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ON THE STABILITY IN STOCHASTIC

PROGRAMMING: THE CASE OF INDIVIDUAL

PROBABILITY CONSTRAINTS1

Vlasta Kaňková

Stochastic programming problems with individual probability constraints
belong to a class of optimization problems depending on a random element only
through the corresponding probability measure. Consequently, the probability
measure can be treated as a parameter in these problems.

The aim of the paper is to investigate the stability of the above mentioned
problems with respect to the distribution functions space. The main effort
is directed to some special situations in which stability investigation can be
reduced (from the mathematical point of view) to one dimensional case. The
Kolmogorov metric is employed to specify the stability results and, moreover,
the achieved stability results are applied to statistical estimates of the optimal
value and the optimal solution.

1. INTRODUCTION

There is not doubt that the stability problem (considered with respect
to the probability measures space) is a serious problem of the stochastic
programming theory. Namely, any responsible application of empirical
estimates, parameter estimates as well as many approximate and numer-
ical methods of solution are based on a possibility to replace the theoret-
ical distribution function by some approximating one. In the literature,
a great attention has been already paid to the stability of the stochastic
optimization problems (see [1, 5, 7, 9, 13, 21, 22, 23, 24, 26]).

Let (Ω, S, P ) be a probability space, ξ = ξ(ω) = [ξ1(ω), ξ2(ω), . . . , ξl(ω)]
be an l–dimensional random vector defined on (Ω, S, P ), F (z), Fi(zi), z =
(z1, . . . , zl), i = 1, 2, . . . , l, z ∈ El be the joint and the marginal one–dimensional
distribution functions corresponding to the random vector ξ(ω) and to
the component ξi(ω), Z = ZF ⊂ El, Zi = ZFi ⊂ E1, i = 1, . . . , l denote the

1The research was supported by the Grant Agency of the Czech Republic under Grants
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supports of the probability measures PF (·), PFi
(·) corresponding to the

distribution functions F (z) and Fi(zi).
Let, moreover, g0(x, z), fi(x), i = 1, 2, . . . , l be real–valued, continuous

functions defined on En×El and En, X ⊂ En be a nonempty set. (En, n ≥ 1
denotes the n–dimensional Euclidean space.)

An optimization problem with a random element, in the objective func-
tion and on the right-hand side of the constraints only, can be introduced
as the problem:

Find

min{g0(x, ξ(ω)) |x ∈ X : fi(x) ≤ ξi(ω), i = 1, 2, . . . , l}. (1)

If the solution x has to be determined without knowing the realization of
the random vector ξ(ω), then mostly a deterministic optimization prob-
lem is solved instead of the original one with a random element. The
new problem can depend on the random element only through the cor-
responding probability measure. We shall consider it in the form:

Find

ϕ(F, α) = inf{EF g(x, ξ(ω)) |x ∈ X : PFi {ω : fi(x) ≤ ξi(ω)} ≥ αi, i = 1, . . . l}, (2)

where g(x, z) is a real–valued, continuous function defined on En × El,
αi ∈ 〈0, 1〉, i = 1, 2, . . . , l are parameters. EF denotes the operator of math-
ematical expectation corresponding to F (·).

In the literature, this type of the deterministic optimization problems
has been investigated many times (see e. g. [4, 10, 20]). The distribution
function F (·) can be considered as a parameter of the problem (2) and,
consequently, it is reasonable to investigate the stability with respect to
it. In the general case, it can mean to determine for a δ > 0 a subset
F(F, δ) of the l–dimensional distribution functions space and real–valued
functions m1(δ), m2(δ) defined on E1 (having the “suitable” properties)
such that

G ∈ F(F, δ) ⇒ |ϕ(G, α)− ϕ(F, α) | ≤ m1(δ),
G ∈ F(F, δ) ⇒ ‖x(G, α)− x(F, α) ‖2 ≤ m2(δ),

(3)

x(F, α) = arg min{EF g(x, ξ(ω)) | x ∈ X : PFi {ω : fi(x) ≤ ξi(ω)} ≥ αi, i = 1, . . . l}.
(‖ · ‖ denotes the Euclidean norm in En.)

Of course, the second implication in (3) can be considered only if there
exists unique x(F, α) fulfilling the last equation in the relations (3).

The aim of the paper is to deal with special cases in which the sta-
bility problem can be reduced (from the mathematical point of view) to
the one–dimensional case. In particular, the aim of the paper is to in-
troduce several special cases in which it is possible to determine subsets
Fi(Fi, δi), δi > 0, i = 1, 2, . . . , l of one–dimensional distribution functions
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space and real–valued functions m1(δ),m2(δ) defined on El (having “suit-
able” properties) such that

Gi ∈ Fi(Fi, δi), i = 1, 2, . . . , l ⇒ |ϕ(G, α)− ϕ(F, α) | ≤ m1(δ),
Gi ∈ Fi(Fi, δi), i = 1, 2, . . . , l ⇒ ‖x(G, α)− x(F, α) ‖2 ≤ m2(δ).

(4)

Gi(·), i = 1, . . . , l denote the marginal one–dimensional distribution func-
tions corresponding to the l–dimensional distribution function G(·), δ =
(δ1, δ2, . . . , δl). Furthermore, the Kolmogorov metric will be employed to
specify the stability results. The new results (in this direction) will be
applied to the statistical estimates of the optimal value and the optimal
solution.

2. PROBLEM ANALYSIS

If we define the sets XFi(αi), XF (α), αi ∈ 〈0, 1〉, i = 1, . . . , l, α = (α1, . . . , αl)
by

XFi (αi) = {x ∈ X : PFi {ω : fi(x) ≤ ξi(ω)} ≥ αi}, (5)

XF (α) =
l⋂

i=1

XFi(αi), (6)

then we can rewrite the problem (2) as the problem:

Find
ϕ(F, α) = inf{EF g(x, ξ(ω)) |x ∈ XF (α)}. (7)

If G(·) is an arbitrary l–dimensional distribution function, then according
to the triangular inequality we obtain that

|ϕ(F, α)− ϕ(G, α)| ≤
∣∣∣∣ inf
x∈XF (α)

EF g(x, ξ(ω))− inf
x∈XF (α)

EGg(x, ξ(ω))
∣∣∣∣

+
∣∣∣∣ inf
x∈XF (α)

EGg(x, ξ(ω))− inf
x∈XG(α)

EGg(x, ξ(ω))
∣∣∣∣ .

