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OPTIMAL STARTING TIMES FOR A CLASS
OF SINGLE MACHINE SCHEDULING PROBLEMS
WITH EARLINESS AND TARDINESS PENALTIES

Milan Vlach1 and Karel Zimmermann2

A single machine problem with n jobs is considered. The jobs are processed in a given
order on a continuously available machine. At any time the machine can handle at most
one job, and no preemption is permitted. Every job requires a positive processing time. If
a job is not processed within a specified time interval, then a positive penalty is incurred,
which is a function of starting time of the job in question. An algorithm is proposed for
determining starting times that minimize the maximum penalty subject to the condition
that every job must be started within a given time interval. Some extensions to more
general objective functions are also presented.

1. INTRODUCTION

We consider a single machine problem with n jobs 1, 2, . . . , n. The jobs are to be
processed in a given order on a continuously available machine. Without any loss
of generality we assume that the prescribed order is the natural order 〈1, 2, . . . , n〉.
At any time, the machine can handle at most one job. No preemption is permitted.
Each job j requires a positive processing time pj . In addition, two time intervals
[αj , βj ] and [aj , bj ] are associated with each job j. If job j is not processed within
the interval [aj , bj ], then a positive penalty

max{aj − Sj , Sj + pj − bj}
is incurred where Sj denotes the starting time of job j. The interval [αj , βj ] gives a
time window within which job j must be processed, i. e. αj is the release time and
βj is the deadline of job j. The objective is to minimize the maximum penalty. The
problem can formally be stated as follows:

Minimize the function f given by

f(S1, S2, . . . , Sn) = max
1≤j≤n

max{aj − Sj , Sj + pj − bj , 0} (1)

1On leave from Faculty of Mathematics and Physics, Charles University, Prague.
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subject to

αj ≤ Sj ≤ βj , j = 1, 2, . . . , n, (2)

where βj = βj − pj .

Since the jobs must be processed in the natural order 〈1, 2, . . . , n〉, and since the
machine can handle at most one job at a time, the starting times S1, S2 . . . , Sn must
satisfy

Sj ≥ Sj−1 + pj−1, 2 ≤ j ≤ n. (3)

Therefore the problem under consideration can be formulated as minimization of the
function f given by (1) over the set of all solutions S = (S1, S2, . . . , Sn) of systems
(2) and (3). We denote this set by S and call its elements feasible schedules.

The problem considered in this paper belongs to sequencing and scheduling prob-
lems with earliness and tardiness penalties, many versions of which are reported
e. g. in [1]. The method suggested here is a modification of the threshold method
described in [5]. Note that the job processing order is fixed. If this order is not fixed,
then even the problem of deciding whether a feasible schedule exists is NP-complete.

2. FEASIBILITY

Obviously, for some data instances, the set of feasible schedules may be empty. If
either αj = −∞ or βj = ∞ for each j, then feasible schedules exist. Here we consider
the case

−∞ < αj < βj <∞, 1 ≤ j ≤ n.

Using constraints (2) and (3), we can determine the earliest and the latest possible
starting times α′j and β′j of each job j as follows:

α′1 := α1 (1)
α′j := max{α′j−1 + pj−1, αj}, j = 2, 3, . . . , n (2)
β′n := βn (3)

β′n−j := min{β′n−j+1 − pn−j , βn−j}, j = 1, 2, . . . , n− 1. (4)

Obviously, a feasible schedule exists if and only if

α′j ≤ β′j , j = 1, 2, . . . , n. (5)

It is now clear how to decide whether a feasible schedule exists. One just computes
α′j and β′j from αj , βj , pj using (1) – (4) and verifies validity of (5). It should be
pointed out that if (5) holds, then the schedule defined by

Sj := β′j , j = 1, 2, . . . , n (6)

is feasible.
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3. BACKGROUND FOR A SOLUTION ALGORITHM

For the sake of brevity, we shall often use the standard vector notation, writing e. g.
α′ instead of (α′1, α

′
2, . . . , α

′
n), and introduce the following notation:

