
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Definition 3.6. For X subset of Rp, we define

hn
l−−→

X
h0 ⇐⇒ ∀x0 ∈ X : hn

l−−−→
{x0}

h0, (8)

hn
u−−→
X

h0 ⇐⇒ ∀x0 ∈ X : hn
u−−−→

{x0}
h0, (9)

hn
epi-u−−−−→

X
h0 ⇐⇒ ∀x0 ∈ X : hn

epi-u−−−−→
{x0}

h0, (10)

hn
epi−−→
X

h0 ⇐⇒ ∀x0 ∈ X : hn
epi−−−→
{x0}

h0, (11)

hn−−→
X

h0 ⇐⇒ ∀x0 ∈ X : hn−−−→{x0}
h0. (12)

The lower semicontinuous approximation is connected with continuity of a func-
tion.

Definition 3.7. Let X ⊂ Rp. A function h| Rp → R is called

lower semicontinuous (l.s.c.) at X ⇐⇒ ∀x0 ∈ X : EL∗h(x0) ≥ h(x0)
(or equivalently h

l−−→
X

h);

upper semicontinuous (u.s.c.) at X ⇐⇒ −h is l.s.c. at X;
continuous at X being both l.s.c. and u.s.c. at X

(or equivalently h−−→
X

h);

lower semicontinuous (l.s.c.) on X ⇐⇒ ∀x0 ∈ X
sup

V ∈N (x0)

lim inf
n→+∞

inf
x∈V ∩X

h(x) ≥ h(x0);

upper semicontinuous (u.s.c.) on X ⇐⇒ −h is l.s.c. on X;

continuous on X being both l.s.c. and u.s.c. on X.

The above defined approximations are closely related to stability of optimal value
and optimal solutions of an optimization problem. They provide a deeper analysis
of the stability problem than epi-convergence itself.

Definition 3.8. For a deterministic function h| Rp → R we denote

ϕ (h) = inf
x∈Rp

h(x) (13)

and for each α ∈ R we define

levelα(h) = {x ∈ Rp : (x) ≤ α} and Ψ(h; α) =
⋂

δ>α

clo (levelδ(h)). (14)
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Definition 3.9. For a couple of non-empty sets A,B ⊂ Rp we consider distance
between a point a ∈ A and the set B given by

dp (a,B) = inf
b∈B

dp (a, b) (15)

and the excess from the set A to the set B defined by

excess(A,B) = sup
a∈A

dp (a,B) , (16)

where dp denotes the Euclidean distance in Rp.
For convenience, we set excess(∅, B)=excess(∅, ∅)=0, excess(A, ∅)=+∞.

If the functions depend on random element the setup of approximations can be
naturally combined with the almost sure validity.

Definition 3.10. Let {fn, n ∈ N0} be a family of functions fn| Rp×Ω → R. Then
the sequence (fn)n∈N is said to be

i) a lower semicontinuous approximation almost surely to f0 at X

(notation fn
l-a.s.−−−−→

X
f0) if P

{
ω : fn(·, ω) l−−→

X
f0(·, ω)

}
= 1 ,

ii) an upper semicontinuous approximation almost surely to f0 at X

(notation fn
u-a.s.−−−−→

X
f0) if −fn

l-a.s.−−−−→
X

−f0 ,

iii) continuously convergent almost surely to f0 at X

(notation fn
a.s.−−−→
X

f0) if (fn
l-a.s.−−−−→

X
f0) ∧ (fn

u-a.s.−−−−→
X

f0),

iv) an epi-upper approximation almost surely to f0 at X

(notation fn
epi-u-a.s.−−−−−−→

X
f0) if P

{
ω : fn(·, ω)

epi-u−−−−→
X

f0(·, ω)
}

= 1,

v) epi-convergent almost surely to f0 at X

(notation fn
epi-a.s.−−−−−→

X
f0) if (fn

l-a.s.−−−−→
X

f0) ∧ (fn
epi-u-a.s.−−−−−−→

X
f0).

The set X plays the role of the “convergence region”, because, in general, we do
not need (especially continuous) convergence on the whole Rp (cf.[27]); Theorem 3.6
is showing that. Epi-convergence almost surely as dealt with by [23, 24] corresponds
to our definition with X = Rp.

The following propositions gather up equivalent characterizations of the lower
semicontinuous approximation a. s. and of the epi-upper approximation a. s. They
will be latter employed to introduce the setup of approximations in probability.
Partly Propositions are inspired by the results in [23]. The mentioned characteriza-
tions are valid for closed convergence regions, only. Therefore, we make the following
agreement.
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Agreement. In the sequel, the set X is always assumed to be a closed subset
of Rp.

Let Epi fn(·, ω) denote the epi-graph of fn(·, ω). Under our measurability condi-
tions the multifunction Epi fn has a measurable graph.

We denote the set of all compact subsets of Rp by Cp and the α-neighborhood of
X by UαX := {x ∈ Rp| inf

y∈X
d(x, y) < α}. By UαX we denote the closure of UαX.

The lower semicontinuous approximation a. s. and the epi-upper approximation
a. s. possess an helpful equivalent description which enables their extension ‘in prob-
ability’ sense. For that purpose we establish two auxiliary sets.

Definition 3.11. For a couple of functions f, g| Rp × Ω → R we abbreviate

Dl,ε(f, g, X;ω) :=
(
cloEpi f(·,ω)∩[U 1

l
X×R]

)
\ Uε

(
Epi g(·,ω)∩[X×R]

)
, (17)

Hε(f, g, X;ω) := (clo Epi g(·, ω) ∩ [X × R]) \ UεEpi f(·, ω). (18)

Briefly, the set Dl,ε(f, g, X; ω) contains each cluster point of the epi-graph of f
with argument in U 1

l
X, but with distance at least ε from the epi-graph of g restricted

to X. The set Hε(f, g, X;ω) contains each cluster point of the epi-graph of g with
argument in X, but with distance at least ε from the epi-graph of f .