(8)

Consequently, to investigate the stability of the problem (2) it is appro-
priate to investigate the stability of the following problems (see also e. g.
[14, 16]):

Find
inf

XF (α)
g0(x) with g0(x) = EGg(x, ξ(ω)). (9)

Find
inf
X′

EF g(x, ξ(ω)) with X ′ = XF (α). (10)

It is easy to see that the stability of the problem (9) depends on the
properties of the function g0(x) and on the “distance between the values”
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of the multifunctions XF (α) and XG(α). Consequently, it seems to be
reasonable to investigate

∆[XF (α), XG(α)],

where ∆[·, ·] = ∆n[·, ·] denotes the Hausdorff distance in the space of
nonempty, closed subsets of En (for the definition see e. g. [25]). To
this end we define the multifunctions

Ki(zi) = {x ∈ X : fi(x) ≤ zi}, zi ∈ E1, i = 1, 2, . . . , l (11)

and the quantiles

kFi(αi) = sup{zi : PFi{ω : zi ≤ ξi(ω)} ≥ αi}, αi ∈ (0, 1), i = 1, . . . , l. (12)

Since it is easy to see that for i = 1, 2, . . . , l,

x ∈ XFi(αi) ⇐⇒ x ∈ X and simultaneously PFi{ω : fi(x) ≤ ξi(ω)} ≥ αi

⇐⇒ x ∈ X and simultaneously fi(x) ≤ kFi
(αi),

we can obtain that

XFi(αi) = Ki(kFi(αi)), αi ∈ (0, 1), i = 1, 2, . . . , l. (13)

If, furthermore, we define K(z), z = (z1, z2, . . . , zl) by the relation

K(z) =
l⋂

i=1

Ki(zi), (14)

then

XF (α) = K(kF (α)), where kF (α) = (kF1(α1), kF2(α2), . . . , kFl
(αl)). (15)

According to the relation (15) it is easy to see that to investigate the
stability of the problem (9) it is suitable to investigate the behaviour of
the multifunction K(·). Furthermore, it is easy to see that the assumptions
under which

∆[K(z),K(z′)] ≤ C ‖z − z′‖ in a neighbourhood of the point kF (α)

(together with the relation (15), the triangular inequality and additional
assumptions) imply that

∆[XF (α), XG(α)] ≤
l∑

i=1

C |kFi(αi)− kGi(αi)|. (16)

In general, to investigate the stability of the problem (10) it is nec-
essary to find F(F, δ) and the functions m1(δ), m2(δ), δ > 0 fulfilling the
relations (3). In this paper we shall try to introduce some special cases
for which there exist also Fi(Fi, δi), δi > 0, i = 1, 2, . . . , l, m1(δ), m2(δ),
δ = (δ1, δ2, . . . , δl) fulfilling the relations of the type (4).
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3. STABILITY RESULTS

Before presenting the first assertions we introduce several systems of
the assumptions. Let Zi ⊂ E1, i = 1, 2, . . . l be nonempty, convex sets,
Z =

∏l
i=1 Zi; Z(ε), ε>0 denote the ε–neighbourhood of the set Z.

i.1 there exists ε > 0 such that

a) fi(x), i = 1, 2, . . . , l are linear functions, X = En;
without loss of generality, we can consider in this case the constraints
in (1) to be in the form of equations,

b) for every z ∈ Z(ε), K(z) is a nonempty, compact set,

c) if the matrix A of the type (l×n), l ≤ n fulfils for z ∈ Z(ε) the relation

K(z) = {x ∈ X : Ax = z}

then all its submatrices of the type (l × l), A(1), A(2), . . . , A(m) are
nonsingular,

i.2 there exists ε > 0 such that

a) X is a convex, compact set,

b) fi(x), i = 1, 2, . . . , l are convex functions on X,

c) for every z ∈ Z(ε), K(z) is a nonempty set.

i.3 there exist real–valued constants d1, γ2, ε > 0 such that

a) if x ∈ X, z = (z1, . . . , zl), z ∈ Z(ε) fulfil the relations fi(x) ≤ zi, i =
1, 2, . . . , l and simultaneously fj(x) = zj for at least one j ∈ {1, 2, . . . , l},
then there exists a vector x(0) ∈ En (generally depending on x) such
that

‖x(0)‖ = 1, x + dx(0) ∈ X, fi(x)− fi(x + dx(0)) ≥ γ2d

for every d ∈ (0, d1), i = 1, 2, . . . , l,

b) for every z ∈ Z(ε), K(z) is a nonempty, compact set.

The introduced systems of the assumptions i.1, 1.2 cover both linear
and convex functions on the left-hand side of the constraints in (1). These
special cases were investigated in the literature many times (mostly in
a connection with parametric linear or quadratic programming, see e. g.
[2]). They appear also in the connection with the stochastic programming
problems (see e. g. [17]). To justify the system of the assumptions i.3 (in
more details) we introduce a simple example. Let n = 2, l = 2, X =
〈1.5, 4〉 × 〈1.5, 4〉 and, moreover,

f1(x) = x1x2, f2(x) = log(x1 + x2), x = (x1, x2).
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It is easy to see that (in this case) the system i.3 is fulfilled, while the
systems of the assumptions i.1 and i.2 are not fulfilled.

To introduce assertions concerning stability results we define the con-
stant C by the following relations.

C = min(C1, C2, C3), (17)

where

C1 = l max
i,r,s

|air(s)| if the system of the assumptions i.1 is fulfilled,
air(s), i, r = 1, 2, . . . , l for s ∈ {1, 2, . . . , m}
denote elements of the inverse matrix to A(s),

= +∞ otherwise,

C2 =
M1

ε0
if the system of the assumptions i.2 is fulfilled,
ε0 ∈ (0, ε), M1 = supx1, x2∈X ‖x1 − x2‖,

= +∞ otherwise,

C3 =
1
γ2

if the system of the assumptions i.3 is fulfilled,

= +∞ otherwise.

(In (17) we calculate min(c, c′, +∞) = min(c, c′),min(c, +∞, +∞) = c for
every c, c′ ∈ E1.)

If we consider a special case of the function g(x, z) when

A.1 a) g(x, z) = g(x), x ∈ En, z ∈ El, where g(x) is a real–valued, Lips-
chitz function on X with the Lipschitz constant L

′
,

then we can already introduce the first assertion.