N := {1, 2, . . . , n}
F+(S) := {k ∈ N |f(S) = Sk + pk − bk}
F−(S) := {k ∈ N |f(S) = ak − Sk}
V (S) := {k ∈ N |Sk = α′k}
T (S) :=

⋃
k∈F+(S) Tk(S)

where Tk(S) are defined as follows:

T1(S) := {1}

T2(S) :=

{ {2} if S2 > S1 + p1

{1, 2} if S2 = S1 + p1

T3(S) :=





{3} if S3 > S2 + p2

{2, 3} if S3 = S2 + p2 and S2 > S1 + p1

{1, 2, 3} if S3 = S2 + p2 and S2 = S1 + p1

. . . . .

Tn(S) :=





{n} if Sn > Sn−1 + pn−1

{n− 1, n} if Sn = Sn−1 + pn−1 and Sn−1 > Sn−2 + pn−2

. . . . .

{1, 2, . . . , n} if Sj = Sj−1 + pj−1 for j = 2, . . . , n.

Here Tk(S) denotes the set of indices of all variables which must be decreased, if
we want to decrease the variable Sk. If Tk(S) = {k, k − 1, . . . , k − l}, then such
“concatenation” of decreasing variables Sj , j ∈ Tk(S), is caused by the fact that
the inequalities Sj ≥ Sj−1 + pj−1 for j = k, . . . , k − l + 1 are satisfied as equalities.
Therefore job j is started exactly at the moment when job j − 1 was finished.

The set T (S) contains the indices of all variables that must be decreased, if we
want to decrease all variables Sk, k ∈ F+(S), i. e. all variables which contribute
actively to the value of f(S) and for which f(S) = Sk + pk − bk. If f(S) > 0
and F−(S) = ∅ and Sj > α′j for all j ∈ T (S), then the decreasing of variables
Sj , j ∈ T (S), is possible and leads to a decrease of the value of f . If f(S) = 0,
then S is obviously an optimal solution. The corresponding optimization algorithm is
based on the following three Lemmas, the proofs of which are given in the Appendix.

Lemma 3.1. If S̄ is feasible and F−(S̄) 6= ∅, then f(S) ≥ f(S̄) for every S such
that S ≤ S̄ (i. e. Sj ≤ S̄j for j = 1, . . . , n).
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Lemma 3.2. If S̄ is a feasible schedule such that V (S̄) ∩ T (S̄) 6= ∅, then f(S) ≥
f(S̄) for every feasible schedule S such that S ≤ S̄.

Lemma 3.3. If S̄ is a feasible schedule such that simultaneously

f(S̄) > 0, F−(S̄) = ∅, V (S̄) ∩ T (S̄) = ∅,

then there is a feasible schedule S such that

S ≤ S̄ and f(S) < f(S̄).

As a direct consequence of these results, we obtain the following characterization
of optimality:

Theorem 3.1. If a feasible schedule S̄ has the property that f(S) ≥ f(S̄) for
every feasible schedule S with S 6≤ S̄, then S̄ is optimal if and only if

f(S̄) = 0 or F−(S̄) 6= ∅ or V (S̄) ∩ T (S̄) 6= ∅.

4. ALGORITHM

The results of previous sections suggest the following solution procedure. First
calculate all α′j and β′j and verify whether a feasible schedule exists. If this is the
case, that is if α′j ≤ β′j , then take S̄ := β′ as initial approximation. Note that there
is no feasible schedule S such that S 6≤ S̄ and therefore the assumption of Theorem
3.1 is satisfied for S̄. Alternatively, we can take as initial approximation an arbitrary
feasible schedule satisfying this assumption. According to Theorem 3.1, if

f(S̄) = 0 or F−(S̄) 6= ∅ or V (S̄) ∩ T (S̄) 6= ∅

holds, then S̄ is optimal; if not, then the proof of Lemma 3.3 given in the Ap-
pendix provides a hint how to construct a better approximation. It suffices to take
a sufficiently small positive ε and define a new approximation S(ε) by

Sj(ε) =

{
S̄j − ε for j ∈ T (S̄),

S̄j for j 6∈ T (S̄).