To avoid any misunderstanding, let us note that “lim sup”, “lim inf” and “lim”
for sets are used in the sense of Kuratowski. The limits in the set-theoretical sense
will be denoted by “Limsup”, “Liminf” and “Lim”.

Theorem 3.1. Let f0(·, ω) be l.s.c. on X for almost all ω. Then
(
fn

l-a.s.−−−−→
X

f0

)
(19)

⇔
(

P

{
ω :

∀x0 ∈ X ∀(xn)n∈N with xn → x0 :
lim inf
n→+∞

fn(xn, ω) ≥ f0(x0, ω)

}
= 1

)
, (20)

⇔

P



ω :

lim sup
n→+∞
l→+∞

(Epi fn(·, ω) ∩ [U 1
l
X × R]) ⊂

⊂ (Epi f0(·, ω) ∩ [X × R])



 = 1


 , (21)

⇔

P



ω :

lim sup
n→+∞
l→+∞

(clo Epi fn(·, ω) ∩ [U 1
l
X × R]) ⊂

⊂ (Epi f0(·, ω) ∩ [X × R])



 = 1


 , (22)

⇔


∀ε>0 ∀K∈Cp+1 : lim

n→+∞
l→+∞

P





⋃
m≥n
s≥l

{ω :Ds,ε(fm, f0, X; ω)∩K 6=∅}





= 0


 .

(23)

P r o o f . The equivalence between (19) and (20) follows by (4), (6) and (8).
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Assuming X to be a closed set we obtain

Epi EL∗fn(·, ω) ∩ [X × R] = lim sup
n→+∞
l→+∞

Epi fn(·, ω) ∩ [U 1
l
X × R]

= lim sup
n→+∞
l→+∞

cloEpi fn(·, ω) ∩ [U 1
l
X × R] ∀ω ∈ Ω

and, consequently, (20) ⇔ (21) ⇔ (22).
To prove the equivalence of (22) and (23) we make use of the corollary 4.11(b)

and Theorem 4.10(b’) in [18]. These two relations are giving a chain of equivalences
lim sup

n→+∞
l→+∞

Gnl ⊂ G0


 ⇔

(
∀ε > 0 : lim

n→+∞
l→+∞

(Gnl \ UεG0) = ∅
)

⇔ (∀ε∈Q+∀x∈Qp+1∀r∈Q+ : ∃n0∃l0∀n≥n0∀l≥ l0 : (Gnl \ UεG0)∩Ur{x}=∅)

provided Gnl, G0 are closed subsets of Rp+1. The symbols Qp+1 and Q+ denote
the rational numbers of Rp+1 and R+, respectively.

The sets clo Epi fn(·, ω) ∩ [U 1
l
X × R] are closed by definition and the set

Epi f0(., ω) ∩ [X × R] is closed a. s. since f0 is l.s.c. on the closed set X.
Thus, we have

(22) ⇔

⇔
(

P

{
ω :

∀ε ∈ Q+ ∀x ∈ Qp+1 ∀r ∈ Q+ : ∃n0(ω) ∃l0(ω)
∀n ≥ n0(ω) ∀l ≥ l0(ω) : Dl,ε(fn, f0, X; ω) ∩ Ur{x} = ∅

}
= 1

)

⇔
(

P

{
ω :

∃ε ∈ Q+ ∃x ∈ Qp+1 ∃r ∈ Q+ : ∀n0(ω) ∀l0(ω)
∃n ≥ n0(ω) ∃l ≥ l0(ω) : Dl,ε(fn, f0, X; ω) ∩ Ur{x} 6= ∅

}
= 0

)

⇔

P {} ⋃

ε∈Q+

⋃
x∈Qp+1

⋃
r∈Q+

⋂
n0,l0∈N

⋃
n≥n0
l≥l0

{
ω : Dl,ε(fn, f0, X; ω)∩Ur{x} 6=∅

}
=0


 .

The multifunction ω 7→ Dl,ε(fn, f0, X; ω) is possessing measurable graphs since
the functions fn and f0 are measurable. According to Proposition 8.4.4. in [6], the
set

{
ω : Dl,ε(fn, f0, X;ω) ∩ Ur{x} 6= ∅} belongs to A because we assume a complete

probability space. Therefore, we can prolong the chain of equivalences.

⇔




∀ε ∈ Q+ ∀x ∈ Qp+1 ∀r ∈ Q+ :

lim
n→+∞
l→+∞

P





⋃
m≥n
s≥l

{
ω : Ds,ε(fm, f0, X; ω) ∩ Ur{x} 6= ∅}



 = 0




⇔ (23). 2

Continuity of the function f0 simplifies the statement (23).
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Proposition 3.1. Let f0(·, ω) be continuous on X for almost all ω. Then
(fn

l-a.s.−−−−→
X

f0) ⇔

P





ω :

∀K ∈ Cp :

lim inf
n→+∞
l→+∞

inf
x∈X∩K

(
inf

y∈U 1
l
{x}

fn(y, ω)− f0(x, ω)

)
≥ 0





= 1


 (24)

P r o o f . The formula (24) evidently implies the statement (20). We have to show
the reverse implication, only.

