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Editorial Office:
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ENTROPY ON EFFECT ALGEBRAS

WITH THE RIESZ DECOMPOSITION PROPERTY I:

BASIC PROPERTIES

Antonio Di Nola, Anatolij Dvurečenskij, Marek Hyčko and

Corrado Manara

We define the entropy, lower and upper entropy, and the conditional entropy of a dy-
namical system consisting of an effect algebra with the Riesz decomposition property, a
state, and a transformation. Such effect algebras allow many refinements of two partitions.
We present the basic properties of these entropies and these notions are illustrated by many
examples. Entropy on MV-algebras is postponed to Part II.
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1. INTRODUCTION

Suppose that (Ω,S, P ) is a probability space. We recall that the entropy of a mea-
surable partition A = {A1, . . . , An} of Ω is the number

H(A) = −
n∑

i=1

P (Ai) log(P (Ai)).

If T : Ω → Ω is a measure preserving transformation, and if
∨n−1

i=0 T
−i(A) denotes

the common refinement of the partitions A, T−1(A), . . . , T−(n−1)(A), then there is
a finite limit

h(A, T ) := lim
n

1
n
H

(
n−1∨

i=0

T−i(A)

)
.

The Kolmogorov–Sinai entropy is the expression

h(T ) = sup{h(A, T ) : A is a measurable partition of Ω}.

The Kolmogorov–Sinai entropy was introduced to distinguish two dynamical sys-
tems in the classical probability theory: Every two isomorphic dynamical systems
have the same entropy (see e. g. [19, Sec. 10]).
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This notion was generalized in many directions ([12, 15, 16, 18, 19], etc). A great
problem appears when we take into account a system of fuzzy sets instead of a σ-
algebra of sets. The crucial notion of entropy is a finite partition and the refinement
of two or more partitions. In the classical probability theory the common refinement
of A = {A1, . . . , Am} and B = {B1, . . . , Bn} is simply C = {Ai ∩ Bj : 1 ≤ i ≤
m, 1 ≤ j ≤ n}. This way cannot be used in more general structures containing
fuzzy sets or effect algebras or MV-algebras. For example, if we take two fuzzy
(crisp) sets χA and χB , then for C = A∩B we have at least three same expressions
χC = χA · χB = min{χA, χB} = max{χA + χB − 1, 0}. For non-crisp fuzzy sets
we can obtain three different fuzzy sets. We recall that the main idea of entropy
suitable for these more general cases of fuzzy sets allowing many joint partitions was
for the first time suggested in [12].

In [19, Sec. 10] the authors defined the refinement simply as the product of fuzzy
sets assuming that the system of fuzzy sets is closed under natural product, and
in [18, Sec. 4.2] it is defined on MV-algebras with product. In such a case, the
refinement is uniquely defined and is unique. Riečan in [17] defined the entropy
in MV-algebras using the well-known fact that they have the Riesz decomposition
property (RDP) which is well-known in theory of `-groups. (RDP) is a kind of
distributivity of + and ∧. For this case we have more, sometimes infinitely many
refinements, and Riečan gave only the basic properties of entropy.

In the present paper, we generalize the notion of entropy for situations when
our probability space is an effect algebra. Effect algebras were introduced by Foulis
and Bennett [8] (see also [11]) and they play a very important role in the theory
of quantum structures. A crucial class of effect algebras are those having (RDP)
(they admit a po-group representation [20]). A special class of effect algebras are
MV-algebras introduced by Chang [1].

The paper is divided into two parts. In the first one, we introduce effect algebras
and partitions (Section 2). The entropy, lower and upper entropies of partitions
with respect to a state (= probability measure) are studied in Section 3. Section 4
is dedicated to entropy of dynamical systems connected with effect algebras. In
Section 5, we present many examples calculating their entropies. Boolean partitions
roughly speaking are connected with crisp fuzzy sets, Section 6. The elements of
conditional entropies are presented in Section 7. Due to many possible refinements,
the known results cannot be always generalized to our case.

The second part deals mainly with the state space of effect algebras and entropies
on MV-algebras. Some results known only for product MV-algebras from [18] are
generalized to all σ-complete MV-algebras without any product, simultaneously we
present some solution to open Problem 7 from [18] and extend it also for effect
algebras with (RDP) asking how we can proceed with entropy not assuming the
product on the MV-algebra.

2. PARTITIONS OF EFFECT ALGEBRAS

The probability space in our situation will be modelled by effect algebras.
An effect algebra ([8]) is a partial algebra E = (E; +, 0, 1) with a partially defined
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operation + and two constant elements 0 and 1 such that, for all a, b, c ∈ E,

(i) a+ b is defined in E iff b+ a is defined, and in such the case a+ b = b+ a;

(ii) a+ b, (a+ b) + c are defined iff b+ c and a+ (b+ c) are defined, and in such
the case (a+ b) + c = a+ (b+ c);

(iii) for any a ∈ E, there exists a unique element a′ ∈ E such that a+ a′ = 1;

(iv) if a+ 1 is defined in E, then a = 0.

If we define a ≤ b iff there exists an element c ∈ E such that a+ c = b, then ≤ is
a partial ordering, and we write c := b− a. It is clear that a′ = 1− a for any a ∈ E.

For example, if (G, u) is an Abelian unital po-group with a strong unit u, 1 and
if Γ(G, u) := {g ∈ G : 0 ≤ g ≤ u} is endowed with the restriction of the group
addition +, then (Γ(G, u);+, 0, u) is an effect algebra.

We say that an effect algebra E satisfies (i) the Riesz interpolation property,
(RIP) for short, if, for all x1, x2, y1, y2 in E, xi ≤ yj for all i, j implies there exists
an element z ∈ E such that xi ≤ z ≤ yj for all i, j; (ii) the Riesz decomposition
property, (RDP) for short, if x ≤ y1 + y2 implies that there exist two elements
x1, x2 ∈ E with x1 ≤ y1 and x2 ≤ y2 such that x = x1 + x2.

We recall that (1) if E is a lattice, then E has trivially (RIP); the converse is not
true. (2) E has (RDP) iff, [7, Lem 1.7.5], x1 + x2 = y1 + y2 implies there exist four
elements c11, c12, c21, c22 ∈ E such that x1 = c11 + c12, x2 = c21 + c22, y1 = c11 + c21,
and y2 = c12 + c22. (3) (RDP) implies (RIP), but the converse is not true (e. g. if
E = L(H), the system of all closed subspaces of a Hilbert space H, then E is a
complete lattice but without (RDP)). On the other hand, every finite poset with
(RIP) is a lattice.