Obviously, a good strategy is to take ε as large as possible. We shall take the largest
ε such that the inequalities (6) – (9) of Appendix remain valid at least as nonstrict
inequalities.

In order to determine such an ε, we first note that

f(S(ε)) = S̄k − ε+ pk − bk = f(S̄)− ε
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for every k ∈ F+(S̄) and every sufficiently small positive ε. It follows from (6) of
Appendix that we have to restrict the choice of ε by

S̄k − ε+ pk − bk ≥ max{ak − S̄k + ε, 0}
for each k ∈ F+(S̄). This gives

ε ≤ ε1 := min
{
f(S̄), min

k∈F+(S̄)

f(S̄) + S̄k − ak

2

}
.

Analogously, we obtain from (7) of Appendix that the choice of ε is restricted by

S̄k − ε+ pk − bk ≥ max{aj − S̄j , S̄j + pj − bj , 0}
for all k ∈ F+(S̄) and j 6∈ T (S̄). Therefore

ε ≤ ε2 := f(S̄)− max
j 6∈T (S̄)

max{aj − S̄j , S̄j + pj − bj , 0}.

From (8) of Appendix we obtain

ε ≤ ε3 := min
j∈T (S̄)

(S̄j − α′j)

and from (9) of Appendix we have

ε ≤ ε4 := min
j

(S̄j − S̄j−1 − pj−1)

where minimization takes place over all j ∈ T (S̄) such that j − 1 6∈ T (S̄).

As a next approximation we take the schedule S(ε̄) with

ε̄ := min{ε1, ε2, ε3, ε4}
and repeat the whole procedure with S(ε̄) as a new S̄.

It remains to demonstrate that every new approximation satisfies the assumption
of Theorem 3.1, and that the process stops with an optimal solution after a finite
number of iterations.

Suppose S is a feasible schedule such that S 6≤ S(ε̄). If S 6≤ S̄, then f(S) ≥ f(S̄)
by our assumption concerning S̄. Therefore, without loss of generality we can assume
that S ≤ S̄ and S 6= S̄.

Since Sj(ε̄) = Sj for every j 6∈ T (S̄), there exists j0 ∈ T (S̄) such that

Sj0(ε̄) < Sj0 < S̄j0 .

Therefore j0 ∈ Tk(S̄) for some k ∈ F+(S̄). It turns out that

Sk(ε̄) < Sk. (1)

This is trivial for k = j0. If k 6= j0, then

Sk(ε̄) = Sj0(ε̄) + pj0 + · · ·+ pk−1.
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From feasibility of S we have

Sj0 + pj0 + · · ·+ pk−1 ≤ Sk.

Since Sj0(ε̄) < Sj0 , we have Sk(ε̄) < Sk. It follows from (1) and the definition of f
that

Sk(ε̄) + pk − bk < Sk + pk − bk ≤ f(S).

However, Sk(ε̄) + pk − bk = f(S(ε̄)), because F+(S̄) ⊂ F+(S(ε̄)). Therefore f(S) ≥
f(S(ε̄)).

It is also easy to show that the process stops with an optimal solution after a
finite number of iterations. First we note that at each iteration the objective function
value decreases and that

F+(S̄) ⊂ F+(S(ε̄)), F−(S̄) ⊂ F−(S(ε̄)),

V (S̄) ⊂ V (S(ε̄)), T (S̄) ⊂ T (S(ε̄)).

If ε̄ = ε1, then the process stops with optimal S(ε̄) because f(S(ε̄)) = 0 or F−(S(ε̄))
6= ∅. If ε̄ = ε2, then either the process stops with optimal solution or the set F+(S(ε̄))
becomes larger than F+(S̄). If ε̄ = ε3, then the set V (S(ε̄)) becomes larger than
V (S̄). If ε̄ = ε4, then the set T (S(ε̄)) becomes larger than T (S̄). It follows that after
at most n iterations the process either stops with an optimal solution or it delivers
a nonoptimal schedule S̄ such that T (S̄) = {1, . . . , n}. In the latter case, we obtain
an optimal solution in the next iteration.