Let ω ∈ Ω be fixed and such that f0(·, ω) is u.s.c. on X and suppose that there are
ε > 0, K ∈ Cp and sequences (nk)k∈N, (lk)k∈N, (xk)k∈N, (yk)k∈N with xk ∈ X ∩K,
yk ∈ U 1

lk

{xk} and fnk
(yk, ω) − f0(xk, ω) < −ε. W.l.o.g. we can assume that

xk → x0 ∈ X ∩K. Since the function f0(·, ω) is u.s.c. on X, we receive

lim inf
k→+∞

fnk
(yk, ω) ≤ lim inf

k→+∞
f0(xk, ω)− ε ≤ lim sup

k→+∞
f0(xk, ω)− ε ≤ f0(x0, ω)− ε

and, therefore, EL∗fn(., ω)(x0) < f0(x0, ω). 2

Proposition 3.2. Let f0(·, ω) be continuous at X for almost all ω. Then
(fn

l-a.s.−−−−→
X

f0) ⇔
(

P

{
ω : ∀K ∈ Cp lim inf

n→+∞
l→+∞

inf
x∈U 1

l
X∩K

(fn(x, ω)− f0(x, ω)) ≥ 0

}
= 1

)
. (25)

P r o o f . We shall show that (20) is equivalent with (25).

i) Let ω ∈ Ω be fixed and such that f0(·, ω) is u.s.c. at X and suppose that there
are ε > 0, K ∈ Cp and sequences (nk)k∈N, (lk)k∈N, (xk)k∈N with xk ∈ U 1

lk

X ∩K

and fnk
(xk, ω)− f0(xk, ω) < −ε. W.l.o.g. we can assume that xk → x0 ∈ X ∩K.

Since the function f0(·, ω) is u.s.c. at X, we receive

lim inf
k→+∞

fnk
(xk, ω) ≤ lim inf

k→+∞
f0(xk, ω)− ε ≤ lim sup

k→+∞
f0(xk, ω)− ε ≤ f0(x0, ω)− ε.

ii) Now, suppose that f0(·, ω) is l.s.c. at X for a fixed ω ∈ Ω and that there are
an x0 ∈ X, a sequence (xn)n∈N with xn → x0, and an ε > 0 such that

lim inf
n→+∞

fn(xn, ω) ≤ f0(x0, ω)− ε.

Because the function f0(·, ω) is l.s.c. at X we obtain

lim inf
n→+∞

(fn(xn, ω)− f0(xn, ω)) ≤ lim inf
n→+∞

fn(xn, ω) + lim sup
n→+∞

(−f0(xn, ω))

≤ f0(x0, ω)− ε− lim inf
n→+∞

f0(xn, ω) ≤ −ε.
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Consequently for K := U1{x0}, we receive inf
x∈U 1

l
X∩K

(fn(x, ω)− f0(x, ω)) ≤ −ε.

2

It is well-known that continuous convergence is equivalent to uniform convergence
on compact sets if the limit function is continuous [9], Propositions 3.1 and 3.2 reflect
this fact in our setting.

Theorem 3.2. Without any additional assumption

(fn
epi-u-a.s.−−−−−−→

X
f0) (26)

⇔
(

P

{
ω :

∀x0 ∈ X ∃(xn)n∈N with xn → x0 :
lim sup
n→+∞

fn(xn, ω) ≤ f0(x0, ω)

}
= 1

)
(27)

⇔
(

P

{
ω : lim inf

n→+∞
Epi fn(·, ω) ⊃ Epi f0(·, ω) ∩ [X × R]

}
= 1

)
(28)

⇔
(

P

{
ω : lim inf

n→+∞
cloEpi fn(·, ω) ⊃ cloEpi f0(·, ω) ∩ [X × R]

}
= 1

)
(29)

⇔

∀ε>0 ∀K∈Cp+1 : lim

n→+∞
P





⋃

m≥n

{ω : Hε(fn, f0, X; ω) ∩K 6=∅}


=0


 .

(30)

P r o o f . The equivalence between (26) and (27) follows by (5), (7) and (10).
The statements (27) and (28) are equivalent because of
Epi EL∗ fn(·, ω) ∩ [X × R] = lim inf

n→+∞
Epi fn(·, ω) ∩ [X × R] ∀ω ∈ Ω.

Employing the corollary 4.11(a) in [18] and Theorem 4.10(b’) in [18] for Gn

arbitrary subsets of Rp+1, we receive the following chain of equivalences(
lim inf
n→+∞

Gn ⊃ G0

)
⇔

(
lim inf
n→+∞

cloGn ⊃ cloG0

)

⇔
(
∀ε > 0 : lim

n→+∞
(cloG0 \ UεcloGn) = ∅

)

⇔
(
∀ε > 0 : lim

n→+∞
(cloG0 \ UεGn) = ∅

)

⇔ (∀x ∈ Qp+1 ∀r ∈ Q+ : ∃n0 ∀n ≥ n0 : (clo G0 \ UεGn) ∩ Ur{x} = ∅).
Consequently, (28) ⇔ (29) ⇔ (30) follows by considerations similar to those in

the proof of Theorem 3.1. 2

Note that the equivalent characterization (27) implies that pointwise convergence

a. s. of (fn)n∈N to f0 at x0 is sufficient for fn
epi-u-a.s.−−−−−−→
{x0}

f0.

Under additional assumptions the lower semicontinuous approximation a. s. and
the epi-upper approximation a. s. imply convergences of optimal values and optimal
solutions.
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Theorem 3.3. Let {fn, n ∈ N0} be a family of functions fn| Rp × Ω → R and
∆ ⊂ Rp be such that inf

x∈∆
f0(x, ω) = ϕ (f0(., ω)) for almost all ω ∈ Ω.

If fn
epi-u-a.s.−−−−−−→

∆
f0 then lim sup

n→+∞
ϕ (fn(., ω)) ≤ ϕ (f0(., ω)) for almost all ω ∈ Ω.

P r o o f . Let ω ∈ Ω such that inf
x∈∆

f0(x, ω) = ϕ (f0(., ω)) and δ > ϕ (f0(., ω)).

Then there is x̂ ∈ ∆ such that f0(x̂, ω) < δ. Hence,

sup
V ∈N (x̂)

lim sup
n→+∞

inf
x∈V

fn(x, ω) ≤ f0(x̂, ω) < δ since fn
epi-u-a.s.−−−−−−→

∆
f0.