Ravindran [20] ([7, Thm. 1.7.17]) proved the following important result which is
analogical to Mundici’s representation of MV-algebras [14].

Theorem 2.1. Let E be an effect algebra with the Riesz decomposition property.
Then there exists a unital interpolation group (G, u) with a strong unit u such that
Γ(G, u) is isomorphic to E.

Moreover, if φ∗ is an isomorphism of the effect algebra E with (RDP) onto Γ(G, u)
and if φ : E → H is a mapping preserving +, and H an Abelian group, then there
is a group homomorphism γ : G→ H such that φ = γ ◦ φ∗. This γ is unique.

In addition, there is a categorical equivalence, Γ, between the category of unital
po-groups with interpolation and the category of effect algebras with (RDP) given
by Γ : (G, u) 7→ Γ(G, u), see [6].

A most important example of effect algebras with (RDP) is the class of MV-
algebra introduced by Chang [1].

Let M = (M ;⊕,∗ , 0, 1) (0 6= 1) be an MV-algebra, that is an algebra of type
(2,1,0,0) such that, for all a, b, c ∈M , we have

1An element u ∈ G+ is said to be a strong unit for a po-group G, if given an element g ∈ G,
there is an integer n ≥ 1 such that −nu ≤ g ≤ nu; the couple (G, u) is said to be unital po-group.
If (RIP) holds for elements of G+, G is said to be an interpolation group.
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(i) a⊕ b = b⊕ a;

(ii) (a⊕ b)⊕ c = a⊕ (b⊕ c);

(iii) a⊕ 0 = a;

(iv) a⊕ 1 = 1;

(v) (a∗)∗ = a;

(vi) a⊕ a∗ = 1;

(vii) 0∗ = 1;

(viii) (a∗ ⊕ b)∗ ⊕ b = (a⊕ b∗)∗ ⊕ a.

We note that one of the most important examples of MV-algebras is the MV-
algebra [0, 1] = Γ(R, 1).

We recall that according to the famous result of Mundici [14], every MV-algebra
M = Γ(G, u), where (G, u) is an `-group with strong unit u, and a⊕ b = (a+ b)∧u,
a∗ = u− a, 1 = u.

Two elements a and b of M are said to be summable if a ≤ b∗, and in such a case,
we set a+ b = a⊕ b. It is possible to show that (a+ b) + c = a+ (b+ c) whenever
one of the sides exists (see e. g. [7, 11]). Then (M ; +, 0, 1) is an effect algebra with
(RDP), [7]. It is possible to show that an effect algebra E can be converted into an
MV-algebra iff E is a lattice satisfying (RDP).

Let E be an effect algebra. A finite sequence A = {ai}m
i=1 of elements of E is a

partition of unity 1 if a1 + · · ·+ am = 1.
A partition B = {bj}n

j=1 is a refinement of a partition A = {ai}m
i=1, and we write

A ≺ B, if for any element ai (i = 1, . . . ,m) there is a subset αi ⊆ {1, . . . , n} such
that ai =

∑
j∈αi

bj ,
⋃m

i=1 αi = {1, . . . , n} and αi ∩ αk = ∅ for i 6= k.
LetA = {ai}m

i=1 and B = {bj}n
j=1 be two partitions of 1 in an effect algebra E with

(RDP). Due to (RDP), there is a joint refinement C = {cij : 1 ≤ i ≤ m, 1 ≤ j ≤ n}
of {ai}m

i=1 and {bj}n
j=1 such that, for all 1 ≤ i ≤ m and all 1 ≤ j ≤ n, we have

ai = ci1 + · · ·+ cin,

bj = c1j + · · ·+ cmj .

Any such refinement C = {cij : 1 ≤ i ≤ m, 1 ≤ j ≤ n} is said to be a Riesz
refinement of {ai}m

i=1 and {bj}n
j=1.

Moreover, if E is a lattice (i. e., E is an MV-algebra), we may assume that

(ci+1,j + · · ·+ cmj) ∧ (ci,j+1 + · · ·+ cin) = 0 (2.1)

for all i < m and all j < n, and under this condition the cij ’s are uniquely determined
(with respect to the given orders of elements in A and B).

Let Ak = {ak
j }mk

j=1 for k = 1, . . . , n be partitions of unity in an effect algebra
E with (RDP). Using the Riesz decomposition property, there is a refinement C =
{ci1...in : 1 ≤ i1 ≤ m1, . . . , 1 ≤ in ≤ mn} of all Ak’s such that

ak
j =

∑
{ci1...in : ik = j, 1 ≤ i1 ≤ m1, . . . , 1 ≤ in ≤ mn} (2.2)
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for 1 ≤ j ≤ nk and k = 1, . . . , n. This C is said to be a Riesz refinement ofA1, . . . ,An.
We denote by RefR(A1, . . . ,An) and Ref(A1, . . . ,An) the set of all Riesz refine-

ments and the set of all refinements of the partitions A1, . . . ,An, respectively.
It is worth recalling that if E is a Boolean algebra, then a Riesz refinement

of two partitions A = {ai}m
i=1 and B = {bj}n

j=1 consists only of all intersections
C = {ai ∧ bj : 1 ≤ i ≤ m, 1 ≤ j ≤ n}, and is unique (see also Section 6). For a
general case of effect algebras with (RDP) it can happen that RefR(A,B) may have
more elements (even infinitely many) as the following example shows.

Example 2.2. Let A = (0.2, 0.8) (Ã = (0.8, 0.2)) and B = (0.3, 0.7) be two
partitions of 1 in the MV-algebra [0, 1]. Then the partitions C = (0.2, 0, 0.1, 0.7) and
C̃ = (0.3, 0.5, 0, 0.2) give Riesz refinements of A, B and of Ã, B, respectively, such
that c12 ∧ c21 = 0 = c̃12 ∧ c̃21 but C 6= C̃.

3. ENTROPY

The notion of a probability measure is replaced by a state for effect algebras.
Let E be an effect algebra. A mapping s : E → [0, 1] is said to be a state if (i)

s(a+ b) = s(a) + s(b) whenever a+ b is defined in E, and (ii) s(1) = 1. A state on
MV-algebras was introduced in [2] and [14]. It is well-known [10, 7] that not every
effect algebra possesses a state. However if E satisfies (RDP) and 0 6= 1, then E has
at least one state [7], in particular, every non-degenerate MV-algebra (i. e., 0 6= 1)
has a state.