Proposition 1. Let αi ∈ (0, 1), i = 1, 2, . . . , l. If

1. the assumption A.1a is fulfilled,

2. G(z) is an arbitrary l–dimensional distribution function,

3. Zi = 〈min(kFi(αi), kGi(αi)),max(kFi(αi), kGi(αi)) 〉, i = 1, 2, . . . , l,

4. at least one of the systems of the assumptions i.1, i.2, i.3 is fulfilled,

then

|ϕ(F, α)− ϕ(G, α)| ≤ CL
′

l∑

i=1

|kFi(αi)− kGi(αi)|.

P r o o f . First, by a little modification of Lemma 1 [18] (see also [2])
we can obtain that

∆[K(z(1)), K(z(2))] ≤ C‖z(1)−z(2)‖ for every z(1), z(2) ∈ Z(ε) and some ε > 0,
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whenever the assumption 4 is fulfilled. The assertion of Proposition 1
follows from the last inequality, the relation (15), the triangular inequality
and the fact that (under the assumptions) XF (α), XG(α) are nonempty,
compact sets. 2

It follows from Proposition 1 that a dependence of the changes of the
optimal value (in the case A.1) on the perturbations of the underlying
probability measure can be estimated (of course, under some additional
assumptions) by the distance of the corresponding one-dimensional quan-
tiles.

To introduce the next assertion we define for δi > 0, i = 1, . . . , l the
one–dimensional distribution functions F i, δi

(zi), F i, δi
(zi) by the relations

F i, δi
(zi) = Fi(zi − δi), F i, δi(zi) = Fi(zi + δi), zi ∈ E1. (18)

We introduce the following assumptions.

ii. X is a convex set and, moreover, fi(x), i = 1, 2, . . . , l are quasi convex
functions on X,

A.1 b) g(x) is a strongly convex function on X with the parameter ρ > 0
(for the definition of strongly convex functions see e. g. [19, 28]).

The assumptions A.1b, ii. guarantee just unique x(F, α) fulfilling the last
equation in the relations (3). In [11] the assumption on strongly convex
property is replaced by a little more general assumption on uniformly
convex property. These both assumptions give possibility to employ the
results on the stability of the optimal value (by a rather simple manner) to
the investigation of the stability of the optimal solution. The investigation
of the optimal solution set is (generally in optimization problems) rather
more complicated (see e. g. [2, 23]).

Proposition 2. Let for i = 1, 2, . . . , l, δi > 0, αi ∈ (0, 1) be given, Zi =
(kFi(αi)
−2δi, kFi(αi) + 2δi). If

1. the assumption A.1a is fulfilled,

2. at least one of the systems of the assumptions i.1, i.2, i.3 is fulfilled,

3. G(z) is an arbitrary l–dimensional distribution function such that for
i ∈ {1, 2, . . . , l}

Gi(zi) ∈ 〈F i, δi
(zi), F i, δi(zi)〉, zi ∈ (kFi(αi)− δi − ε, kFi(αi) + δi + ε),

then
|ϕ(F, α)− ϕ(G, α)| ≤ L

′
C

l∑

i=1

δi. (19)

If, moreover,
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4. the assumptions A.1b and ii. are fulfilled,
then also

‖x(F, α)− x(G, α)‖2 ≤ 12
ρ

L
′
C

l∑

i=1

δi. (20)

The proof of Proposition 2 is given in the Appendix.

To consider another special case of the function g(x, z), let δi > 0, i =
1, 2, . . . , l. We introduce the new system of assumptions.

A.2 a) g(x, z) =
l∑

i=1

gi(x, zi), x ∈ En, z = (z1, z2, . . . , zl) ∈ El, where

gi(x, zi), i = 1, 2, . . . , l are real-valued functions defined on En×E1,
b) for every x ∈ X, gi(x, zi), i = 1, 2, . . . , l are Lipschitz functions on

ZFi(δi) with the Lipschitz constants Li not depending on x ∈ X,

c) for every zi ∈ ZFi
(δi), gi(x, zi), i = 1, 2, . . . , l are Lipschitz functions

on X with the Lipschitz constants L′i not depending on zi ∈
ZFi(δi),

d) for every x ∈ X, i ∈ {1, 2, . . . , l} there exists a finite EFi
gi(x, ξi(ω)),

e) for every zi ∈ ZFi(δi), i ∈ {1, 2, . . . , l}, gi(x, zi) is a convex function
on En and simultaneously there exists j ∈ {1, 2, . . . , l} such that
gj(x, zj) is a strongly convex function on En with a parameter
ρ > 0.

Proposition 3. Let for i = 1, 2, . . . , l, δi > 0, αi ∈ (0, 1) be given, Zi =
(kFi(αi)− 2δi, kFi(αi) + 2δi). If

1. the assumptions A.2a, A.2b, A.2c and A.2d are fulfilled,

2. at least one of the systems of the assumptions i.1, i.2, i.3 is fulfilled,

3. G(z) is an arbitrary l–dimensional distribution function such that

Gi(zi) ∈ 〈F i, δi
(zi), F i, δi(zi)〉 for every zi ∈ E1, i = 1, 2, . . . , l,

then

|ϕ(F, α)− ϕ(G,α)| ≤
l∑

i=1


Li + C

l∑

j=1

L′j


 δi. (21)

If, moreover,

4. the assumptions A.2e and ii. are fulfilled,
then also

‖x(F, α)− x(G, α)‖2 ≤ 12
ρ

l∑

i=1


Li + C

l∑

j=1

L′j


 δi. (22)

The proof of Proposition 3 is given in the Appendix.

To deal with the last special case, let δi > 0, i = 1, 2, . . . , l. We introduce
the following system of assumptions.
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A.3 a) the components of the random vector ξ(ω) = (ξ1(ω), ξ2(ω), . . . , ξl(ω))
are stochastically independent,

b) for every x ∈ X, δ = max
i

δi, g(x, z) is a Lipschitz function on ZF (δ)

with the Lipschitz constant L not depending on x ∈ X,

c) for every z ∈ ZF (δ), g(x, z) is a Lipschitz function on X with the
Lipschitz constant L′ not depending on z ∈ ZF (δ),

d) for every x ∈ X there exists a finite EF g(x, ξ(ω)),

e) for every z ∈ ZF , g(x, z) is a strongly convex function on En with
a parameter ρ > 0.