Examples.

a) Consider the problem given by the following input data

j 1 2 3 4 5
pj 2 5 1 6 3
αj 0 3 0 0 3
βj 8 12 10 12 20
aj 2 4 6 5 5
bj 6 8 10 14 20

Suppose the prescribed order is the natural one, that is 〈1, 2, 3, 4, 5〉. Feasible sched-
ules exist because

j 1 2 3 4 5
α′j 0 3 8 9 15
β′j 3 5 10 12 20

As a starting approximation let us take S̄ = β′, that is

S̄ = (3, 5, 10, 12, 20).
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The required calculation gives

f(S̄) = max{0, 2, 1, 4, 3} = 4
F−(S̄) = V (S̄) = ∅, F+(S̄) = T4(S̄) = T (S̄) = {4}

ε1 = min {4, 11/2} = 4
ε2 = 4−max{0, 2, 1, 3} = 1
ε3 = 3
ε4 = 12− 10− 1 = 1.

Therefore ε̄ = min{4, 1, 3, 1} = 1. It follows that a new approximation S(ε̄) will be

S(ε̄) := (3, 5, 10, 11, 20).

After updating we obtain for the new S̄ := S(ε̄) :

f(S̄) = max{0, 2, 1, 3, 3} = 3
F−(S̄) = V (S) = ∅, F+(S̄) = {4, 5}
T4(S̄) = {1, 2, 3, 4}, T5(S̄) = {5}, T (S̄) = {1, 2, 3, 4, 5} = N

ε1 = min {3,min {9/2, 9}} = 3
ε2 = +∞
ε3 = min{3, 2, 2, 2, 5} = 2
ε4 = +∞
ε̄ = 2

S(ε̄) = (1, 3, 8, 9, 18).

For the new S̄ := S(ε̄), we obtain

f(S̄) = max{1, 0, 0, 1, 1} = 1,
F−(S̄) = {1}.

This schedule is optimal according to Theorem 3.1.

b) Consider the problem with the same input data as in the previous case with
the exception of p3 which we set p3 := 5. We obtain

j 1 2 3 4 5
α′j 0 3 8 13 19
β′j 3 5 10 12 20

No feasible schedule exists because α′4 > β′4.

5. EXTENSIONS

It can easily be verified that the proposed algorithm can be extended to the case
with the objective function

f̄(S) := max
j∈N

max{ϕj(aj − Sj), ϕj(Sj + pj − bj), 0} (1)
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where all ϕj are strictly increasing continuous real valued functions on [ 0,∞) such
that ϕj(0) = 0.

Indeed, if Tj(S) and V (S) are defined as previously and if F+(S), F−(S) and
T (S) are defined by

F+(S) := {k ∈ N |f(S) = ϕk(Sk + pk − bk)} ,
F−(S) := {k ∈ N |f(S) = ϕk(ak − Sk)},
T (S) := S

k∈F+(S) Tk(S),

then Lemmas 3.1 – 3.3 and Theorem 3.1 remain valid.
In order to calculate ε1, ε2, ε3 and ε4 we first note that the inequality (6) of

Appendix must be replaced by

ϕk(S̄k − ε+ pk − bk) > max{ϕk(ak − S̄k + ε), 0}.

Therefore the choice of ε is restricted by

ϕk(S̄k − ε+ pk − bk) ≥ ϕk(ak − S̄k + ε)
ϕk(S̄k − ε+ pk − bk) ≥ 0

for all k ∈ F+(S̄). From the assumption ϕk(0) = 0 and the monotonicity of ϕk, it
follows

ε ≤ 1
2 (2S̄k + pk − ak − bk)

ε ≤ S̄k + pk − bk

for each k ∈ F+(S̄). Consequently, as ε1 we can take

ε1 := min
k∈F+(S̄)

min
{
S̄k + pk − bk, S̄k + 1

2 (pk − ak − bk)
}
.