We define a real-valued function φ : [0, 1] → R+ by

φ(x) =
{ −x log x if x ∈ (0, 1]

0 if x = 0.

Then φ is a concave continuous function. It is clear that the function
∑n

i=1 φ(xi)
defined on [0, 1]n takes it maximum, log n, under the condition

∑n
i=1 xi = 1 in

xi = 1/n for i = 1, . . . , n.
Let s be a state on E. The entropy of the partition A = {ai}m

i=1 of 1 in the state
s is the expression

H(A) :=
m∑

i=1

φ(s(ai)) = −
m∑

i=1

s(ai) log(s(ai)). (3.1)

Proposition 3.1. Let C ∈ RefR(A1, . . . ,An). Then

max{H(A1), . . . , H(An)} ≤ H(C) ≤ H(A1) + · · ·+H(An). (3.2)

P r o o f . Let n = 2 and set Ω = {1, . . . ,m} × {1, . . . , k}, S = 2Ω, and let P
be a probability measure on S defined by P ({i, j}) = s(cij) for all i and j. Then
(Ω,S, P ) is a probability space which easily proves (3.2) due to entropy on the
classical probability spaces. The general case can be obtained by induction.
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We recall (1) that in view of Example 2.2, different Riesz refinements of {ai}m
i=1

and {bj}n
j=1 can give different values of its entropies. (2) Let ai = 1/m and bj =

1/n. Then for their Riesz refinement cij = 1/(mn) we have H({cij}) = logmn =
H({ai}) +H({bj}).

Proposition 3.2. Let A ≺ B. Then

H(A) ≤ H(B). (3.3)

P r o o f . Assume that A = {ai}m
i=1 and B = {bj}n

j=1. Without loss of gener-
ality, we can assume that all αi’s from the definition of refinements satisfy α1 =
{1, . . . , n1}, α2 = {n1 +1, . . . , n2}, . . . , αm = {nm−1 +1, . . . , nm} where nm = n. We
define a Riesz refinement C = {cij : 1 ≤ i ≤ m, 1 ≤ j ≤ n} of A and B such that

cij =
{
bj if j ∈ αi

0 otherwise.

Then by Proposition 3.1, we have H(A),H(B) ≤ H(C). But it is clear that H(C) =
H(B).

We now show that the right-hand inequality of (3.2) does not hold for any refine-
ment C of A1, . . . ,An, i. e., (3.2) holds only if C is a Riesz refinement of A1, . . . ,An.

Example 3.3. If C is an arbitrary refinement of A and B, then it can happen that
H(C) > H(A) +H(B).

Indeed, let M = [0, 1] be the standard MV-algebra of the real interval [0, 1]. Take
two partitions A = {1/n, . . . , 1/n} and B = {1/m, . . . , 1/m}, where n,m ≥ 1 are
integers. For any integer k ≥ 2, we define Ck = {1/(knm), . . . , 1/(knm)}. Then
any Ck is not a Riesz refinement of A and B, and H(Ck) = log k + log n + logm >
logn+ logm = H(A) +H(B).

In analogy with the classical case ([19]), for given partitions A1, . . . ,An of unity 1,
we define two pairs of expressions, HR

∗ (A1 ∨ · · · ∨ An) and H∗
R(A1 ∨ · · · ∨ An), and

H∗(A1 ∨ · · · ∨ An) and H∗(A1 ∨ · · · ∨ An), respectively, defined by

HR
∗ (A1 ∨ · · · ∨ An) := inf{H(C) : C ∈ RefR(A1, . . . ,An)},

H∗
R(A1 ∨ · · · ∨ An) := sup{H(C) : C ∈ RefR(A1, . . . ,An},
H∗(A1 ∨ · · · ∨ An) := inf{H(C) : C ∈ Ref(A1, . . . ,An)},
H∗(A1 ∨ · · · ∨ An) := sup{H(C) : C ∈ Ref(A1, . . . ,An)}.

In view of (3.2), HR
∗ (A1 ∨ · · · ∨ An) and H∗

R(A1 ∨ · · · ∨ An) are finite,

max{H(A1), . . . , H(An)} ≤ HR
∗ (A1 ∨ · · · ∨ An) ≤ H∗

R(A1 ∨ · · · ∨ An)
≤ H(A1) + · · ·+H(An), (3.4)
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H∗(A1∨· · ·∨An) ≤ HR
∗ (A1∨· · ·∨An) but H∗(A1∨· · ·∨An) can attain the infinite

value +∞, see Example 5.2.
We recall that in view of Proposition 3.2, if A ≺ B, then

H(A) ≤ HR
∗ (A ∨ B) = H(B).

Proposition 3.4. Let A1, . . . ,An,B be partitions of unity in an effect algebra E
with (RDP). Then

HR
∗ (A1 ∨ · · · ∨ An) ≤ HR

∗ (A1 ∨ · · · ∨ An ∨ B),
H∗
R(A1 ∨ · · · ∨ An) ≤ H∗

R(A1 ∨ · · · ∨ An ∨ B).

P r o o f . Take C = {ci1···inj} ∈ RefR(A1, . . . ,An,B). If c̃i1···in
:=

∑
j ci1···inj ,

then C̃ = {c̃i1···in} ∈ RefR(A1, . . . ,An}. Hence, HR
∗ (A1 ∨ · · · ∨An) ≤ H(C̃) ≤ H(C)

which yields HR
∗ (A1 ∨ · · · ∨ An) ≤ HR

∗ (A1 ∨ · · · ∨ An ∨ B).
In a similar way we prove the second inequality.

4. ENTROPY OF DYNAMICAL SYSTEMS

A mapping T : E → E is said to be a transformation of an effect algebra E if
(i) T (a + b) = T (a) + T (b) whenever a + b is defined in E, and (ii) T (1) = 1.2 A
transformation T is said to be preserving the state s (or s-preserving) if s(T (a)) =
s(a) for any a ∈ E. Let s be a state on an effect-algebra E. A triple (E, s, T ) is said
to be a dynamical system if T is a transformation of E preserving the state s. We
recall that every effect algebra E with (RDP) has a state, and, for any state s, there
is an s-preserving transformation (e. g., the identity of E). In what follows, we will
assume that T is s-preserving.