Proposition 4. Let for i = 1, 2, . . . , l, δi > 0, αi ∈ (0, 1) be given, Zi =
(kFi

(αi)
−2δi, kFi(αi) + 2δi). If

1. the assumptions A.3a, A.3b, A.3c and A.3d are fulfilled,

2. at least one of the systems of assumptions i.1, i.2, i.3 is fulfilled,

3. G(z) is an arbitrary l–dimensional distribution function such that

Gi(zi) ∈ 〈F i, δi
(zi), F i, δi(zi)〉 for every zi ∈ E1, i = 1, 2, . . . , l,

and simultaneously

G(z) =
l∏

i=1

Gi(zi), z = (z1, z2, . . . , zl),

then

|ϕ(F, α)− ϕ(G,α)| ≤ [l L + C L′]
l∑

i=1

δi. (23)

If, moreover,

4. the assumptions ii. and A.3e are fulfilled,

then also

‖x(F, α)− x(G, α)‖2 ≤ 12
ρ

[l L + C L′]
l∑

i=1

δi. (24)

The proof of Proposition 4 is given in the Appendix.
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4. KOLMOGOROV METRIC AND STABILITY

In the sequel we employ the Kolmogorov metric to specify the stability
results. To this end let αi ∈ (0, 1), δi > 0, i = 1, . . . , l. We define the intervals
Zi(αi, δi) by the relations

Zi(αi, δi) =
〈
max

(
z0

i , ki(αi)− 2δi

)
, min

(
z1

i , ki(αi) + 2δi

)〉
, (25)

z0
i = sup{zi : Fi(zi) = 0}, z1

i = inf{zi : Fi(zi) = 1}
(where we calculate max(z0

i , zi) = zi if z0
i = −∞, zi ∈ E1, min(z1

i , zi) = zi if
z1

i = +∞, zi ∈ E1, i = 1, 2, . . . , l) and, moreover, we introduce the following
system of the assumptions.

B.1 a) for i = 1, 2, . . . , l the probability measures PFi
(·) are absolutely

continuous with respect to the Lebesgue measure in E1,

b) for i = 1, 2, . . . , l and an ε > 0 there exist constants ϑi > 0 such
that

hi(zi) ≥ ϑi for every zi ∈ Zi(αi, δi + ε),

c) for i = 1, 2, . . . , l there exist ai, bi ∈ E1, ai < bi, ϑi > 0 such that

ZFi = 〈ai, bi〉, hi(zi) ≥ ϑi for every zi ∈ ZFi .

(hi(zi) denotes the probability density corresponding to Fi(zi), i = 1, 2, . . . , l.)

Lemma 1. Let for i = 1, 2, . . . , l, αi ∈ (0, 1), δi > 0 be arbitrary. Let,
moreover, G(z) be an arbitrary l–dimensional distribution function. If

1. B.1a and B.1b are fulfilled, then for every i = {1, 2, . . . , l}

|Fi(zi)−Gi(zi)| ≤ δiϑi, zi ∈ Zi(αi, δi + ε) and simultaneously either

ZGi ⊂ ZFi(δi) or Fδi(kFi(αi)− δi − ε) > 0, Fδi(kFi(αi) + δi + ε) < 1 =⇒
=⇒ Gi(zi) ∈ 〈F i, 2δi

(zi), F i, 2δi(zi)〉, zi ∈ (kFi(αi)− δi − ε, kFi(αi) + δi + ε),

2. B.1a and B.1c are fulfilled, then for every i = {1, 2, . . . , l}

|Fi(zi)−Gi(zi)| ≤ δiϑi, zi ∈ ZFi , ZGi ⊂ ZFi(δi) =⇒
=⇒ Gi(zi) ∈ 〈F i, 2δi

(zi), F i, 2δi(zi)〉, zi ∈ E1.

P r o o f . First we consider the case 1. Let i∈{1, 2, . . . , l}, zi∈〈kFi(αi) −
δi − ε, kFi(αi) + δi + ε〉 be arbitrary. Two cases can happen.

a) zi ∈ 〈z0
i + δi, z1

i − δi〉,
b) zi ∈/ 〈z0

i + δi, z1
i − δi〉.
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If the case a) happens, then since (in this case)

Fi(zi − δi) ≤ Fi(zi)− ϑiδi ≤ Fi(zi) ≤ Fi(zi) + ϑiδi ≤ Fi(zi + δi)

and simultaneously
|Fi(zi)−Gi(zi)| ≤ ϑiδi

we can see that Gi(zi) ∈ 〈F i, δi
(zi), F i, δi(zi)〉 in the case a).

If the case b) happens, then either Fi(zi − δi) = 0 or Fi(zi + δi) = 1.
Without loss of generality we can consider only the case Fi(zi − δi) = 0.
However, then for z′i ∈ 〈z0

i − δi, z0
i + δi〉 we can see that

0 = Fi(z′i− δi) ≤ Fi(z′i) ≤ Fi(z′i + δi)+ϑiδi ≤ Fi(z′i +2δi), |Fi(z′i)−Gi(z′i)| ≤ ϑiδi

and simultaneously

Gi(zi − 2δi) = 0, Gi(z0
i ) ≤ ϑiδi, 2ϑiδi ≤ Fi(z0

i + 2δi).

Consequently, we can see that also in this case Gi(zi) ∈ 〈F i, δi
(zi), F i, δi(zi)〉.

The proof of the Assertion 2 is very similar and consequently it can be
omitted.

2

Theorem 1. Let for i = 1, 2, . . . , l, αi ∈ (0, 1), δi > 0 be arbitrary, Zi =
(kFi(αi)
−2δi, kFi(αi) + 2δi). If

1. the assumptions B.1a and B.1b are fulfilled,

2. G(z) is an arbitrary l–dimensional distribution function such that for
zi ∈ Zi(αi, δi + ε), |Fi(zi) − Gi(zi)| ≤ δiϑi and simultaneously either ZGi ⊂
ZFi(δ

′
i) or Fi(kFi(αi)−δ′i−ε) > 0, Fi(kFi(αi)+δ′i+ε) < 1, δ′i = 1

ϑi
supẐi(αi, δi+ε) |Fi(zi)

−Gi(zi)|, i = 1, 2, . . . , l,

3. the assumptions A.1a is fulfilled,

4. at least one of the systems of the assumptions i.1, i.2, i.3 is fulfilled,

then

|ϕ(F, α)− ϕ(G,α)| ≤ 2L′C
l∑

i=1

1
ϑi

sup
Ẑi(αi, δi+ε)

|Fi(zi)−Gi(zi)|. (26)

If, moreover,

5. the assumptions A.1b, and ii. are fulfilled
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then also

‖x(F, α)− x(G, α)‖2 ≤ 24
ρ

L′C
l∑

i=1

1
ϑi

sup
Ẑi(αi, δi+ε)

|Fi(zi)−Gi(zi)|. (27)

P r o o f . To verify the assertion of Theorem 1 we employ Lemma 1
and we substitute δi =: 2δ′i, i ∈ {1, . . . , l} in Proposition 2. 2

The assumption 2 of Theorem 1 can seem rather badly understandable.
However this complicated form gives possibility to include the cases when
G(·) is “closed” to F (·) only in a neighbourhood of the point kF (α).