Consequently, lim sup
n→+∞

ϕ (fn(., ω)) ≤ ϕ (f0(., ω)) . 2

Theorem 3.4. Let {fn, n ∈ N0} be a family of functions fn| Rp × Ω → R.
Let a compact K ∈ Cp be such that

lim inf
n→+∞

inf
x 6∈K

fn(x, ω) ≥ ϕ (f0(., ω)) for almost all ω ∈ Ω

If fn
l-a.s.−−−−→

K
f0 then for almost all ω ∈ Ω we have

lim inf
n→+∞

ϕ (fn(., ω)) ≥ ϕ (f0(., ω)) .

P r o o f . Let ω ∈ Ω such that lim infn→+∞ infx6∈K fn(x, ω) ≥ ϕ (f0(., ω)).
Assume δ < ϕ (f0(., ω)).
Then for each x ∈ K, we have a neighborhood Vx ∈ N (x) such that

lim inf
n→+∞

inf
y∈Vx

fn(y, ω) > δ since fn
l-a.s.−−−−→

K
f0.

Of course,
⋃

x∈K Vx ⊃ K. We assume K to be a compact and, therefore, there is a
finite subset I ⊂ K such that

⋃
x∈I Vx ⊃ K.

Thus,
lim inf
n→+∞

inf
y∈K

fn(y, ω) ≥ min
x∈I

lim inf
n→+∞

inf
y∈Vx

fn(y, ω) > δ

and, hence,

lim inf
n→+∞

ϕ (fn(., ω)) = lim inf
n→+∞

min
{

inf
y∈K

fn(y, ω), inf
y 6∈K

fn(y, ω)
}

≥ min lim inf
n→+∞

inf
y∈K

fn(y, ω), lim inf
n→+∞

inf
y 6∈K

fn(y, ω) > δ.

Consequently, lim inf
n→+∞

ϕ (fn(·, ω)) ≥ ϕ (f0(·, ω)) . 2
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Theorem 3.5. Let {fn, n ∈ N0} be a family of functions fn| Rp × Ω → R and
αn| Ω → R, n ∈ N0, lim sup

n→+∞
αn ≤ α0 a. s.

Let a compact K ∈ Cp be such that

lim inf
n→+∞

inf
x 6∈K

fn(x, ω) > ϕ (f0(., ω)) for almost all ω ∈ Ω

If fn
l-a.s.−−−−→

K
f0 then for almost all ω ∈ Ω we have

lim inf
n→+∞

ϕ (fn(., ω)) ≥ ϕ (f0(., ω))

and if lim inf
n→+∞

inf
x 6∈K

fn(x, ω) > α0(ω) then

lim
n→+∞

excess(Ψ (fn(., ω); αn(ω))Ψ (f0(., ω); α0(ω))) = 0

while Ψ (fn(., ω); αn(ω)) ⊂ K is a compact for all n ∈ N large enough.

P r o o f . The relation between optimal values follows from Theorem 3.4.
We have to consider the level sets, only.
Let ω ∈ Ω such that lim infn→+∞ infx6∈K fn(x, ω) > α0(ω) ≥ ϕ (f0(., ω)).
Assume δ0 ∈ R fulfilling lim infn→+∞ infx 6∈K fn(x, ω) > δ0 > α0(ω).
Then there is n0 ∈ N such that infx6∈K fn(x, ω) > δ0 for each n ≥ n0.
Hence levelδ(fn(., ω), δ) ⊂ K for each δ ∈ (α0(ω), δ0), n ≥ n0.
Consequently for each n ≥ n0, Ψ (fn(., ω); αn(ω)) ⊂ K and is a compact being a

closed set by definition.

According to our agreement that excess(∅, B) = excess(∅, ∅) = 0, we need only
treat the case αn(ω) ≥ ϕ (fn(., ω)) ∀ n ∈ N, i. e. Ψ (fn(., ω); αn(ω)) 6= ∅.

Let xn ∈ Ψ(fn(., ω); αn(ω)) be such that

dp (xn, Ψ(f0(., ω); α0(ω))) > excess(Ψ (fn(., ω); αn(ω))Ψ (f0(., ω); α0(ω)))− 2−n.

For n ≥ n0, xn belongs in the compact K. Therefore, there is a convergent subse-
quence lim

k→+∞
xnk

= x̂.

By the definition there are yn ∈ Rp such that

lim
n→+∞

dp (yn, xn) = 0 and lim sup
n→+∞

fn(yn, ω) ≤ α0(ω).

Therefore, α0(ω) ≥ lim inf
k→+∞

fnk
(ynk

, ω) ≥ f0(x̂, ω) since fn
l-a.s.−−−−→

K
f0.

Thus, we conclude lim
n→+∞

excessΨ (fn(., ω); αn(ω))Ψ (f0(., ω); α0(ω)) = 0. 2
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Theorem 3.6. Let {fn, n ∈ N0} be a family of functions fn |Rp × Ω → R,
αn |Rp × Ω → R for n ∈ N0 and ∆ ⊂ Rp be such that αn ≥ ϕ (fn) a. s. for each
n ∈ N0, lim sup

n→+∞
αn ≤ α0 a. s. and

∫
x∈∆

f0(x) = ϕ (f0(., ω)) for almost all ω ∈ Ω.

Let a compact K ∈ Cp be such that

lim inf
n→+∞

inf
x6∈K

fn(x, ω) > ϕ (f0(., ω)) for almost all ω ∈ Ω, (31)

fn
l-a.s.−−−−→

K
f0 and fn

epi-u-a.s.−−−−−−→
∆

f0. (32)

Then for almost all ω ∈ Ω we have

lim inf
n→+∞

ϕ (fn(., ω)) = ϕ (f0(., ω))

and if lim inf
n→+∞

∫
x6∈K

fn(x, ω) > α0(ω) then

lim
n→+∞

excess(Ψ (fn(., ω); αn(ω))Ψ (f0(., ω); α0(ω))) = 0

while Ψ (fn(., ω); αn(ω)) ⊂ K is a compact for all n ∈ N large enough. *

P r o o f . The statement is a direct combination of Theorems 3.3 and 3.6. 2

Let us note that Theorems 3.3, 3.4, 3.5 and 3.6 extend Proposition 7.30 and The-
orem 7.33 in [18]; for more general setting see Theorem 5.3.6 in [5].