If A = {ai}m
i=1 is a partition of unity, so is T (A) := {T (ai)}m

i=1, and H(A) =
H(T (A)).

For any partition A of unity 1 and for any integer n ≥ 1, we define

Hn
∗ (A, T )R := HR

∗ (A ∨ T (A) ∨ · · · ∨ Tn−1(A)),
H∗

n(A, T )R := H∗
R(A ∨ T (A) ∨ · · · ∨ Tn−1(A)),

Hn
∗ (A, T ) := H∗(A ∨ T (A) ∨ · · · ∨ Tn−1(A)),

H∗
n(A, T ) := H∗(A ∨ T (A) ∨ · · · ∨ Tn−1(A)).

In view of (3.2) – (3.3), we have, similarly as for MV-algebras in [17],

0 ≤ H(A) ≤ Hn
∗ (A, T ) ≤ Hn

∗ (A, T )R ≤ H∗
n(A, T )R ≤ nH(A). (4.1)

2If (Ω,S, P, T ) is a classical dynamical system, then the mapping T−1 : S → S is our transfor-
mation.
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Theorem 4.1. Let (E, s, T ) be a dynamical system connected with an effect alge-
bra E with (RDP). For any partition A, there exist limits

hR∗ (A, T ) := lim
n

1
n
Hn
∗ (A, T )R, h∗R(A, T ) := lim

n

1
n
H∗

n(A, T )R.

P r o o f . First of all, we show that Hn+m
∗ (A, T )R ≤ Hn

∗ (A, T )R + Hm
∗ (A, T )R

holds for all positive integers n and m.
Assume that the partition A = {ai}k

i=1. Let C be a Riesz refinement of partitions
A, T (A), . . . , Tn−1(A), and D be a Riesz refinement of A, T (A), . . . , Tm−1(A), re-
spectively. They consist of kn and km elements, respectively. Then Tn(D) is a Riesz
refinement of Tn(A), Tn+1(A), . . . , Tn+m−1(A).

Let now E be any Riesz refinement of C and Tn(D) consisting of knkm elements.
Then E Â A, E Â T (A), . . . , E Â Tn+m−1(A) and, in addition, C is their Riesz
refinement. By (3.2), we have

Hn+m
∗ (A, T )R ≤ H(E) ≤ H(C) +H(Tn(D)) = H(C) +H(D).

Since D is arbitrary, Hn+m
∗ (A, T )R−H(D) ≤ H(C), so thatHn+m

∗ (A, T )R−H(D) ≤
Hn
∗ (A, T )R while C is a Riesz refinement of A, T (A), . . . , Tn−1(A). By a similar

argument we have Hn+m
∗ (A, T )R −Hn

∗ (A, T )R ≤ Hm
∗ (A, T )R.

By a well known argument, if a sequence of non-negative numbers, {an}, has the
property an+m ≤ an + am, then there is a finite limit limn an/n.

The second limit can be proved by analogous reasoning, we only stress that in
view of H(E) ≤ H(C) +H(D), we have H(E) ≤ H∗

n(A, T )R +H∗
m(A, T )R.

In analogy with Theorem 4.1, we can introduce also h∗(A, T ) as a limit of
Hn
∗ (A, T ) whenever it exists.

The lower and upper entropy, hR∗ (T ) and h∗R(T ), of a dynamical system (E, s, T ),
where E satisfies (RDP), are defined as follows

hR∗ (T ) := sup{hR∗ (A, T ) : A is a Riesz partition of E},
h∗R(T ) := sup{h∗R(A, T ) : A is a Riesz partition of E}.

The notion of entropy of a dynamical system was introduced by Kolmogorov
and Sinai. Their aim was to characterize isomorphic dynamical systems, and they
proved: Two isomorphic dynamical systems have the same entropy. They showed
that some Bernoulli schemes are not isomorphic. An analogical result can be proved
also for effect algebras.

We recall that two dynamical systems (E1, s1, T1) and (E2, s2, T2) are isomorphic
if there exists a bijective mapping ψ : E1 → E2 such that ψ(a) + ψ(b) = ψ(c) iff
a + b = c, ψ(1) = 1, and s2(ψ(a)) = s1(a) and T2(ψ(a)) = ψ(T1(a)) hold for all
a ∈ E1.
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Theorem 4.2. If (E1, s1, T1) and (E2, s2, T2) are isomorphic dynamical systems,
where E1 and E2 have (RDP), then hR∗ (T1) = hR∗ (T2) and h∗R(T1) = h∗R(T2).

P r o o f . If A is a partition in E1, so is ψ(A) in E2 and vice versa, and H(A) =
H(ψ(A)). If a refinement C ∈ RefR(A, T1(A), . . . , Tn−1

1 (A)), then a refinement
ψ(C) ∈ RefR(ψ(A), T2(ψ(A)), . . . , Tn−1

2 (ψ(A))) and vice versa. Therefore, it is
easy to prove that Hn

∗ (A, T1)R = Hn
∗ (ψ(A), T2)R and consequently, hR∗ (A, T1) =

hR∗ (ψ(A), T2) and hR∗ (T1) = hR∗ (T2). In a similar way we can prove the second
equality.

We recall that the equality hR∗ (T1) = hR∗ (T2) does not imply that two dynamical
systems (E1, s1, T1) and (E2, s2, T2) are necessarily isomorphic as examples below
show.

5. EXAMPLES

In the present section, we give some examples of dynamical systems and calculate
their entropies.

Example 5.1. Let Mk = {0, 1/k, 2/k, . . . , k/k} be a finite MV-algebra, k ≥
1. Then Mk possesses a unique state s and a unique transformation T , namely
s(1/k) = T (1/k) = 1/k. Then {1/k, . . . , 1/k} is the finest refinement of unity in
Mk. Therefore, 0 ≤ Hn

∗ (A, T )R ≤ H∗
n(A, T )R ≤ H∗

n(A, T ) ≤ log k, which implies
0 = hR∗ (A, T ) = limnH

n
∗ (A, T )R/n ≤ limnH

∗
n(A, T )R/n ≤ limn(log k)/n = 0. So

that hR∗ (T ) = h∗R(T ) = 0.

Example 5.2. LetMQ = [0, 1]∩Q be the MV-algebra of all rational numbers in the
real interval [0, 1]. Then MQ possesses a unique state s and a unique transformation
T , namely s(t) = T (t) = t for any t ∈MQ.