Theorem 2. Let for i = 1, 2, . . . , l, αi ∈ (0, 1), δi > 0 be arbitrary, Zi =
(kFi

(αi)
−2δi, kFi

(αi) + 2δi). If

1. the assumptions B.1a and B.1c are fulfilled,

2. G(z) is an arbitrary l–dimensional distribution function such that

δiϑi ≥ sup{|Fi(zi)−Gi(zi)| : zi ∈ ZFi}, i = 1, 2, . . . , l,

and simultaneously

ZGi ⊂ ZFi

(
sup |Fi(zi)−Gi(zi)|

ϑi

)
, i = 1, 2, . . . , l,

3. the assumptions A.2a, A.2b, A.2c, A.2d are fulfilled,

4. at least one of the systems of the assumptions i.1, i.2, i.3 is fulfilled,

then

|ϕ(F, α)− ϕ(G, α)| ≤ 2
l∑

i=1


Li + C

l∑

j=1

L′j


 sup |Fi(zi)−Gi(zi)|

ϑi
. (28)

If, moreover,

5. the assumptions A.2e and ii. are fulfilled,

then also

‖x(F, α)− x(G, α)‖2 ≤ 24
ρ

l∑

i=1

[Li + C

l∑

j=1

L′j ]
sup |Fi(zi)−Gi(zi)|

ϑi
. (29)

P r o o f . To verify the assertion of Theorem 2 we employ Lemma 1
and we substitute δi =: 2 sup |Fi(zi)−Gi(zi)|

ϑi
, i ∈ {1, . . . , l} in Proposition 3. 2
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Theorem 3. Let for i = 1, 2, . . . , l, αi ∈ (0, 1), δi > 0 be arbitrary, Zi =
(kFi(αi)
−2δi, kFi

(αi) + 2δi). If
1. the assumptions B.1a and B.1c are fulfilled,
2. G(z) is an arbitrary l–dimensional distribution function such that

δiϑi ≥ sup{|Fi(zi)−Gi(zi)| : zi ∈ ZFi}, i = 1, 2, . . . , l,

ZGi
⊂ ZFi

(
sup |Fi(zi)−Gi(zi)|

ϑi

)
, i = 1, 2, . . . , l,

and simultaneously

G(z) =
l∏

i=1

Gi(zi), z = (z1, z2, . . . , zl),

3. the assumptions A.3a, A.3b, A.3c and A.3d are fulfilled,
4. at least one of the systems of the assumptions i.1, i.2, i.3 is fulfilled,

then

|ϕ(F, α)− ϕ(G,α)| ≤ 2[l L + CL′]
l∑

i=1

sup |Fi(zi)−Gi(zi)|
ϑi

. (30)

If, moreover,
5. the assumptions A.3e and (ii.) are fulfilled

then also

‖x(F, α)− x(G, α)‖2 ≤ 24
ρ

[l L + CL′]
l∑

i=1

sup |Fi(zi)−Gi(zi)|
ϑi

. (31)

P r o o f . To verify the assertion of Theorem 3 we employ Lemma 1
and we substitute δi =: sup |Fi(zi)−Gi(zi)|

ϑi
, i ∈ {1, . . . , l} in Proposition 4. 2

5. APPLICATION TO ESTIMATES

If statistical estimates replace the theoretical distribution functions Fi(zi), i =
1, . . .
. . . , l, then it is possible to employ the assertions of Theorems 1, 2 and 3
to investigate the properties of the corresponding estimates of the opti-
mal value and the optimal solution. Evidently, if the case A.1 happens,
then the behaviour of these estimates follows from the behaviour of the
estimates of the quantiles (see e. g. [6]).

To investigate the cases A.2 and A.3 let {ξk
i (ω)}∞k=−∞, i = 1, 2, . . . , l

be sequences of random values defined on (Ω, S, P ) such that for every
k = . . . ,−1, 0, 1, . . . the random value ξk

i (ω) has the same distribution func-
tion as the random value ξi(ω). For i = 1, 2, . . . , l, Ni = 1, . . . we denote
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by the symbol FNi
i (zi) = FNi

i (zi, ω), zi ∈ E1 an arbitrary statistical esti-
mate of Fi(zi) determined by {ξk

i (ω)}Ni

k=1 and by the symbol FN (z), z ∈ El

an arbitrary joint l–dimensional distribution function corresponding to
the FNi

i (zi), i = 1, 2, . . . , l. Evidently, under quite general conditions, the
theoretical values ϕ(F, α), x(F, α) can be estimated by the values

ϕ(FN , α) = inf
X

F N (α)
EF N g(x, ξ(ω)),

x(FN , α) = arg min{EF N g(x, ξ(ω))|x ∈ XF N (α)},

where

XF N (α) =
l⋂

i=1

X
F

Ni
i

(αi), N = (N1, . . . , Nl).

Theorem 4. Let for i = 1, 2, . . . , l, αi ∈ (0, 1), δi > 0 be arbitrary, Zi =
(kFi(αi)− 2δi, kFi(αi) + 2δi). If

1. either the assumptions 1, 3 and 4 of Theorem 2 or Theorem 3 are
fulfilled,

2. for i ∈ {1, 2, . . . , l},

P

{
ω : Z

F
Ni
i

⊂ ZFi

(
sup |Fi(zi)− FNi

i (zi)|
ϑi

)}
→Ni→∞ 1

and simultaneously for every t > 0 and a ν > 0

P
{

ω : (Ni)ν sup |Fi(zi)− FNi
i (zi)| > t

}
→Ni→∞ 0,

then for every t > 0

P
{

ω :
(
min

i
Ni

)ν

|ϕ(F, α)− ϕ(FN , α)| > t
}
→min(Ni)→∞ 0. (32)

If moreover

3. the corresponding assumption 5 of Theorem 2 or 3 is fulfilled,

then also for every t > 0

P
{

ω :
(
min

i
Ni)ν‖x(F, α

)
− x(FN , α)‖2 > t

}
→min(Ni)→∞ 0. (33)