4. CONVERGENCE IN PROBABILITY OF RANDOM FUNCTIONS

Now we shall consider one-sided approximations “in probability”. To avoid any
misunderstanding, let us repeat the note that “lim sup”, “lim inf” and “lim” for sets
are used in the sense of Kuratowski and the limits in the set-theoretical sense are
denoted by “Limsup”, “Liminf” and “Lim”.

Definition 4.1. The sequence (fn)n∈N is said to be

i) a lower semicontinuous approximation in probability to f0 at X

(notation fn
l-prob−−−−→

X
f0) if

∀ε > 0 ∀K ∈ Cp+1 : lim
n→+∞
l→+∞

P {ω : Dl,ε(fn, f0, X; ω) ∩K 6= ∅} = 0,

ii) an upper semicontinuous approximation in probability to f0 at X

(notation fn
u-prob−−−−−→

X
f0) if (−fn

l-prob−−−−→
X

−f0),

iii) an epi-upper approximation in probability to f0 at X

(notation fn
epi-u-prob−−−−−−−→

X
f0) if

∀ε > 0 ∀K ∈ Cp+1 : lim
n→+∞

P {ω : Hε(fn, f0, X; ω) ∩K 6= ∅} = 0.
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Continuous convergence or epi-convergence in probability can be defined combin-
ing (i) and (ii) or (i) and (iii), respectively. The condition (23) and hence fn

l-a.s.−−−−→
X

f0

imply fn
l-prob−−−−→

X
f0 as well as (30) and hence fn

epi-u-a.s.−−−−−−→
X

f0 imply fn
epi-u-prob−−−−−−−→

X
f0.

The following lemma gives further insight into the relation between the approxi-
mations almost surely and in probability. It offers the possibility to derive stability
assertions ’in probability’ from the a. s. case.

Lemma 4.1. Let f0(·, ω) be l.s.c. on X for almost all ω. Then
(

Each subsequence of (fn)n∈N contains
a subsequence (fnk

)k∈N with fnk

l-a.s.−−−−→
X

f0.

)
⇒ (fn

l-prob−−−−→
X

f0).

P r o o f . Suppose that (fn)n∈N fails to be a lower semicontinuous approximation
in probability to f0 on X. Hence there are ε > 0, K ∈ Cp+1, α > 0 and subsequences
(fn)n∈Ñ⊂N, (ln)n∈Ñ , lim

n→+∞
n∈Ñ

ln = ∞ with

P {ω : Dln,ε(fn, f0, X; ω) ∩K 6= ∅} > α ∀n ∈ Ñ .

Consequently, P



Limsup

k→+∞
l→+∞

{ω : Dl,ε(fnk
, f0, X; ω) ∩K 6= ∅}



 ≥ α, for each sub-

sequence (nk)k∈N ⊂ Ñ and, thus, the sequence (fn)n∈Ñ cannot contain a subse-

quence (fnk
)k∈N with fnk

l-a.s.−−−−→
X

f0. 2

Assuming a bit stronger condition than lower semicontinuous approximation in
probability, we are able to prove the reverse statement.

Lemma 4.2. Let f0(·, ω) be l.s.c. on X for almost all ω. If there is l0 ∈ N such
that ∀ε > 0 ∀K ∈ Cp+1 : lim

n→+∞
P {ω : Dl0,ε(fn, f0, X; ω) ∩K 6= ∅} = 0 then

(
Each subsequence of (fn)n∈N contains
a subsequence (fnk

)k∈N with fnk

l-a.s.−−−−→
X

f0.

)
.

P r o o f . Consider a subsequence (fn)n∈Ñ⊂N of (fn)n∈N.
For every k∈N we find an ñk∈Ñ such that, for each n ≥ ñk n∈Ñ ,

P
{

ω : Dl0, 1
2k

(fn, f0, X;ω) ∩ Uk{0} 6= ∅
}

< 1
2k .

Let n1 = ñ1 and nk := max{nk−1 + 1, ñk}. Let us denote N̂ := {n1, n2, . . . }.
For fixed ε > 0 and K ∈ Cp+1, we obtain

∞∑
k=1

P {ω : Dl0,ε(fnk
, f0, X; ω) ∩K 6= ∅} < ∞,
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since

{ω : Dl0,ε(fnk
, f0, X; ω) ∩K 6= ∅} ⊂

{
ω : Dl0, 1

2k
(fnk

, f0, X; ω) ∩ Uk{0} 6= ∅
}

for each k sufficiently large.
That, by the Borel-Cantelli-Lemma, implies

P

{
Limsup
k→+∞

{ω : Dl0,ε(fnk
, f0, X; ω) ∩K 6= ∅}

}
= 0.

Consequently, ∀ε > 0 ∀K ∈ Cp+1 :

0 = lim
k→+∞

P

{
⋃

j≥k

{ω : Dl0,ε

(
fnj

, f0, X; ω
) ∩K 6= ∅}

}

= lim
k→+∞

P





⋃
m≥nk, m∈N̂

s≥l0

{ω : Ds,ε(fm, f0, X; ω) ∩K 6= ∅}





≥ lim
n→+∞,n∈N̂

l→+∞

P





⋃
m≥n, m∈N̂

s≥l

{ω : Ds,ε(fm, f0, X; ω) ∩K 6= ∅}


.