Let Ak = {1/k, . . . , 1/k} for any integer k ≥ 1. Then H∗
n(Ak, T )R = sup{H(C) :

C ∈ RefR(Ak, T (Ak), . . . , Tn−1(Ak)} = n log k and h∗R(Ak, T ) = log k.
H∗

n(Ak, T ) = sup{H(C) : C Â Ak} ≥ sup{H({1/(mk)}) : m ≥ 1} = sup{logm+
log k) : m ≥ 1} = ∞.

Let A = {t1, . . . , tk} be an arbitrary partition in MQ. Then by (3.3), Hn
∗ (A, T ) =

inf{H(C) : C Â A} = H(A), i. e., h∗(A, T ) = 0.
Define a partition D = {ti1 · · · tin : tij ∈ {t1, . . . , tk}, j = 1, . . . , n}. Then D is

a Riesz refinement of A, T (A), . . . , Tn−1(A). Therefore, nH(A) ≥ H∗
n(A, T )R ≥

H(D) = nH(A), consequently, H∗
n(A, T )R = nH(A), and h∗R(A, T ) = H(A),

h∗R(T ) = ∞.

We define a partition C = {ci1...in : 1 ≤ ij ≤ k, j = 1, . . . , n}, where ci1...in = ti
if i1 = i2 = · · · = in = i and ci1...in = 0 otherwise. Then C is a Riesz refinement
of A, T (A), . . . , Tn−1(A). Hence, H(A) ≤ Hn

∗ (A, T )R ≤ H(C) = H(A), which gives
hR∗ (A, T ) = 0 and hR∗ (T ) = 0.
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Example 5.3. Let now M = [0, 1] be the standard MV-algebra of the real interval.
Then M possesses a unique state s and a unique transformation T , namely s(t) =
T (t) = t for any t ∈ M . Then the same statements on entropies as in Example 5.2
hold, i. e. h∗R(T ) = ∞, and hR∗ (T ) = hR∗ (A, T ) = 0 for any partition A in M .

Since two MV-subalgebras of [0, 1] are isomorphic iff they are same ([3, Cor. 7.2.6]),
we have infinitely many non-isomorphic MV-subalgebras of [0, 1], and we now calcu-
late their entropy. We recall that each of them has a unique state, s, and a unique
transformation, T , namely s(t) = T (t) = t for any t ∈M.

Example 5.4. Let D = {k/2n : 0 ≤ k ≤ 2n, n ≥ 1} be the MV-algebra of all
dyadic numbers in [0, 1]. Then h∗R(T ) = ∞, and hR∗ (T ) = hR∗ (A, T ) = 0 for any
partition A in M .

Example 5.5. Let M be a multiplicative MV-subalgebra of [0, 1], i. e., M is an
MV-algebra such that if t1, t2 ∈ M , then the product t1t2 ∈ M . Multiplicative
MV-subalgebras of [0, 1] are either {0, 1} or they have to be infinite. Example 5.1
is not multiplicative, and Examples 5.2 – 5.4 are multiplicative. Then hR∗ (T ) =
hR∗ (A, T ) = 0 for any partition A in M . For multiplicative MV-subalgebras of [0, 1]
we can calculate h∗R(T ) = ∞.

Example 5.6. Let α be an irrational number from (0, 1) and let M(α) be the
MV-subalgebra of [0, 1] generated by α. Then M(α) = {m + nα : m,n ∈ Z, 0 ≤
m+nα ≤ 1}, [3, p. 149], is countable and dense in [0, 1], and M(α) = M(β) iff α = β
or α = 1 − β. For example, if α =

√
2/2, then M(α) is not multiplicative. For any

α, we have hR∗ (T ) = hR∗ (A, T ) = 0 for any partition A in M .

Example 5.7. Let M be any MV-subalgebra of [0, 1]. Then we have hR∗ (T ) =
hR∗ (A, T ) = 0 for any partition A in M .

Example 5.8. Let E be a finite lattice effect algebra with (RDP). Then E has a
unique transformation T , the identity. This follows from the fact that E is a direct
product of effect algebras (= MV-algebras) from the Example 5.1, and in every state
hR∗ (T ) = h∗R(T ) = 0.

Example 5.9. Let G be an interpolation directed Abelian po-group and define
the lexicographical product G(Z) := Z×lex G, where Z is the group of all integers.
Then the element (1, 0) is a strong unit in the po-group G(Z) and

E(G) := Γ(G(Z), (1, 0)),

is an effect algebra with (RDP) [6]. Every element a ∈ E(G) is of the form either
a = (1,−g) or a = (0, g), where g ∈ G+. E(G) has a unique state s, namely
s(0, g) = 0 and s(1,−g) = 1. For any integer k ≥ 1, we set Tk : E(G) → E(G)
by Tk(0, g) = (0, kg) and Tk(1,−g) = (1,−kg). Then every Tk is s-preserving, and
hR∗ (Tk) = h∗R(Tk) = 0.
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Another s-preserving transformation is the mapping T : E(G) → E(G) defined
by T (0, g) = (0, 0) and T (1,−g) = (1, 0) for any g ∈ G+. Of course, both entropies
of this T are also 0.

Example 5.10. Let G = Q ×lex Z, where Q is the group of all rational numbers
with the usual ordering and Z is the group of all integers with the discrete ordering.
Then G is an interpolation group with strong unit (1, 0), and the effect algebra
E = Γ(G, (1, 0)) satisfies (RDP) and is not a lattice.
E has a unique state s, namely s(q, n) = q. Let T be the identity, and A =

{(1/k, 0)}. Then, for any n ≥ 1, C = {(1/(kn), 0)} is its Riesz refinement, and hence
H∗

n(A, T )R = log nk, so that h∗R(A, T ) = 0 = h∗R(T ).

6. BOOLEAN PARTITIONS AND ENTROPY

Let E be an effect algebra. For an element e ∈ E, we denote by [0, e] := {x ∈ E :
0 ≤ x ≤ e}. Then [0, e] endowed with + restricted to [0, e]× [0, e] is an effect algebra
[0, e] = ([0, e]; +, 0, e), and, for any x ∈ [0, e], we have x

′
e := e− x.