Further we have similarly as in (7) of Appendix for all k ∈ F+(S̄) and j 6∈ T (S)

ϕk(S̄k + pk − bk) > max{ϕj(aj − S̄j), ϕj(S̄j + pj − bj), 0}

so that the choice of ε is restricted (similarly as in the algorithm from Section 4 by

f(S(ε)) = ϕk(S̄k − ε+ pk − bk)
≥ max{ϕj(aj − Sj(ε)), ϕj(Sj(ε) + pj − bj), 0},

where k ∈ F+(S̄) and j 6∈ T (S̄).
Since j 6∈ T (S̄), it is Sj(ε) = S̄j and we obtain

f(S(ε)) = ϕk(Sk − ε+ pk − bk) ≥ max{ϕj(aj − S̄j), ϕj(S̄j + pj − bj), 0}

for all k ∈ F+(S̄), j 6∈ T (S̄) such that

S̄k − ε+ pk − bk ≥ ϕ−1
k (max{ϕj(aj − S̄j), ϕj(S̄j + pj − bj), 0}).
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Therefore ε is further restricted by

ε≤ε2 := min
k∈F+(S̄)

(
S̄k+pk−bk−ϕ−1

k

(
max

j∈T (S̄)
max

{
ϕj(aj−S̄j), ϕj(S̄j +pj−bj)

}))
.

The remaining restrictions are formally the same as in Section 4 (but with the newly
defined T (S̄)), i. e.

ε ≤ ε3 := min
j∈T (S̄)

(S̄j − α′j)

and
ε ≤ ε4 := min(S̄j − S̄j−1 − pj−1),

where again the minimization takes place over all j ∈ T (S̄) such that j − 1 6∈ T (S̄).
As the next approximation, we take the schedule S̄(ε̄) with

ε̄ := min{ε̄1, ε̄2, ε̄3, ε̄4}

and repeat the whole procedure with S̄(ε̄) as a new S̄.
The rest of the argument from Section 4 remains unchanged (using the new

definitions of F+(S), F−(S) and T (S)).
The algorithm can be extended also to the objective function

=

f(S) := max
j∈N

max{ψj(aj − Sj), ϕ(Sj + pj − bj), 0},

where ϕj , ψj are for all j ∈ N continuous and increasing with the property ϕj(0) =
ψj(0) = 0. In this case, only ε1 has to be calculated differently and other calculations
remain unchanged. It must hold

ψk(S̄k − ε+ pk − bk) ≥ 0,

which implies ε ≤ S̄k + pk − bk, and further

ϕk(S̄k − ε+ pk − bk) ≥ ψk(ak − S̄k + ε)

so that
S̄k − ε+ pk − bk ≥ ϕ−1

k (ψk(ak − S̄k + ε))

or
−ε ≥ ϕ−1

k (ψk(ak − S̄k + ε))− S̄k − pk + bk.

Let us set
χk(ε) := ϕ−1

k (ψk(ak − S̄k + ε))− S̄k − pk + bk + ε.

Then χk(ε) is increasing and continuous with respect to ε and it holds χk(0) < 0,
χk(ε̃) > 0 for sufficiently large ε̃ > 0. Therefore there exists the unique ε̄k > 0 such
that χ(ε̄k) = 0 and ε1 will be chosen as follows:

ε1 := min
k∈F+(S̄)

min{S̄k + pk − bk, ε̄k}.
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6. CONCLUSION

The method proposed in this paper can be characterized briefly as a finite iteration
procedure for solving the problem of minimizing penalty function given by (1) subject
to the constraints (2) and (3). One starts with a feasible solution S̄j = β′j , j =
1, 2, . . . , n where β′j is the latest possible time for starting job j. Therefore each
variable can only be decreased. Then one tries to reduce the value of f(S̄) by
decreasing variables Sj with “active” indices in f(S̄). If such decreasing is possible
without violating the feasibility of the schedule (i. e. without violating inequalities
(2) and (3)) and if it leads to a smaller value of f , then one obtains a new better
feasible schedule S(ε̄) ≤ S̄, S(ε̄) 6= S̄ with f(S(ε̄) < f(S̄). Then one sets S̄ := S(ε̄)
and repeats the calculations with the new S̄. If such decreasing of “active” variables
is not possible or if it does not lead to a smaller value of f , then S̄ is an optimal
solution of the problem. The procedure delivers an optimal solution after at most
n such iterations, provided a feasible solution exists, which can easily be tested at
the beginning. The method is extended to problems with more general objective
functions of the form (1).