That means fnk

l-a.s.−−−−→
X

f0. 2

Unfortunately, in general, the reverse to Lemma 4.1 fails.

Example. Let p = 1, X = {0} and An,v, n, v ∈ N be such random events that
P {An,v} = 2−v, An,v∩An,w = ∅ whenever v 6= w,

⋃+∞
v=1 An,v = Ω and the collections

{An,v, v ∈ N}, n ∈ N are independent. Consider random l.s.c. functions

f0 ≡ 0 and fn(t, ω) =
{ −1 if t ≥ 1

v , ω ∈ An,v,
0 otherwise, for n ∈ N.

Hence taking ω ∈ An,v, we receive

Epi fn(·, ω) ∩ [U 1
l
X × R]

=
(
−1

l
,

1
max{v, l}

)
× [0, +∞) ∪

[
1

max{v, l} ,
1
l

)
× [−1, +∞),

Uε(Epi f0(·, ω) ∩ [X × R]) = Uε({0} × [0,+∞)).

Therefore, for each 1
l ≤ ε < 1 and K ∈ C2, K ⊃ [−1, 1]2 we have

{ω ∈ Ω : Dn,l,ε(ω) ∩K 6= ∅} =
{
ω ∈ Ω : Dn,l,ε(ω) ∩ [−1, 1]2 6= ∅} =

+∞⋃

v=l+1

An,v.

Then,

P {ω ∈ Ω : Dn,l,ε(ω) ∩K 6= ∅} ≤
+∞∑

v=l+1

1
2v

=
1
2l
−−−−−→

l→+∞
0.
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Therefore, fn
l-prob−−−−→

X
f0.

Let fnk
, k ∈ N be a subsequence of our functions. Then for a fixed l ∈ N,

1
l ≤ ε < 1, the sets

{ω ∈ Ω : Dnk,l,ε(ω) ∩K 6= ∅} =
+∞⋃

v=l+1

Ank,v , k ∈ N

are independent with common positive probability. Hence according to the Borel–
Cantelli lemma,

P

{
Limsup
k→+∞

{ω ∈ Ω : Dnk,l,ε(ω) ∩K 6= ∅}
}

= 1.

Therefore, the convergence fnk

l-a.s.−−−−→
X

f0 cannot be true for any subsequence.

Lemma 4.3. Always, we have

(fn
epi-u-prob−−−−−−−→

X
f0) ⇔

(
Each subsequence of (fn)n∈N contains

a subsequence (fnk
)k∈N with fnk

epi-u-a.s.−−−−−−→
X

f0.

)
.

P r o o f .

i) Let fn
epi-u-prob−−−−−−−→

X
f0 and consider a subsequence (fn)n∈Ñ⊂N of (fn)n∈N.

For every k∈N we find an ñk∈Ñ such that, for n ≥ ñk n∈Ñ ,

P
{

ω : H 1
2k

(fn, f0, X; ω) ∩ Uk{0} 6= ∅
}

< 1
2k .

Let n1 = ñ1 and nk := max{nk−1 + 1, ñk}.
For ε > 0, K ∈ Cp+1, we obtain

∞∑
k=1

P {ω : Hε(fnk
, f0, X; ω) ∩K 6= ∅} < ∞,

since {ω : Hε(fnk
, f0, X; ω) ∩K 6= ∅} ⊂

{
ω : H 1

2k
(fnk

, f0, X;ω) ∩ Uk{0} 6= ∅
}

for
each k sufficiently large. That, by the Borel-Cantelli-Lemma, implies

P

{
Limsup
k→+∞

{ω : Hε(fnk
, f0, X;ω) ∩K 6= ∅}

}

= lim
k→+∞

P





⋃

j≥k

{
ω : Hε

(
fnj , f0, X; ω

) ∩K 6= ∅}


 = 0,

which is (30) and, therefore, fnk

epi-u-a.s.−−−−−−→
X

f0.

ii) Suppose that (fn)n∈N fails to be an epi-upper approximation in probability to
f0 on X. Hence there are ε > 0, K ∈ Cp+1, α > 0 and subsequence (fn)n∈Ñ⊂N with
P {ω : Hε(fn, f0, X; ω) ∩K 6= ∅} > α ∀n ∈ Ñ .
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Consequently,

P

{
Limsup
k→+∞

{ω : Hε(fnk
, f0, X; ω) ∩K 6= ∅}

}
≥ α

for each subsequence (nk)k∈N ⊂ Ñ and, thus, the sequence (fn)n∈Ñ⊂N cannot con-

tain a subsequence (fnk
)k∈N with fnk

epi-u-a.s.−−−−−−→
X

f0. 2

Let us close the section with the relation between stability of stochastic optimiza-
tion problem and our concept of approximations in probability. For random variables
with values in the extended real line we define lower and upper approximation in
probability.

Definition 4.2. Let Xn, n ∈ N0 be a sequence of random variables with values in
R. We say that Xn is a lower semicontinuous approximation in probability to X0

whenever for each ε > 0, δ ∈ R

lim
n→+∞

P {Xn < X0 − ε,X0 ∈ R} = 0, lim
n→+∞

P {Xn < δ,X0 = +∞} = 0, (33)

and is an upper semicontinuous approximation in probability to X0 whenever for
each ε > 0, δ ∈ R

lim
n→+∞

P {Xn > X0 − ε,X0 ∈ R} = 0, lim
n→+∞

P {Xn > δ,X0 = −∞} = 0. (34)

We will use the notation Xn
l-prob−−−−→X0 and Xn

u-prob−−−−−→X0, respectively.
If both approximations take place in the same time we speak on convergence in

probability denoted by Xn
prob−−−→X0.

Evidently, Xn
u-prob−−−−−→X0 ⇐⇒ −Xn

l-prob−−−−→−X0. Lower semicontinuous approx-
imation in probability can be equivalently described in several ways.