According to [7] or [5], an element e of an effect algebra E is said to be central
(or Boolean) if there exists an isomorphism

fe : E → [0, e]× [0, e′]

such that fe(e) = (e, 0) and if fe(x) = (x1, x2), then x = x1 + x2 for any x ∈ E.
We denote by C(E) the set of all central elements of E. A partition A = {ei} in E

such that every element ei is central is said to be Boolean. We have (i) 0, 1 ∈ C(E),
and if e ∈ C(E), then e′ ∈ C(E); (ii) C(E) is a Boolean algebra; (iii) if x ∈ E and
e ∈ C(E), then x ∧ e ∈ E; (iv) if {ei}n

i=1 is a Boolean partition in E, then for every
element x ∈ E we have x = x ∧ e1 + · · · + x ∧ en; (v) if E is with (RDP), then
e ∈ C(E) iff e ∧ e′ = 0.

Let Ak = {ek
j }mk

j=1 for k = 1, . . . , n be Boolean partitions of unity in an effect
algebra. Then E = {e1i1 ∧ · · · ∧ en

in
: 1 ≤ i1 ≤ m1, . . . , 1 ≤ in ≤ mn} is a unique

Riesz refinement of A1, . . . ,An. In fact, if C = {ci1···in} is a Riesz refinement of
A1, . . . ,An, then by (2.2) ci1···in ≤ e1i1 ∧ · · · ∧ en

in
, which easily implies their equality.

We recall that E is also a Boolean partition.
Consequently,

HR
∗ (A1 ∨ · · · ∨ An) = H(E) = H∗

R(A1 ∨ · · · ∨ An). (6.1)

If, in particular, T preserves the central elements (this can happen e. g. if T is
an automorphism of E or if it preserves all existing finite infima and suprema in E)
we can define entropy, hB(T ), when we restrict T and s to C(E), defined by

hB(T ) := sup{h∗R(A, T ) : A is a Boolean partition}.
Then hB(T ) = sup{hR∗ (A, T ) : A is a Boolean partition} and

hB(T ) ≤ hR∗ (T ). (6.2)
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It is interesting to exhibit when in (6.2) we have the identity. Of course, this is true
whenever hR∗ (T ) = 0. Such a situation happens e. g. in Theorem 9.4 [4].

7. CONDITIONAL ENTROPY

Let C = {cij : 1 ≤ i ≤ m, 1 ≤ j ≤ n} be a Riesz refinement of two partitions
A = {ai}m

i=1 and B = {bj}n
j=1. We define a conditional entropy, HC(A|B), in a state

s on an effect algebra E by

HC(A|B) :=
∑

ij

{
s(bj)φ

(
s(cij)
s(bj)

)
: s(bj) > 0

}
. (7.1)

Proposition 7.1. Let C be a Riesz refinement of partitions A and B. Then

HC(A|B) ≤ H(A). (7.2)

P r o o f . To avoid technical details, we can assume that s(bj) > 0 for every j.
Since the function φ is concave, we have

HC(A|B) =
m∑

i=1

n∑

j=1

s(bj)φ
(
s(cij)
s(bj)

)
≤

m∑

i=1

φ




n∑

j=1

s(bj)s(cij)
s(bj)




=
m∑

i=1

φ(s(ai)) = H(A).

Proposition 7.2. Let C be a Riesz refinement of partitions A and B. Then

H(C) = H(A) +HC(B|A). (7.3)

P r o o f . Without loss of generality, we can assume s(ai) > 0 for all i. Then

H(C) =
m∑

i=1

n∑

j=1

φ(s(cij)) =
m∑

i=1

n∑

j=1

φ

(
s(ai)s(cij)
s(ai)

)

= −
m∑

i=1

n∑

j=1

s(cij) log s(ai)−
m∑

i=1

n∑

j=1

s(cij) log
s(cij)
s(ai)

= −
m∑

i=1

s(ai) log s(ai) +
m∑

i=1

n∑

j=1

s(ai)φ(s(cij)/s(ai))

= H(A) +HC(B|A).



Entropy on Effect Algebras with (RDP) I: Basic Properties 155

According to (7.2), given two partitions A and B, the following two functions,
called lower and upper conditional entropies of A with respect to B, are finite

HR
∗ (A|B) := inf{HC(A|B) : C ∈ RefR(A,B)},

H∗
R(A|B) := sup{HC(A|B) : C ∈ RefR(A,B)}.

In particular, if B = {1}, then HR
∗ (A|B) = H∗

R(A|B) = H(A).
We recall that if A = {ai}m

i=1 is an arbitrary partition of unity in an effect algebra
E and B = {bj}n

j=1 is a Boolean partition, then, due to the properties (iii) – (iv) of
central elements, C := {ai∧ bj : 1 ≤ i ≤ m, 1 ≤ j ≤ n} is a unique Riesz refinement
of A and B. Therefore

HR
∗ (A|B) = H∗

R(A|B).

In such a case we simply write H(A|B) = HR
∗ (A|B) = H∗

R(A|B).
Let now A and B be arbitrary partitions. By (7.3), we have HR

∗ (A ∨ B) ≤
H(A) +HC(B|A) and H∗

R(A ∨ B) ≥ H(A) +HC(B|A), i. e.

HR
∗ (A ∨ B) ≤ H(A) +HR

∗ (B|A),
H∗
R(A ∨ B) ≥ H(A) +H∗

R(B|A).

On the other hand by the use of definition, HR
∗ (B|A) ≤ HC(B|A) and H∗

R(B|A) ≥
HC(B|A), i. e., HR

∗ (B|A) + H(A) ≤ HC(B|A) + H(A) and H∗
R(B|A) + H(A) ≥

HC(B|A) +H(A), which gives

HR
∗ (A ∨ B) = H(A) +HR

∗ (B|A), (7.4)

H∗
R(A ∨ B) = H(A) +H∗

R(B|A). (7.5)

Let now A1, . . . ,An and B be partitions in an effect algebra E with (RDP). Take
An

0 ∈ RefR(A1, . . . ,An) and C ∈ RefR(An
0 ,B). Then by (7.3), we have H(C) =

H(B) + HC(An
0 |B), which gives HR

∗ (A1 ∨ · · · ∨ An ∨ B) ≤ H(C). Hence HR
∗ (A1 ∨

· · · ∨ An ∨ B) ≤ H(B) +HR
∗ (An

0 |B), i. e.

HR
∗ (A1 ∨ · · · ∨ An ∨ B) ≤ H(B) +HR

∗ (A1 ∨ · · · ∨ An|B),
H∗
R(A1 ∨ · · · ∨ An ∨ B) ≥ H(B) +H∗

R(A1 ∨ · · · ∨ An|B),

where

HR
∗ (A1 ∨ · · · ∨ An|B) := inf{HR

∗ (An
0 |B) : An

0 ∈ RefR(A1, . . . ,An)},
H∗
R(A1 ∨ · · · ∨ An|B) := sup{H∗

R(An
0 |B) : An

0 ∈ RefR(A1, . . . ,An)}.