P r o o f . Let, first, the corresponding assumptions of Theorem 2 be
fulfilled. It follows from the assumptions and from the elementary prop-
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erties of the probability measure that (in this case) for every t > 0

P
{

ω :
(
min

i
Ni)ν |ϕ(F, α)− ϕ(FN , α

)
| > t

}

≤ P

{
ω : 2

l∑
i=1

(Ni)ν

[
Li + C

l∑
j=1

L′j

]
sup |F Ni

i (zi)−Fi(zi)|
ϑi

> t

}

+P

{
ω : Z

F
Ni
i

6⊂ ZFi

(
sup |Fi(zi)−F

Ni
i (zi)|

ϑi

)
for at least one i ∈ {1, . . . , l}

}

+P
{

ω : sup |Fi(zi)− FNi
i (zi)| ≥ ϑiδi for at least one i ∈ {1, 2, . . . , l}

}

≤
l∑

i=1

P

{
ω : (Ni)ν sup |FNi

i (zi)− Fi(zi)| > tϑi

2l [Li+C
Pl

j=1 L′j]

}

+P

{
ω : Z

F
Ni
i

6⊂ ZFi

(
sup |Fi(zi)−F

Ni
i (zi)|

ϑi

)
for at least one i ∈ {1, . . . , l}

}

+P
{

ω : sup |Fi(zi)− FNi
i (zi)| ≥ ϑiδi for at least one i ∈ {1, 2, . . . , l}

}
.

(34)
The first assertion (the relation (32)) of Theorem 4 follows (under the
assumptions corresponding to Theorem 2) from the last system of the
inequalities and from the assumptions. If the corresponding assumptions
of Theorem 3 are fulfilled, then replacing (in the last relations) the con-
stants Li + C

∑l
j=1 L′j , i = 1, 2, . . . , l by the constant l L + CL′ we can obtain

P
{

ω :
(
min

i
Ni

)ν

|ϕ(F, α)− ϕ(FN , α)| > t
}

≤
l∑

i=1

P
{

ω : (Ni)ν sup
∣∣∣FNi

i (zi)− Fi(zi)
∣∣∣ > tϑi

2l [lL+CL′]

}

+P

{
ω : Z

F
Ni
i

⊂/ ZFi

(
sup |Fi(zi)−F

Ni
i (zi)|

ϑi

)
for at least one i ∈ {1, . . . , l}

}

+P
{

ω : sup
∣∣∣Fi(zi)− FNi

i (zi)
∣∣∣ ≥ ϑiδi for at least one i ∈ {1, 2, . . . , l}

}
.

(35)
Evidently, the assertion (32) (under the corresponding assumptions of
Theorem 3) follows from the last inequality.

Replacing, furthermore in the relations (34), (35) (mini Ni)ν |ϕ(F, α) −
ϕ(FN , α)| by (mini Ni)ν‖x(F, α)−x(FN , α)‖2 and employing the correspond-
ing results of Theorem 2 and Theorem 3 we obtain (by the same tech-
nique) the validity of the relation (33). 2

Theorem 4 deals with arbitrary statistical estimates FNi
i (·), Ni = 1, 2, . . .

of the one–dimensional marginal distribution functions Fi(·), i = 1, 2, . . . , l.
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Furthermore we focus our attention on the case when FNi
i (·), Ni = 1, 2, . . .

are empirical distribution functions.

The investigation of the convergence rate of empirical estimates was
started by the papers [12, 29] in the case of recourse problems and in-
dependent random samples. The first result was directed to the optimal
value estimates. Satisfactory results (on the estimates of the optimal
solution) are due to [30]. The original results were furthermore general-
ized in [11, 14] and [24]. The article [27] deals with the case of complete
integer recourse. The results concerning some types of weakly depen-
dent random samples are presented in [16]. In this paper we continue
in this last direction. To this end, first, we recall some types of weakly
dependent random sequences [3, 31].

Let {ζk(ω)}+∞k=−∞, ζk(ω) = ζk, k = . . . ,−1, 0, 1, . . . be a one–dimensional
stationary random sequence defined on (Ω, S, P ), B(−∞, a) be the σ–
algebra given by . . . , ζa−1, ζa, B(b, +∞) given by ζb, ζb+1, . . . , B(a, b) given
by ζa, . . . , ζb, a < b, a, b integer. Let, furthermore, Bm, m ≥ 1 be the Borel
σ–algebra of the subsets of Em.

Definition 1. {ζk(ω)}+∞k=−∞ is an m–dependent random sequence (m ≥
2) if there exists a sequence of independent random values {ηk(ω)}+∞k=−∞
defined on (Ω, S, P ) and a Bm measurable function f(·) defined on Em such
that

ζk(ω) = f(ηk−m+1(ω), . . . , ηk(ω)) for every k = . . . ,−1, 0, 1, . . . .

Definition 2. Let {ζk(ω)}+∞k=−∞ be a strongly stationary random se-
quence. We say that {ζk(ω)}+∞k=−∞ is an absolutely regular random se-
quence with β(N) if

β(N) = sup
k

sup
A∈B(N+k,+∞)

|P (A| B(−∞, k))− P (A)| ↓ 0 (N →∞).

Definition 3. We say that strongly stationary random sequence {ζk(ω)}+∞k=−∞
fulfils the condition of Φ–mixing if there exists a real–valued function Φ(·)
defined on the set of natural numbers N such that

|P (B1 ∩B2)− P (B1)P (B2))| ≤ Φ(N)P (B1),

B1 ∈ B(−∞, u), B2 ∈ B(u + N, ∞), −∞ < u < +∞, N ≥ 1, u an integer.

To recall some auxiliary assertions, let F ζ(·) denote the distribution
function of ζ(ω), F ζ, N (·) an empirical distribution function determined by
{ζk(ω)}N

k=1 and EF ζ , EF ζ, N the corresponding operators of the mathemat-
ical expectation.
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Lemma 2. ([16] Lemma 2.2.) Let {ζk(ω)}+∞k=−∞ be an m–dependent
random sequence, m ≥ 2. If κ(z) is a B1 measurable function defined on
E1 such that |κ(z)| ≤ M (M > 0) for z ∈ E1, then it holds for t > 0, t ∈ E1

that
P {ω : |EF ζ, N κ(ζ(ω))− EF ζ κ(ζ(ω))| > t}
≤ 2r exp

{
− N2

m2(k+1)
t2

2M2

}
+ 2(m− r) exp

{
− N2

m2k
t2

2M2

}
,

where N, k, r are natural numbers such that N = mk+r, r ∈ {0, 1, . . . , m−1}.