Lemma 4.4. Let Xn, n ∈ N0 be a sequence of random variables with values in R.
Then the following statements are equivalent

Xn
l-prob−−−−→ X0 (35)

⇐⇒ lim
n→+∞

P {Xn ≤ δ,X0 ≥ δ + ε} = 0 ∀δ ∈ R ∀ε > 0 (36)

⇐⇒ lim
n→+∞

P {Xn ≤ δ,X0 > δ} = 0 ∀δ ∈ R (37)

⇐⇒ lim
n→+∞

P {[Xn, X0 − ε] ∩K 6= ∅} = 0 ∀ε > 0 ∀K ∈ C. (38)



92 S. VOGEL AND P. LACHOUT

P r o o f .

iii) (35) implies (36) because

P {Xn ≤ δ,X0 ≥ δ + ε} = P {Xn ≤ δ ≤ X0 − ε}

≤ P
{

Xn < X0 − ε

2
, X0 ∈ R

}
+ P {Xn ≤ δ,X0 = +∞} .

iv) (36) implies (37) because

P {Xn ≤ δ,X0 > δ} ≤ P {Xn ≤ δ,X0 ≥ δ + ε}+ P {δ < X0 < δ + ε} .

v) Let K ∈ C. Then there is some I ∈ N such that K ⊂ [−Iε, Iε]. Hence,

P {[Xn, X0 − ε] ∩K 6= ∅} ≤ P {Xn ≤ Iε, X0 ≥ −(I − 1)ε,Xn ≤ X0 − ε}

≤
I−1∑

i=−I

P {Xn ≤ Iε, Xn ≤ X0 − ε, iε < X0 ≤ (i + 1)ε}+ P {Xn ≤ Iε, Iε < X0}

≤
I∑

i=−I

P {Xn ≤ iε, iε < X0} .

Consequently, (37) implies (38).

vi) For α, β ∈ R, α < β we obtain

P {Xn < X0 − ε,X0 ∈ R} ≤ P {X0 ∈ R− [α, β]}+ P {Xn < X0 − ε,X0 ∈ [α, β]}

≤ P {X0 ∈ R− [α, β]}+ P {[Xn, X0 − ε] ∩ [α− ε, β] 6= ∅} ,

and
P {Xn < δ,X0 = +∞} ≤ P {[Xn, X0] ∩ {δ} 6= ∅} .

Therefore, (38) implies (35). 2

Let us note that we can read “[Xn(ω), X0(ω) − ε] = Dl,ε(Xn, X0, . ;ω)” and
“[X0(ω), Xn(ω) − ε] = Hε(Xn, X0, . ;ω) = −Dl,ε(−Xn,−X0, . ;ω) − ε”. Therefore,
we did not introduce any epi-upper approximation in probability for a sequence of
random variables since that notion would coincide with the upper semicontinuous
approximation in probability.

Under additional assumptions the lower semicontinuous approximation in proba-
bility and the epi-upper approximation in probability imply a convergence of optimal
values and optimal solutions.
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Theorem 4.1. Let {fn, n ∈ N0} be a family of functions fn| Rp × Ω → R and
∆ ∈ Cp. If

∫

x∈∆

f0(x, . ) = ϕ (f0) a. s. and fn
epi-u-prob−−−−−−−→

∆
f0 (39)

then
ϕ (fn)

u-prob−−−−−→ϕ (f0) . (40)

P r o o f . Let δ ∈ R and ε > 0. Then we have the inclusion

{ω : ϕ (fn(., ω)) ≥ δ + 2ε, ϕ (f0(., ω)) < δ} ∩
{

ω :
∫

x∈∆

f0(x, ω) = ϕ (f0(., ω))
}

⊂ {ω : ∀x ∈ Rp fn(x, ω) ≥ δ + 2ε,∃y ∈ ∆ f0(y, ω) < δ}
⊂ {ω : Hε(fn, f0, ∆; ω) ∩ (∆× [δ, δ + ε]) 6= ∅} .

Therefore, (39) implies (40) since ∆× [δ, δ + ε] is a compact. 2

Theorem 4.2. Let {fn, n ∈ N0} be a family of functions fn| Rp × Ω → R and
K ∈ Cp. If

inf
x 6∈K

fn(x, . )
l-prob−−−−→ϕ (f0) and fn

l-prob−−−−→
K

f0 (41)

then
ϕ (fn)

l-prob−−−−→ϕ (f0) . (42)

P r o o f . Let δ ∈ R and ε > 0. Then we have the inclusion
{

ω : inf
x∈K

fn(x, ω) ≤ δ, ϕ (f0(., ω)) > δ + 2ε

}

⊂ {ω : ∃x ∈ K fn(x, ω) ≤ δ,∀y ∈ K f0(y, ω) > δ + 2ε}
⊂ {ω : Dl,ε(fn, f0, K; ω) ∩ (K × [δ, δ + ε]) 6= ∅} ∀ l ∈ N.

Therefore, (41) implies (42). 2

Theorem 4.3. Let {fn, n ∈ N0} be a family of functions fn| Rp × Ω → R,
αn| Ω → R, n ∈ N0, lim sup

n→+∞
αn ≤ α0 a. s., and K ∈ Cp. If

lim
n→+∞

P

{
ω : inf

x 6∈K
fn(x, ω) > max {ϕ (f0(., ω)) , α0(ω)}

}
= 1 (43)

and
fn

l-prob−−−−→
K

f0 (44)

then
ϕ (fn)

l-prob−−−−→ϕ (f0) (45)
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and
excess(Ψ (fn; αn)Ψ (f0;α0))

prob−−−→ 0 (46)

while
lim

n→+∞
P {ω : Ψ (fn(., ω); αn(ω)) ⊂ K is a compact} = 1. (47)

P r o o f .

i) The relation (45) follows from Theorem 4.2 since (43) and (44) imply (41).

ii) Evidently, (43) implies (47).

iii) Let ε > 0, A < B, ε,A, B ∈ R.
Then for all l ∈ N we obtain

P





ω :

excess(Ψ (fn(., ω); αn(ω))Ψ (f0(., ω); α0(ω) + 2ε)) > ε,

A ≤ α0(ω) ≤ B,αn(ω) < α0(ω) + ε,

Ψ(fn(., ω); αn(ω)) ⊂ K,





≤ P
{
ω : Dl,ε(fn, f0,K; ω) ∩ (K × [A + ε, B + ε]) 6= ∅ }

The assumptions of the theorem are giving

lim
n→+∞

P

{
ω : excess(Ψ (fn(., ω); αn(ω))Ψ (f0(., ω); α0(ω) + 2ε)) > ε,

A ≤ α0(ω) ≤ B,

}
= 0.