As in (7.4) – (7.5) we can prove

HR
∗ (A1 ∨ · · · ∨ An ∨ B) = H(B) +HR

∗ (A1 ∨ · · · ∨ An|B), (7.6)

H∗
R(A1 ∨ · · · ∨ An ∨ B) = H(B) +H∗

R(A1 ∨ · · · ∨ An|B). (7.7)

In a similar way, let A1, . . . ,An and B1, . . . ,Bm be partitions in E with (RDP).
Choose An

0 ∈ RefR(A1, . . . ,An), Bm
0 ∈ RefR(B1, . . . ,Bm), and C ∈ RefR(An

0 ,Bm
0 ).



156 A.DI NOLA, A. DVUREČENSKIJ, M. HYČKO AND C. MANARA

Then C ∈ RefR(A1, . . . ,An,B1, . . . ,Bm). By (7.6), we haveHR
∗ (A1∨· · ·∨An∨Bm

0 ) =
H(Bm

0 ) +HR
∗ (A1 ∨ · · · ∨ An|Bm

0 ). Hence HR
∗ (A1 ∨ · · · ∨ An ∨Bm

0 ) ≥ HR
∗ (B1 ∨ · · · ∨

Bm) +HR
∗ (A1 ∨ · · · ∨ An|B1 ∨ · · · ∨ Bm) and

HR
∗




n∨

i=1

Ai ∨
m∨

j=1

Bj


 ≥ HR

∗




m∨

j=1

Bj


 +HR

∗ (A1 ∨ · · · ∨ An|B1 ∨ · · · ∨ Bm).

In a similar way we have

H∗
R




n∨

i=1

Ai ∨
m∨

j=1

Bj


 ≤ H∗

R




m∨

j=1

Bj


 +H∗

R(A1 ∨ · · · ∨ An|B1 ∨ · · · ∨ Bm),

where

HR
∗ (A1 ∨ · · · ∨ An|B1 ∨ · · · ∨ Bm) := inf{HC(An

0 |Bm
0 )},

H∗
R(A1 ∨ · · · ∨ An|B1 ∨ · · · ∨ Bm) := sup{HC(An

0 |Bm
0 )}.

We recall that it is possible to show that

HR
∗ (A1 ∨ · · · ∨ An|B1 ∨ · · · ∨ Bm) = inf{HC(CA|CB)},

H∗
R(A1 ∨ · · · ∨ An|B1 ∨ · · · ∨ Bm) = sup{HC(CA|CB)},

where C ∈ RefR(A1, . . . ,An,B1, . . . ,Bm) and CA, CB are the Riesz refinements of
A1, . . . ,An and B1, . . . ,Bm, respectively, obtained from C.

We recall that in the last two inequalities, there are possible cases to have proper
inequalities, see the footnote in Example 7.5. However, if B1, . . . ,Bm are Boolean
partitions, then they possess a unique Riesz refinement, B0 = B1 ∨ · · · ∨ Bm, which
is also Boolean, and from (7.6) and (7.7) we have the following equalities

HR
∗




n∨

i=1

Ai ∨
m∨

j=1

Bj


 = HR

∗




m∨

j=1

Bj


 +HR

∗ (A1 ∨ · · · ∨ An|B1 ∨ · · · ∨ Bm), (7.8)

H∗
R




n∨

i=1

Ai ∨
m∨

j=1

Bj


 = H∗

R




m∨

j=1

Bj


 +H∗

R(A1 ∨ · · · ∨ An|B1 ∨ · · · ∨ Bm). (7.9)

Proposition 7.3. Let A,B1, . . . ,Bm+1 be partitions in an effect algebra E with
(RDP). Then

HR
∗ (A|B1 ∨ · · · ∨ Bm+1) ≤ HR

∗ (A|B1 ∨ · · · ∨ Bm), (7.10)

H∗
R(A|B1 ∨ · · · ∨ Bm+1) ≤ H∗

R(A|B1 ∨ · · · ∨ Bm). (7.11)

P r o o f . Let Bm+1
0 = {bi1···im+1} ∈ RefR(B1, . . . ,Bm+1), Cm+1 = {ci1···im+1k} ∈

RefR(A,B1, . . . ,Bm+1). We consider partitions Bm
0 = {b̃i1···im} ∈ RefR(B1, . . . ,Bm)
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and Cm = {c̃i1···imk} ∈ RefR(A,B1, . . . ,Bm), where b̃i1···im
=

∑
im+1

bi1···im+1 and
c̃i1···imk =

∑
im+1

ci1···im+1k. Without loss of generality, we can assume that
s(bi1···im+1) > 0 for all i1, . . . , im+1. Hence

HCm+1(A|Bm+1
0 ) =

∑

i1···im+1k

s(bi1···im+1)φ
(
s(ci1···im+1k)
s(bi1···im+1)

)

=
∑

i1···imk

∑

im+1

s(b̃i1···im)
s(bi1···im+1)

s(b̃i1···im)
φ

(
s(ci1···im+1k)
s(bi1···im+1)

)

≤
∑

i1···imk

s(b̃i1···im
)φ


 ∑

im+1

s(bi1···im+1)

s(b̃i1···im)

s(ci1···im+1k)
s(bi1···im+1)




= HCm(A|Bm
0 ).

We recall that (7.10) – (7.11) hold also for partitions A1, . . . ,An instead of one
partition A.