Lemma 3. ([16] Lemma 2.4.) Let {ζk(ω)}+∞k=−∞ be an absolutely regular
random sequence with β(N). If κ(z) is a B1 measurable function defined
on E1 such that |κ(z)| ≤ M (M > 0) for z ∈ E1, then it holds for every
v ≤ N, v a natural number, t > 0, t ∈ E1, N = 1, 2, . . . that

P {ω : |EF ζ, N κ(ζ(ω))− EF ζ κ(ζ(ω))| > t} ≤ 2v exp
{
−N

v

N

N − 1 + v

t2

2M2

}
+4Nβ(v).

Lemma 4. ([16] Lemma 2.6.) Let κ(z), z ∈ E1 be a B1 measurable func-
tion defined on E1 such that |κ(z)| ≤ M (M > 0) for z ∈ E1. If {ζk(ω)}+∞k=−∞
is a random sequence fulfilling the Φ–mixing condition, then it holds for
t ∈ E1, t > 0, N = 1, 2, . . . that

P {ω : |EF ζ, N κ(ζ(ω))− EF ζ κ(ζ(ω))| > t} ≤ 2M2

t2N2

[
N +

N−1∑

k=1

(N − k)Φ(k)

]
.

Employing the assertions of Lemmas 2, 3 and 4 and the properties of
the one–dimensional distribution functions we can obtain the following
auxiliary assertion.

Lemma 5. Let t > 0 be arbitrary. If the probability measure Pζ(·) is
absolutely continuous with respect to the Lebesgue measure in E1 and if
{ζk(ω)}+∞k=−∞ is

1. an m–dependent random sequence, m ≥ 2, then

P
{
ω : sup |F ζ, N (z)− F ζ(z)| > t

}

≤ 3
t

{
2r exp

{
− N2

m2(k+1)
t2

18M2

}
+ 2(m− r) exp{− N2

m2k
t2

18M2 }
}

,

where N, k, r are natural numbers such that N = mk+r, r ∈ {0, 1, . . . , m−
1},

2. an absolutely regular random sequence with β(N), then for every
v ≤ N, v, N natural numbers it holds that

P
{
ω : sup |F ζ, N (z)− F ζ(z)| > t

}

≤ 3
t

{
2v exp

{
−N

v
N

N−1+v
t2

18M2

}
+ 4Nβ(v)

}
,
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3. a random sequence fulfilling the Φ–mixing condition, then for every
N natural number it holds that

P
{
ω : sup |F ζ, N (z)− F ζ(z)| > t

} ≤ 36M2

t3N2

[
N +

N−1∑

k=1

(N − k)Φ(k)

]
.

Theorem 5. Let for i = 1, 2, . . . , l, αi ∈ (0, 1), δi > 0 be given, Zi =
(kFi

(αi)− 2δi, kFi
(αi) + 2δi). If

1. either the assumptions 1, 3 and 4 of Theorem 2 or Theorem 3 are
fulfilled,

2. at least one of the following assumptions is fulfilled (simultaneously)
for every i ∈ {1, 2, . . . , l}

a) {ξk
i (ω)}+∞k=1 is a sequence of independent random vectors, 0 < ν < 1

2 ,

b) {ξk
i (ω)}+∞k=−∞ is an m–dependent random sequence, m ≥ 2, 0 < ν < 1

2 ,

c) {ξk
i (ω)}+∞k=−∞ is an absolutely regular random sequence with β(Ni),

0 < ν < 1−γ
2 , 4(Ni)1+nνβ[Nγ

i ] →Ni→∞ 0 for a γ ∈ (0, 1),

d) {ξk
i (ω)}+∞k=−∞ is a Φ–mixing random sequence such that

lim sup
1
Ni

Ni−1∑

k=1

(Ni − k)Φ(k) < +∞, 0 < ν <
1
3
,

3. FNi
i (zi), i = 1, . . . , l is one–dimensional empirical distribution function

deter-
mined by {ξk

i (ω)}Ni

k=1

then for every t > 0

P
{

ω : (min Ni)ν |ϕ(F, α)− ϕ(FN , α)| > t
}
→min(Ni)→∞ 0. (36)

If moreover the corresponding assumption 5 of Theorem 2 or 3 is fulfilled,
then also for every t > 0

P
{

ω : (min Ni)ν‖x(F, α)− x(FN , α)‖2 > t
}
→min(Ni)→∞ 0. (37)

([x] = k iff k ≤ x < k + 1, k integer.)

P r o o f . The proof of Theorem 5 follows from Theorem 2 [8], Theorem
4 and Lemma 5. 2
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6. CONCLUSION

In the paper the stability of the stochastic programming problems with
the individual probability constraints was investigated. In particular the
main attention was focused on the special cases in which the regions
F(F, δ) (fulfilling the relation (3)) can be replaced by several subsets
(fulfilling the relation (4)) of the one–dimensional marginal distribution
functions space. Employing the Kolmogorov metric the achieved results
were applied to the empirical estimates of the optimal value and the
optimal solution for some types of weakly dependent random samples.

APPENDIX

The aim of this section is to prove Propositions 2, 3 and 4.

Lemma A.1. Let δ1 > 0, α1 ∈ (0, 1), ε > 0 be arbitrary. If G1(z1) is an
arbitrary one–dimensional distribution function such that

G1(z1) ∈ 〈F 1, δ1
(z1), F 1, δ1(z1)〉 for z1 ∈ (kFi

(α1)− δ1 − ε, kF1(α1) + δ1 + ε),

then
|kF1(α1)− kG1(α1)| ≤ δ1.

P r o o f . Since it follows from the assumptions that

G1(kF1(α1)− δ1 − ε′) ≤ F1(kF1(α1)) < G1(kF1(α1) + δ1 + ε′)

for every ε′ > 0, we can see that the assertion of Lemma A.1 holds. 2

For a better imagination we present a simple picture.
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We recall one well–known assertion that deals with the relationship
between the optimal value and the optimal solution.
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Lemma A.2. ([19] pp. 54.) Let K ⊂ En be a nonempty, convex set.
Further, let h(x) be a strongly convex with a parameter ρ > 0, continuous
function on K. If x0 is defined by the relation

x0 = arg min
x∈K

h(x),

then

‖x− x0‖2 ≤ 2
ρ
|h(x)− h(x0)| for every x ∈ K.