Since ε,A, B can be arbitrary chosen, we are receiving (46). 2

Theorem 4.4. Let {fn, n ∈ N0} be a family of functions fn| Rp × Ω → R,
αn| Ω → R, n ∈ N0, lim sup

n→+∞
αn ≤ α0 a. s., and K, ∆ ∈ Cp. If

lim
n→+∞

P

{
ω : inf

x6∈K
fn(x, ω) > max {ϕ (f0(., ω)) , α0(ω)}

}
= 1, (48)

∫

x∈∆

f0(x, ω) = ϕ (f0, ω) for almost all ω ∈ Ω, (49)

fn
epi-u-prob−−−−−−−→

∆
f0 and fn

l-prob−−−−→
K

f0 (50)

then
ϕ (fn)

prob−−−→ϕ (f0) (51)

and
excess(Ψ (fn; αn)Ψ (f0;α0))

prob−−−→ 0 (52)

while
lim

n→+∞
P {ω : Ψ (fn(., ω); αn(ω)) ⊂ K is a compact} = 1. (53)

P r o o f . The statement is a direct combination of Theorems 4.1 and 4.3. 2
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5. POINTWISE CONDITIONS

Verification of the lower semicontinuous approximation or/and the epi-upper ap-
proximation almost surely or in probability could be rather complex at first glance.
Fortunately in applications, we can often employ “pointwise approach” and the re-
sults from [27], section V. Let us repeat them in this special section.

Definition 5.1. Let x0 ∈ Rp be fixed. By fn
p-l-a.s.−−−−−→
{x0}

f0 we abbreviate the

following property:

∀ε > 0 ∃U{x0} ∈ Cp : P

{
ω : lim inf

n→+∞
inf

x∈U{x0}
fn(x, ω) < f0(x0)− ε

}
= 0 (54)

and fn
p-l-prob−−−−−−→
{x0}

f0 stands for

∀ε > 0 ∃U{x0} ∈ Cp : lim
n→+∞

P

{
ω : inf

x∈U{x0}
fn(x, ω) < f0(x0)− ε

}
= 0. (55)

The additional letter “p” stands to point at pointwise approach.

Then we have the following relations, cf. Theorem 9 in [27].

Proposition 5.1. Let f0 be l.s.c. on X. Then

i) (∀x0 ∈ X : fn
p-l-a.s.−−−−−→
{x0}

f0) =⇒ (fn
l-a.s.−−−−→

X
f0).

ii) (∀x0 ∈ X : fn
p-l-prob−−−−−−→
{x0}

f0) =⇒ (fn
l-prob−−−−→

X
f0).

The conditions (54) and (55) have the advantage to be “pointwise” conditions,
therefore, it will be sufficient to show that (54) and (55) are satisfied at each x0 ∈ X

in order to show that fn
l-a.s.−−−−→

X
f0 and fn

l-prob−−−−→
X

f0, respectively. Note, however,

that for instance the condition

∀x0 ∈ X ∀(xn) with xn → x0 : P

{
ω : lim inf

n→+∞
fn(xn, ω) < f0(x0)

}
= 0 (56)

is not sufficient for fn
l-prob−−−−→

X
f0, even if f0 is continuous.

Example 5.1. Let p = 1, Ω = [0, 1], A = Σ[0,1] the σ-field of Borel subsets of
[0, 1], X = [0, 1], and P the Lebesgue measure on [0, 1]. Suppose that

f0(x) = 1 ∀x ∈ [0, 1] and fn(x, ω) =
{

0 if x = ω + 1
n

1 otherwise. .
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Then the condition 56 is satisfied, but

P
{

ω : [Epi fn(·, ω) \ U 1
2
Epi f0(·, ω)] ∩ [0, 1]× [0, 1] 6= ∅

}
= 1− 1

n
,

hence (fn)n∈N fails to be a lower semicontinuous approximation to f0. 2

Often in applications, the epi-upper approximation must be really checked for
a single point, only. For that, we can use a well known relation that pointwise
convergence implies the upper part of epi-convergence. Hence, Proposition 5.2 is
obvious.

Proposition 5.2. If (xn)n∈N is a sequence with xn → x0 then

(i)
(
fn(xn, ·) u-a.s.−−−−→ f0(x0)

)
⇒

(
fn

epi−u−a.s.
{x0} f0

)
,

(ii)
(
fn(xn, ·) u-prob−−−−−→ f0(x0)

)
⇒

(
fn

epi-u-prob−−−−−−−→
{x0}

f0

)
.
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[8] J. Dupačová and R. J.-B. Wets: Asymptotic behavior of statistical estimators and of

optimal solutions of stochastic problems. Ann. Statist. 16 (1988), 1517–1549.
[9] P. Kall: Approximations to optimization problems: An elementary review. Math.

Oper. Res. 11 (1986), 9–18.
[10] P. Kall: On approximations and stability in stochastic programming. In: Parametric

Programming and Related Topics (J. Guddat, H.Th. Jongen, B. Kummer, and F.
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