In addition, we have

HR
∗ (A1 ∨ · · · ∨ An|B1 ∨ · · · ∨ Bm) ≤ HR

∗ (A1 ∨ · · · ∨ An+1|B1 ∨ · · · ∨ Bm), (7.12)

H∗
R(A1 ∨ · · · ∨ An|B1 ∨ · · · ∨ Bm) ≤ H∗

R(A1 ∨ · · · ∨ An+1|B1 ∨ · · · ∨ Bm). (7.13)

Indeed, due to (7.3) the following two sets

{HC(An
0 |Bm

0 ) : An
0 ∈ RefR(A1, . . . ,An),Bm

0 ∈ RefR(B1, . . . ,Bm),
C ∈ RefR(An

0 ,Bm
0 )}

and

{H(E)−H(D) : D ∈ RefR(B1, . . . ,Bm), E ∈ RefR(A1, . . . ,An,D)}

are equal. Therefore,

H∗
R(A1 ∨ · · · ∨ An|B1 ∨ · · · ∨ Bm)

= inf{HC(An
0 |Bm

0 ) : An
0 ∈ RefR(A1, . . . ,An),

Bm
0 ∈ RefR(B1, . . . ,Bm), C ∈ Ref(An

0 ,Bm
0 )}

= inf{H(E)−H(D) : D ∈ RefR(B1, . . . ,Bm), E ∈ RefR(A1, . . . ,An,D)}
≤ inf{H(E ′)−H(D′) : D′ ∈ RefR(B1, . . . ,Bm), E ′ ∈ RefR(A1, . . . ,An+1,D′)}
= H∗

R(A1 ∨ · · · ∨ An+1|B1 ∨ · · · ∨ Bm).

In a similar way we prove (7.13).
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Proposition 7.4. Let A,B and C be partitions in an effect algebra E with (RDP).
Then

HR
∗ (A ∨ B|C) ≥ HR

∗ (A|C) +HR
∗ (B|A ∨ C), (7.14)

H∗
R(A ∨ B|C) ≤ H∗

R(A|C) +H∗
R(B|A ∨ C). (7.15)

If C is a Boolean partition, then in (7.14) – (7.15) we have the equalities.

P r o o f . Suppose that A = {ai}, B = {bj} and C = {ck}. Choose E = {eijk} ∈
RefR(A,B, C) and set D = {dij :=

∑
k eijk}, and F = {fik :=

∑
j eijk}. Then

D ∈ RefR(A,B) and F ∈ RefR(A, C).
Calculate

HE(D|C) =
∑

ijk

s(ck)φ
(
s(eijk)
s(ck)

)
=

∑

ijk

s(ck)φ
(
s(eijk)
s(fik)

s(fik)
s(ck)

)

= −
∑

ijk

s(eijk) log
s(eijk)
s(fik)

−
∑

ijk

s(eijk) log
s(fik)
s(ck)

=
∑

ijk

s(fik)φ
(
s(eijk)
s(fik)

)
+

∑

ik

s(ck)φ
(
s(fik)
s(ck)

)

= HE(B|F) +HF (A|C),
which yields HE(D|C) ≥ HR

∗ (A|C) +HR
∗ (B|A ∨ C) and HR

∗ (A∨B|C) ≥ HR
∗ (A|C) +

HR
∗ (B|A ∨ C).
The equality in (7.14) is evident if C is a Boolean partition while in this case F

is a unique Riesz refinement of A and C.
In a similar way we can prove (7.15).

Example 7.5. It is worthy to recall that if C is not Boolean then in (7.14) and
(7.15) is not necessarily the equality. Indeed, take the MV-algebra M10 from Ex-
ample 5.1, and set A = {0.3, 0.7}, B = {0.4, 0.6}, and C = {0.2, 0.8}. Then
HR
∗ (A ∨ B|C) = 0.255581, HR

∗ (A|C) = 0.130903, and HR
∗ (B|A ∨ C) = 0.

H∗
R(A ∨ B|C) = 0.519130, H∗

R(A|C) = 0.266581, H∗
R(B|A ∨ C) = 0.289279.3

As a corollary of (7.14) – (7.15) and (7.10) – (7.11)

H∗
R(

n∨

i=1

Ai

∣∣
m∨

j=1

Bj) ≤
n∑

i=1

H∗
R


Ai

∣∣
m∨

j=1

Bj


 , (7.16)

and if B1, . . . ,Bm are Boolean decompositions, then

HR
∗ (

n∨

i=1

Ai

∣∣
m∨

j=1

Bj) ≤
n∑

i=1

HR
∗


Ai

∣∣
m∨

j=1

Bj


 . (7.17)

3The equalities in inequalities of formulas between (7.7) and (7.8) imply equalities in formulas
(7.14) – (7.15).
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We recall that that if (E, s, T ) is a dynamical system, then

HR
∗ (TA|TB) ≤ HR

∗ (A|B), H∗
R(TA|TB) ≥ H∗

R(A|B), (7.18)

and if A or B is Boolean and if T preserves central elements, then in (7.18) we have
the equality.

Proposition 7.6. Let (E, s, T ) be a dynamical system, where E is with (RDP)
and let T preserve central elements. Then, for any partition A and any Boolean
partition B, we have

hR∗ (A, T ) ≤ hR∗ (B, T ) +HR
∗ (A|B) (7.19)

and
h∗R(A, T ) ≤ h∗R(B, T ) +H∗

R(A|B). (7.20)

P r o o f . By Proposition 3.4, (7.14) – (7.15), (7.17), and (7.18), we have

HR
∗ (

n−1∨

i=0

T iA) ≤ HR
∗




n−1∨

i=0

T iA ∨
n−1∨

j=0

T jB



= HR
∗

(
n−1∨

i=0

T iB
)

+HR
∗




n−1∨

i=0

T iA∣∣
n−1∨

j=0

T jB



≤ HR
∗

(
n−1∨

i=0

T iB
)

+
n−1∑

i=0

HR
∗


T iA∣∣

n−1∨

j=0

T jB



≤ HR
∗

(
n−1∨

i=0

T iB
)

+
n−1∑

i=0

HR
∗ (T iA|T iB)

= HR
∗

(
n−1∨

i=0

T iB
)

+ nHR
∗ (A|B).

Hence: hR∗ (A, T ) = limn
1
nH

R
∗ (

∨n−1
i=0 T

iA) ≤ 1
nH

R
∗ (

∨n−1
i=0 T

iB) + HR
∗ (A|B) =

hR∗ (B, T ) +HR
∗ (A|B).

The second inequality follows from (7.16).
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[7] A. Dvurečenskij and S. Pulmannová: New Trends in Quantum Structures. Kluwer
Academic Publishers, Dordrecht and Ister Science, Bratislava 2000.

[8] D. J. Foulis and M. K. Bennett: Effect algebras and unsharp quantum logics. Found.
Phys. 24 (1994), 1325–1346.

[9] K. R. Goodearl: Partially Ordered Abelian Groups with Interpolation. (Math. Surveys
and Monographs No. 20.) Amer. Math. Society, Providence, RI 1986.

[10] R. J. Greechie: Orthomodular lattices admitting no states. J. Comb. Theory 10 (1971),
119–132.
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