If there is no feasible schedule, then two natural questions arise. Namely:

i) For a given processing order, what changes in data αj , βj , pj guarantee the
existence of a feasible schedule?

ii) For given data αj , βj , pj , what changes in the processing order guarantee the
existence of a feasible schedule?

We did not discuss these questions here but hope to give partial answers elsewhere.

APPENDIX

Here we give proofs of Lemmas 3.1, 3.2 and 3.3 respectively.

P r o o f o f L em m a 3.1. By assumption, there is k ∈ N such that f(S̄) =
ak− S̄k. If S ≤ S̄, then Sk ≤ S̄k and therefore ak−Sk ≥ ak− S̄k. Since by definition
of f , f(S) ≥ ak − Sk, we have f(S) ≥ f(S̄). 2

P r o o f o f L em m a 3.2. By assumption, there is j ∈ N such that j ∈ V (S̄) ∩
T (S̄). We have S̄j = α′j by the definition of V (S̄). For S ≤ S̄, we have α′j ≤ Sj ≤
S̄′j = α′j . Therefore

Sj = S̄j . (1)

Since j ∈ T (S̄), there is k ∈ F+(S̄) such that j ∈ Tk(S̄). It follows

f(S̄) = S̄k + pk − bk. (2)

From the definition of f , it is obvious that

f(S) ≥ Sk + pk − bk (3)
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for each S. If j = k, then (3) together with (1) and (2) gives the required inequality
f(S) ≥ f(S̄). If j 6= k, then 1 ≤ j < k, because j ∈ Tk(S̄). Using (3), we obtain

Sk ≥ Sj + pj + · · ·+ pk−1 (4)

for each feasible S. Simultaneously we have

S̄k = S̄k−1 + pk−1 , . . . , S̄j+1 = S̄j + pj

because j ∈ Tk(S̄). It follows

S̄k = S̄j + pj + · · ·+ pk−1. (5)

Using consecutively (3), (4), (1), (5) and (2) we again obtain f(S) ≥ f(S̄).
2

P r o o f o f L em m a 3.3. First we note that under our assumption F−(S̄) 6= ∅
and that

S̄k + pk − bk > max{ak − S̄k, 0} (6)

for all k ∈ F+(S̄). Moreover, since F+(S̄) ⊂ T (S̄), we have

S̄k + pk − bk > max{aj − S̄j , S̄j + pj − bj , 0} (7)

for all k ∈ F+(S̄) and j 6∈ T (S). It is also obvious, since V (S̄) ∩ T (S̄) = ∅, that

S̄j > α′j (8)

for all j ∈ T (S̄). It follows from the definition of T (S̄) and feasibility of S̄ that

S̄j > S̄j−1 + pj−1 whenever j ∈ T (S̄) and j − 1 6∈ T (S̄) (9)
S̄j = S̄j−1 + pj−1 whenever j ∈ T (S̄) and j − 1 ∈ T (S̄) (10)
S̄j ≥ S̄j−1 + pj−1 whenever j 6∈ T (S̄) (11)

It is obvious that there is a positive ε such that (6) – (11) remain valid. If S̄ is
replaced by S defined by

Si := S̄i for all i 6∈ T (S̄)

Si := S̄i − ε for all i ∈ T (S̄)

Since (8) – (11) remain valid and since Sj = S̄j ≥ α′j for all j 6∈ T (S̄), the schedule
S is feasible. Since (6) and (7) remain valid we have (by taking any k ∈ F+(S))

f(S) = Sk + pk − bk = S̄k − ε+ pk − bk < S̄k + pk − bk = f(S̄). 2

(Received May 15, 1997.)
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