P r o o f o f P r o p o s i t i o n 2 . Since it follows from the relations
(15), (16), Lemma 1 [18] and Lemma A.1 that

∆[XF (α), XG(α)] ≤ C
l∑

i=1

δi,

we can (according to the assumption 1) see that the relation (19) holds.
Consequently, it remains to prove the second part of the assertion (re-
lation (20)). To this end, first, it holds from the assumptions 2, 4 of
Proposition 2 that X ′ =

∏l
i=1Ki(kFi(αi) + δi) is a nonempty, compact,

convex subset of En. Consequently, according to the assumption 4 of
Proposition 2 there exists unique x(X ′) = arg min{g(x)|x ∈ X ′}. It follows,
successively, from the properties of the Euclidean norm that

‖x(F, α)− x(G, α)‖2 = ‖x(F, α)− x(X ′) + x(X ′)− x(G, α)‖2

= ‖x(F, α)−x(X ′)‖2+‖x(X ′)−x(G, α)‖2+2〈x(F, α)−x(X ′) ∗ x(X ′)−x(G, α)〉,

and simultaneously

‖(x(F, α)− x(X ′))− (x(X ′)− x(G, α))‖2

= ‖x(F, α)−x(X ′)‖2+‖x(X ′)−x(G, α))‖2−2〈x(F, α)−x(X ′) ∗ x(X ′)−x(G, α)〉,

where 〈· ∗ ·〉 denotes the scalar product corresponding to the Euclidean
norm in En.

Evidently, it follows from the last two relations that

‖x(F, α)− x(G, α)‖2 ≤ 2
{‖x(X ′)− x(G, α)‖2 + ‖x(X ′)− x(F, α)‖2} . (38)

It follows from Lemma 1 [18], Lemma A.1 and the relations (6), (14),
(15) that XF (α), XG(α) are convex sets such that XF (α), XG(α) ⊂ X ′ and,
moreover,

∆[XF (α), X ′] ≤ C

l∑

i=1

δi. (39)
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Since XF (α), XG(α), X ′ are convex sets employing, moreover, Lemma A.2
and relation (19) we obtain

‖x(G, α)− x(F, α)‖2

≤ 4
% {|g(x(X ′))− g(x(G, α))|+ |g(x(X ′))− g(x(F, α))|}

≤ 4
% {|g(x(G, α))− g(x(F, α))|+ |g(x(F, α))− g(x(X ′))|

+|g(x(X ′))− g(x(F, α))|} ≤ 12
% L′C

l∑
i=1

δi.

Evidently, the last system of the inequalities finishes the proof. 2

To prove Propositions 3 and 4 we recall the following auxiliary assertion.

Lemma A.3. ([15] Lemma 6.) Let δ1 > 0, ε > 0 be arbitrary. If

1. κ(z1) is a Lipschitz function on ZF1(δ1 +ε) with the Lipschitz constant
Lκ,

2. there exists a finite EF1κ(ξ1(ω)),

and if G1(z1) is an arbitrary one–dimensional distribution function such
that

G1(z1) ∈ 〈F 1, δ1
(z1), F 1, δ1(z1)〉 for every z1 ∈ E1,

then
|EF1κ(ξ1(ω))− EG1κ(ξ1(ω))| ≤ Lκδ1.

P r o o f o f P r o p o s i t i o n 3 . First, since XF (α) is a compact set it
follows from Lemma A.3 and the assumptions that

∣∣∣∣ inf
XF (α)

EF g(x, ξ(ω))− inf
XF (α)

EGg(x, ξ(ω))
∣∣∣∣ ≤

l∑

i=1

δiLi. (40)

According to the fact that EG

∑l
i=1 gi(x, ξi(ω)) is a Lipschitz function on X

with the Lipschitz constant
∑l

i=1 L′i, employing the assertion of Proposi-
tion 2, we obtain that

∣∣∣∣∣ inf
XF (α)

EG

l∑

i=1

gi(x, ξi(ω))− inf
XG(α)

EG

l∑

i=1

gi(x, ξi(ω))

∣∣∣∣∣ ≤ C




l∑

j=1

L′j




l∑

i=1

δi. (41)

The validity of the relation (21) follows from the relations (8), (40) and
(41). The second part of the assertion (relation (22)) can be proven by
the technique employed in the proof of Proposition 2. 2
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P r o o f o f P r o p o s i t i o n 4 . First, it follows from the assumptions
and from the elementary properties of the integral that

|EF g(x, ξ(ω))− EGg(x, ξ(ω))|

≤
∣∣∣∣∣
∫
El

g(x, (z1, z2, . . . , zl)) dF1(z1) dF2(z2) . . . dFl(zl)

− ∫
El

g(x, (z1, z2, . . . , zl)) dG1(z1) dF2(z2) . . . dFl(zl)

∣∣∣∣∣
...

+

∣∣∣∣∣
∫
El

g(x, (z1, z2, . . . , zl))dG1(z1) dG2(z2) . . . dGl−1(zl−1)) dFl(zl)

− ∫
El

g(x, (z1, z2, . . . , zl))dG1(z1) dG2(z2) . . . dGl−1(zl−1)) dGl(zl)

∣∣∣∣∣ .

Moreover, for i ∈ {1, 2, . . . , l}, x ∈ X
∫

El

g(x, (z1, z2, . . . , zl)) dG1(z1) . . . dGi−1(zi−1) dFi+1(zi+1) . . . dFl(zl)

is a Lipschitz function on ZFi(δi) with the Lipschitz constant L. Conse-
quently, since XF (α) is a compact set we obtain (according to Lemma A.3
and the assumptions) that

∣∣∣∣ inf
XF (α)

EF g(x, ξ(ω))− inf
XF (α)

EGg(x, ξ(ω))
∣∣∣∣ ≤ lL

l∑

i=1

δi. (42)

Furthermore, it follows from the assumptions that EGg(x, ξ(ω)) is a Lip-
schitz function on X with the Lipschitz constant L′. Consequently, em-
ploying the first result of Proposition 2 we obtain

∣∣∣∣ inf
XF (α)

EGg(x, ξ(ω))− inf
XG(α)

EGg(x, ξ(ω))
∣∣∣∣ ≤ CL′

l∑

i=1

δi. (43)

The first assertion of Proposition 4 follows from the relations (8), (42)
and (43). The second part of the assertion can be proven by the technique
employed already in the proof of Proposition 2. 2

(Received December 31, 1993.)
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